1
|
Wang J, Zhang Y, Ye W, Guo K, Zhou X, Xue Z. Facile Fabrication of Polymer Electrolytes with Branched Structure via Deep Eutectic Electrolyte-Enabled In Situ Polymerizations. ACS Macro Lett 2024:166-173. [PMID: 38236011 DOI: 10.1021/acsmacrolett.3c00666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
The demand for higher energy density in energy storage devices drives further research on lithium metal batteries (LMBs) because of the high theoretical capacity and low voltage of lithium metal anode. Polymer electrolytes (PEs) exhibit obvious advantages in combating volatilization and leakage compared with liquid electrolytes, which improves the safety of LMBs. However, it is still difficult to construct PEs with a stable electrolyte-electrode interface for high-performance and long-term life LMBs. Herein, the gel polymer electrolyte (GPE-SL) containing deep eutectic electrolyte (DEE) and branchlike polymer skeleton are designed and prepared by the DEE-induced in situ cationic and radical polymerizations. The DEE provides a smooth Li+ migration pathway to ensure the electrochemical properties, and the multibrominated polymer matrix formed in situ enables a LiBr-rich solid electrolyte interphase (SEI) layer on lithium metal anode and prolongs the life span of LMBs. Hence, the Li|GPE-SL|LiFePO4 battery displays an excellent cycling stability with 84% capacity retention after 1200 cycles at 1C. This simple deep eutectic electrolyte-induced polymerization method provides a promising direction for high-performance LMBs with improved anode-electrolyte compatibility through the construction of a stable SEI layer in situ.
Collapse
Affiliation(s)
- Jirong Wang
- Key Laboratory for Material Chemistry of Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
- College of Textiles & Clothing, Institute of Functional Textiles and Advanced Materials, National Engineering Research Center for Advanced Fire-Safety Materials D & A (Shandong), State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, China
| | - Yong Zhang
- Key Laboratory for Material Chemistry of Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Weixin Ye
- Key Laboratory for Material Chemistry of Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Kairui Guo
- Key Laboratory for Material Chemistry of Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Xingping Zhou
- Key Laboratory for Material Chemistry of Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Zhigang Xue
- Key Laboratory for Material Chemistry of Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
2
|
Govindappa H, Abdi G, Uthappa UT, Sriram G, Han SS, Kurkuri M. Efficient separation of arsenic species of oxyanion As (III) and As (V) by using effective polymer inclusion membranes (PIM). CHEMOSPHERE 2023; 316:137851. [PMID: 36642130 DOI: 10.1016/j.chemosphere.2023.137851] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 12/23/2022] [Accepted: 01/10/2023] [Indexed: 06/17/2023]
Abstract
The heavy metal contaminant arsenic exist in the form of arsenite (As(III)) and arsenate (As(V)) ions. These ions are highly carcinogenic that are usually present in the ground water. To date, most of the designed polymer inclusion membrane (PIM) involved only about separation without differentiating the oxidation states. Thus, there is a research gap on separation of element with different oxidation states. Thus, this study addresses such research gap which have been not explored previously. To extract such ions from water, the present study involves fabrication of PIM by varying the compositions of the base polymer, carrier and plasticizer. Also effect of the strip solution, and transport properties were studied. High performance membrane was obtained with 50% (w/w) Aliquat 336 and 50% (w/w) Cellulose triacetate (CTA). The production of 1 m2 of PIM may cost approximately 0.08-0.16$. Also, we have combined the separation capacity of polymer inclusion membrane (PIM) with the sensitivity and elemental detection using atomic absorption spectrometry (AAS) to detect and separate As(III) and As(V). AAS is limited to detecting only elemental arsenic (As) and does not distinguish between As(III) and As(V). Further, to address such limitations in this current study we were able to separate As(V) from As(III) within 5 h. In addition, to provide sole solution a device was fabricated to extract As(V) in the field studies which displayed outstanding efficiency of 99.7 ± 0.2%. The extracted samples was tested in AAS to differentiate between oxidation states of the arsenic species and these important results are supportive in finding out the redox potential of water and for other geochemical explorations.
Collapse
Affiliation(s)
- Harshith Govindappa
- Centre for Research in Functional Materials (CRFM), JAIN (Deemed-to-be University), Jain Global Campus, Bengaluru, 562112, Karnataka, India
| | - Gholamreza Abdi
- Department of Biotechnology, Persian Gulf Research Institute, Persian Gulf University, 75169, Bushehr, Iran
| | - U T Uthappa
- School of Chemical Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan, Gyeongbuk, 38541, Republic of Korea.
| | - Ganesan Sriram
- School of Chemical Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan, Gyeongbuk, 38541, Republic of Korea
| | - Sung Soo Han
- School of Chemical Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan, Gyeongbuk, 38541, Republic of Korea.
| | - Mahaveer Kurkuri
- Centre for Research in Functional Materials (CRFM), JAIN (Deemed-to-be University), Jain Global Campus, Bengaluru, 562112, Karnataka, India.
| |
Collapse
|
3
|
Kaczorowska MA. The Use of Polymer Inclusion Membranes for the Removal of Metal Ions from Aqueous Solutions-The Latest Achievements and Potential Industrial Applications: A Review. MEMBRANES 2022; 12:1135. [PMID: 36422127 PMCID: PMC9695490 DOI: 10.3390/membranes12111135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/08/2022] [Accepted: 11/09/2022] [Indexed: 05/12/2023]
Abstract
The growing demand for environmentally friendly and economical methods of removing toxic metal ions from polluted waters and for the recovery of valuable noble metal ions from various types of waste, which are often treated as their secondary source, has resulted in increased interest in techniques based on the utilization of polymer inclusion membranes (PIMs). PIMs are characterized by many advantages (e.g., the possibility of simultaneous extraction and back extraction, excellent stability and high reusability), and can be adapted to the properties of the removed target analyte by appropriate selection of carriers, polymers and plasticizers used for their formulation. However, the selectivity and efficiency of the membrane process depends on many factors (e.g., membrane composition, nature of removed metal ions, composition of aqueous feed solution, etc.), and new membranes are systematically designed to improve these parameters. Numerous studies aimed at improving PIM technology may contribute to the wider use of these methods in the future on an industrial scale, e.g., in wastewater treatment. This review describes the latest achievements related to the removal of various metal ions by PIMs over the past 3 years, with particular emphasis on solutions with potential industrial application.
Collapse
Affiliation(s)
- Małgorzata A Kaczorowska
- Faculty of Chemical Technology and Engineering, Bydgoszcz University of Science and Technology, 3 Seminaryjna Street, 85326 Bydgoszcz, Poland
| |
Collapse
|
4
|
Kazemi D, Yaftian MR. Selective transport-recovery of bismuth(III) by a polymer inclusion membrane containing polyvinyl chloride base polymer and bis(2-ethylhexyl)phosphoric acid. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.120375] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
5
|
Wang M, Wang G, Xu Y, Song X, Bu Q. Simultaneous improvement of the plasticization, mechanical and migration resistance properties of PVC materials by grafting ricinoleic acid-derived phosphate ester. CHEMICAL PAPERS 2021. [DOI: 10.1007/s11696-021-01860-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|