1
|
Afshari R, Roy A, Jain S, Lum K, Huang J, Denton S, Annabi N. One-Pot Synthesis of Antibacterial and Antioxidant Self-Healing Bioadhesives Using Ugi Four-Component Reactions. J Biomed Mater Res B Appl Biomater 2025; 113:e35584. [PMID: 40317897 DOI: 10.1002/jbm.b.35584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 03/14/2025] [Accepted: 04/05/2025] [Indexed: 05/07/2025]
Abstract
Bioadhesive materials are extensively utilized as alternatives to surgical sutures and wound dressings. Despite significant advancements in their synthesis, current bioadhesives suffer from inadequate mechanical stability, suboptimal wet tissue adhesion, and a lack of inherent antibacterial and antioxidant properties, while requiring multistep synthesis processes, complicating their production for biomedical applications. To address these limitations, we developed a new bioadhesive, named UgiGel, synthesized through a one-pot Ugi four-component reaction (Ugi-4CR). Our strategy utilized gelatin as the backbone, 4-formylphenylboronic acid (4-FPBA) as an aldehyde source for improved adhesion and antibacterial activity, gallic acid (GA) as a carboxylic acid source for improved antioxidant activity and wound healing, and cyclohexyl isocyanide (CyIso) to induce pseudopeptide structures. The internal crosslinking between GA and 4-FPBA via dynamic boronate ester bond formation, triggered by slight pH changes (7.4-7.8) and temperature elevation (25°C-40°C), resulted in the formation of viscoelastic and self-healing hydrogels with water as the only byproduct without the need for initiator/light activation. UgiGel showed higher adhesion to porcine skin tissue (139.8 ± 8.7 kPa) as compared to commercially available bioadhesives, Evicel (26.3 ± 2.6 kPa) and Coseal (19.3 ± 9.9 kPa). It also demonstrated effective antibacterial properties against both Gram-negative and Gram-positive bacteria, as well as antioxidant activity. Additionally, the in vitro studies using NIH-3T3 cells confirmed the biocompatibility of the UgiGel over 7 days of culture. Moreover, in vivo biocompatibility and biodegradation of UgiGel were confirmed via subcutaneous implantation in rats for up to 28 days. Our results demonstrated that UgiGel outperformed commercially available bioadhesives in terms of adhesion, self-healing, and antibacterial activity, without compromising biocompatibility or physical properties, representing a promising multifunctional bioadhesive for wound sealing and repair.
Collapse
Affiliation(s)
- Ronak Afshari
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, California, USA
| | - Arpita Roy
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, California, USA
| | - Saumya Jain
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, California, USA
| | - Kaimana Lum
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, California, USA
| | - Joyce Huang
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, California, USA
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California, USA
| | - Sam Denton
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California, USA
| | - Nasim Annabi
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, California, USA
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California, USA
| |
Collapse
|
2
|
Bao Z, Yang R, Chen B, Luan S. Degradable polymer bone adhesives. FUNDAMENTAL RESEARCH 2025; 5:782-795. [PMID: 40242523 PMCID: PMC11997572 DOI: 10.1016/j.fmre.2023.11.023] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 11/12/2023] [Accepted: 11/13/2023] [Indexed: 01/06/2025] Open
Abstract
Highly comminuted fractures and bone defects pose a significant challenge for orthopedic surgery. Current surgical procedures commonly rely on metal implants (such as bone plates, nails and pins) for fracture internal and external fixations, but they are likely to result in problems, such as stress shielding and poor bone healing. Bone adhesive represents an attractive alternative for the treatment of fracture. The ideal bone adhesive should satisfy several performance requirements, including high adhesion strength for bone tissues, rapid in-situ curing in a physiological environment, good biocompatibility with no toxicity, degradability, and good stability in vivo. Among these requirements, degradability is a crucial characteristic of bone adhesives. This property enables the material to be easily removed without the need for surgery at a later stage, ensuring the regeneration of bone tissue without any hindrance. The degradation rate of bone adhesive varies depending on the application scenarios and tissues, ranging from weeks to years. Many bone adhesives are unable to guarantee degradability while achieving other necessary performances. Therefore, this article provides a detailed overview of the strategies to fabricate biodegradable polymer bone adhesives that can maintain high bulk and adhesion strength, biocompatibility and other properties. Finally, the current challenges in the clinical translation of bone adhesives and their future development directions are discussed.
Collapse
Affiliation(s)
- Zijian Bao
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Ran Yang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Binggang Chen
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Shifang Luan
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
3
|
Zhang X, Zan X, Yin J, Wang J. Non-Isocyanate Urethane Acrylate Derived from Isophorone Diamine: Synthesis, Characterization and Its Application in 3D Printing. Molecules 2024; 29:2639. [PMID: 38893514 PMCID: PMC11173429 DOI: 10.3390/molecules29112639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 05/29/2024] [Accepted: 06/01/2024] [Indexed: 06/21/2024] Open
Abstract
In this paper, urethane-based acrylates (UA) were prepared via an environmentally friendly non-isocyanate route. Isophorone diamine (IPDA) reacted with ethylene carbonate (EC), producing carbamate containing amine and hydroxyl groups, which further reacted with neopentyl glycol diacrylate (NPGDA) by aza Michael addition, forming UA. The structures of the obtained intermediates and UA were characterized by 1H NMR and electrospray ionization high-resolution mass spectrometry (ESI-HRMS). The photopolymerization kinetics of UA were investigated by infrared spectroscopy. The composite with obtained UA can be UV cured quickly to form a transparent film with a tensile strength of 21 MPa and elongation at break of 16%. After UV curing, the mono-functional urethane acrylate was copolymerized into the cross-linked network in the form of side chains. The hydroxyl and carbamate bonds on the side chains have high mobility, which make them easy to form stronger dynamic hydrogen bonds during the tensile process, giving the material a higher tensile strength and elongation at break. Therefore, the hydrogen bonding model of a cross-linked network is proposed. The composite with UA can be 3D printed into models.
Collapse
Affiliation(s)
- Xinqi Zhang
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China; (X.Z.); (X.Z.); (J.Y.)
| | - Xinxin Zan
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China; (X.Z.); (X.Z.); (J.Y.)
| | - Jiangdi Yin
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China; (X.Z.); (X.Z.); (J.Y.)
| | - Jiaxi Wang
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China; (X.Z.); (X.Z.); (J.Y.)
- Hebei Provincial Key Lab of Green Chemical Technology and High Efficient Energy Saving, Hebei University of Technology, Tianjin 300130, China
| |
Collapse
|
4
|
Jia B, Huang H, Dong Z, Ren X, Lu Y, Wang W, Zhou S, Zhao X, Guo B. Degradable biomedical elastomers: paving the future of tissue repair and regenerative medicine. Chem Soc Rev 2024; 53:4086-4153. [PMID: 38465517 DOI: 10.1039/d3cs00923h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Degradable biomedical elastomers (DBE), characterized by controlled biodegradability, excellent biocompatibility, tailored elasticity, and favorable network design and processability, have become indispensable in tissue repair. This review critically examines the recent advances of biodegradable elastomers for tissue repair, focusing mainly on degradation mechanisms and evaluation, synthesis and crosslinking methods, microstructure design, processing techniques, and tissue repair applications. The review explores the material composition and cross-linking methods of elastomers used in tissue repair, addressing chemistry-related challenges and structural design considerations. In addition, this review focuses on the processing methods of two- and three-dimensional structures of elastomers, and systematically discusses the contribution of processing methods such as solvent casting, electrostatic spinning, and three-/four-dimensional printing of DBE. Furthermore, we describe recent advances in tissue repair using DBE, and include advances achieved in regenerating different tissues, including nerves, tendons, muscle, cardiac, and bone, highlighting their efficacy and versatility. The review concludes by discussing the current challenges in material selection, biodegradation, bioactivation, and manufacturing in tissue repair, and suggests future research directions. This concise yet comprehensive analysis aims to provide valuable insights and technical guidance for advances in DBE for tissue engineering.
Collapse
Affiliation(s)
- Ben Jia
- School of Civil Aviation, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Heyuan Huang
- School of Aeronautics, Northwestern Polytechnical University, Xi'an, 710072, China.
| | - Zhicheng Dong
- School of Civil Aviation, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Xiaoyang Ren
- School of Aeronautics, Northwestern Polytechnical University, Xi'an, 710072, China.
| | - Yanyan Lu
- School of Aeronautics, Northwestern Polytechnical University, Xi'an, 710072, China.
| | - Wenzhi Wang
- School of Aeronautics, Northwestern Polytechnical University, Xi'an, 710072, China.
| | - Shaowen Zhou
- Department of Periodontology, College of Stomatology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Xin Zhao
- State Key Laboratory for Mechanical Behavior of Materials, and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China.
| | - Baolin Guo
- State Key Laboratory for Mechanical Behavior of Materials, and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China.
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an 710049, China
| |
Collapse
|
5
|
Yu CF, Rwei SP, Yang SJ, Tsen WC, Lin LH. Synthesis and Characterization of Poly(DL-lactide) Containing Fluorene Structures. Polymers (Basel) 2023; 15:polym15112555. [PMID: 37299353 DOI: 10.3390/polym15112555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/26/2023] [Accepted: 05/30/2023] [Indexed: 06/12/2023] Open
Abstract
9,9-bis[4-(2-hydroxy-3-acryloyloxypropoxy)phenyl]fluorene (BPF) hydroxyl groups (-OH) were used as initiators in the ring-opening polymerization reaction with DL-lactide monomers at different molar ratios to synthesize a Poly(DL-lactide) polymer containing bisphenol fluorene structure and acrylate functional groups (DL-BPF). The polymer's structure and molecular weight range were analyzed using NMR (1H, 13C) and gel permeation chromatography. DL-BPF was then subjected to photocrosslinking using the photoinitiator Omnirad 1173, resulting in the formation of an optically transparent crosslinked polymer. Characterization of the crosslinked polymer involved analyzing its gel content, refractive index, thermal stability (via differential scanning thermometry (DSC) and thermogravimetric analysis (TGA)), as well as conducting cytotoxicity tests. The crosslinked copolymer exhibited a maximum refractive index of 1.5276, a maximum glass transition temperature of 61.1 °C, and cell survival rates higher than 83% in the cytotoxicity tests.
Collapse
Affiliation(s)
- Chung-Fu Yu
- Institute of Organic and Polymeric Materials, Research, National Taipei University of Technology, Taipei 106344, Taiwan
| | - Syang-Peng Rwei
- Institute of Organic and Polymeric Materials, Research, National Taipei University of Technology, Taipei 106344, Taiwan
- Research and Development Center for Smart Textile Technology, Taipei 106344, Taiwan
| | - Shung-Jim Yang
- Department of Aeronautical and Opto-Mechatronic Engineering, Vanung University, Taoyuan 320313, Taiwan
| | - Wen-Chin Tsen
- Graduate School of Fabric Technology Management, Lee-Ming Institute of Technology, New Taipei City 243083, Taiwan
| | - Li-Huei Lin
- Department of Cosmetic Science, Vanung University, Taoyuan 320313, Taiwan
| |
Collapse
|
6
|
Darie-Niță RN, Irimia A, Doroftei F, Stefan LM, Iwanczuk A, Trusz A. Bioactive and Physico-Chemical Assessment of Innovative Poly(lactic acid)-Based Biocomposites Containing Sage, Coconut Oil, and Modified Nanoclay. Int J Mol Sci 2023; 24:3646. [PMID: 36835080 PMCID: PMC9962215 DOI: 10.3390/ijms24043646] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/05/2023] [Accepted: 02/08/2023] [Indexed: 02/15/2023] Open
Abstract
The bioactivity of the versatile biodegradable biopolymer poly(lactic acid) (PLA) can be obtained by combining it with natural or synthetic compounds. This paper deals with the preparation of bioactive formulations involving the melt processing of PLA loaded with a medicinal plant (sage) and an edible oil (coconut oil), together with an organomodifed montmorillonite nanoclay, and an assessment of the resulting structural, surface, morphological, mechanical, and biological properties of the biocomposites. By modulating the components, the prepared biocomposites show flexibility, both antioxidant and antimicrobial activity, as well as a high degree of cytocompatibility, being capable to induce the cell adherence and proliferation on their surface. Overall, the obtained results suggest that the developed PLA-based biocomposites could potentially be used as bioactive materials in medical applications.
Collapse
Affiliation(s)
| | - Anamaria Irimia
- “Petru Poni” Institute of Macromolecular Chemistry, 41A Gr. Ghica Voda Alley, 700487 Iasi, Romania
| | - Florica Doroftei
- “Petru Poni” Institute of Macromolecular Chemistry, 41A Gr. Ghica Voda Alley, 700487 Iasi, Romania
| | - Laura Mihaela Stefan
- National Institute of Research and Development for Biological Sciences, 296 Splaiul Independentei, 060031 Bucharest, Romania
| | - Andrzej Iwanczuk
- Faculty of Environmental Engineering, Wroclaw University of Science and Technology, Wybrzeze Wyspiańskiego 27, 50-370 Wroclaw, Poland
| | - Agnieszka Trusz
- Faculty of Environmental Engineering, Wroclaw University of Science and Technology, Wybrzeze Wyspiańskiego 27, 50-370 Wroclaw, Poland
| |
Collapse
|
7
|
Mei W, Liu Q, Zhou H, Wang J. Preparation and UV curing properties of oxazolidinone-based acrylate derivatives. REACT FUNCT POLYM 2022. [DOI: 10.1016/j.reactfunctpolym.2022.105250] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
8
|
Darie-Niță RN, Râpă M, Frąckowiak S. Special Features of Polyester-Based Materials for Medical Applications. Polymers (Basel) 2022; 14:951. [PMID: 35267774 PMCID: PMC8912343 DOI: 10.3390/polym14050951] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 02/18/2022] [Accepted: 02/24/2022] [Indexed: 11/16/2022] Open
Abstract
This article presents current possibilities of using polyester-based materials in hard and soft tissue engineering, wound dressings, surgical implants, vascular reconstructive surgery, ophthalmology, and other medical applications. The review summarizes the recent literature on the key features of processing methods and potential suitable combinations of polyester-based materials with improved physicochemical and biological properties that meet the specific requirements for selected medical fields. The polyester materials used in multiresistant infection prevention, including during the COVID-19 pandemic, as well as aspects covering environmental concerns, current risks and limitations, and potential future directions are also addressed. Depending on the different features of polyester types, as well as their specific medical applications, it can be generally estimated that 25-50% polyesters are used in the medical field, while an increase of at least 20% has been achieved since the COVID-19 pandemic started. The remaining percentage is provided by other types of natural or synthetic polymers; i.e., 25% polyolefins in personal protection equipment (PPE).
Collapse
Affiliation(s)
- Raluca Nicoleta Darie-Niță
- Physical Chemistry of Polymers Department, Petru Poni Institute of Macromolecular Chemistry, 41A Grigore Ghica Voda Alley, 700487 Iasi, Romania;
| | - Maria Râpă
- Faculty of Materials Science and Engineering, University Politehnica of Bucharest, 313 Splaiul Independentei, 060042 Bucharest, Romania
| | - Stanisław Frąckowiak
- Faculty of Environmental Engineering, University of Science and Technology, 50-013 Wrocław, Poland;
| |
Collapse
|
9
|
Jing C, Osada K, Kojima C, Suzuki Y, Matsumoto A. RAFT Polymerization of 2‐(
tert
‐Butoxycarbonyloxy)Ethyl Methacrylate and Transformation to Functional Polymers via Deprotection and the Subsequent Polymer Reactions. MACROMOL CHEM PHYS 2021. [DOI: 10.1002/macp.202100336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Chu Jing
- Department of Applied Chemistry Graduate School of Engineering Osaka Prefecture University 1‐1 Gakuen‐cho, Naka‐ku Sakai Osaka 599‐8531 Japan
| | - Kaito Osada
- Department of Applied Chemistry Graduate School of Engineering Osaka Prefecture University 1‐1 Gakuen‐cho, Naka‐ku Sakai Osaka 599‐8531 Japan
| | - Chie Kojima
- Department of Applied Chemistry Graduate School of Engineering Osaka Prefecture University 1‐1 Gakuen‐cho, Naka‐ku Sakai Osaka 599‐8531 Japan
| | - Yasuhito Suzuki
- Department of Applied Chemistry Graduate School of Engineering Osaka Prefecture University 1‐1 Gakuen‐cho, Naka‐ku Sakai Osaka 599‐8531 Japan
| | - Akikazu Matsumoto
- Department of Applied Chemistry Graduate School of Engineering Osaka Prefecture University 1‐1 Gakuen‐cho, Naka‐ku Sakai Osaka 599‐8531 Japan
| |
Collapse
|
10
|
Tamilvanan M, Sasieekhumar AR, Somanathan T, Pandurangan A. Synthesis, Characterization and Photocrosslinking Properties of Poly(4-acryloyloxyphenyl-4'-fluorostyryl ketone). POLYMER SCIENCE SERIES A 2021. [DOI: 10.1134/s0965545x21350157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|