1
|
Senila M. Polymer Inclusion Membranes (PIMs) for Metal Separation-Toward Environmentally Friendly Production and Applications. Polymers (Basel) 2025; 17:725. [PMID: 40292533 PMCID: PMC11945652 DOI: 10.3390/polym17060725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Revised: 03/05/2025] [Accepted: 03/07/2025] [Indexed: 04/30/2025] Open
Abstract
Polymer inclusion membranes (PIMs) have been reported to be useful for the selective separation of numerous metal ions, with multiple applications in areas such as analytical chemistry, water quality monitoring, water treatment, and metal recovery. This review aims to update the recent advancements related to PIM technology in metal ion separation, with a particular emphasis on environmentally friendly production and applications. PIMs have many advantages over classical liquid-liquid extraction, such as excellent selectivity, ease of use with simultaneous extraction and back-extraction, stability, and reusability. PIMs typically consist of a base polymer, a carrier, and, if necessary, a plasticizer, and can therefore be tailored to specific analytes and specific matrices. Consequently, numerous studies have been carried out to develop PIMs for specific applications. In analytical chemistry, PIMs have been used mostly for analyte preconcentration, matrix separation, speciation analysis, and sensing. They can be used as passive sampling tools or integrated into automated water monitoring systems. PIMs are also widely studied for the extraction and purification of valuable metals in the frame of the circular economy, as well as for wastewater treatment. Even if they are a greener alternative to classical metal extraction, their production still requires petroleum-based polymers and toxic and volatile solvents. In recent years, there has been a clear trend to replace classical polymers with biodegradable and bio-sourced polymers and to replace the production of PIMs using toxic solvents with those based on green solvents or without solvents. According to the published literature, environmentally friendly PIM-based techniques are a highly recommended area of future research for metal ion separation directed toward a wide range of applications.
Collapse
Affiliation(s)
- Marin Senila
- INCDO-INOE 2000, Research Institute for Analytical Instrumentation, 67 Donath Street, 400293 Cluj-Napoca, Romania
| |
Collapse
|
2
|
Zhang M, Yang Z, Xu C, Li T, Liu X, Sun G, Peng X, Cui Y. A Pyridine Amine Extractant for Separation of La 3+ and Ce 3+ in HNO 3 Solution. Inorg Chem 2025; 64:2767-2776. [PMID: 39903876 DOI: 10.1021/acs.inorgchem.4c04765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2025]
Abstract
The separation of lanthanum and cerium is of great significance for improving the material properties and promoting scientific and technological progress. In this paper, a pyridine amine extractant, (1R,2S)-N1,N2-bis((5-methylpyridin-2-yl)methyl)cyclohexane-1,2-biamine (cis-BMPyMChBA), was designed for the separation of lanthanum and cerium. The aim is to use this extractant to catalyze the oxidation of tri- to tetravalent cerium and to increase the separation efficiency between lanthanum and cerium. The effects of the temperature, diluent, extractant concentration, and pH were evaluated to the extraction and separation performance of lanthanum and cerium. The experimental results demonstrate that cis-BMPyMChBA exhibits high selectivity for cerium, with a separation factor for lanthanum and cerium reaching 122.9. The coordination mechanism between cis-BMPyMChBA and cerium ion was clarified through the combined use of extraction isotherm, Job's curve, spectroscopic methods, and density functional theory (DFT) calculation. It involved the interaction between the secondary amine N atom and the pyridine N atom and the metal ion in which the cerium ion underwent a valence change from trivalent to tetravalent before extraction. This was found to be more conducive to the separation of lanthanum and cerium.
Collapse
Affiliation(s)
- Miaomiao Zhang
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, PR China
| | - Zhen Yang
- Jinan Vocational College of Nursing, Jinan 250102, PR China
- Institute for Smart Materials & Engineering, University of Jinan, Jinan 250022, PR China
| | - Chengjin Xu
- Institute for Smart Materials & Engineering, University of Jinan, Jinan 250022, PR China
| | - Tianrui Li
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, PR China
| | - Xiaolei Liu
- Institute for Smart Materials & Engineering, University of Jinan, Jinan 250022, PR China
| | - Guoxin Sun
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, PR China
- Institute for Smart Materials & Engineering, University of Jinan, Jinan 250022, PR China
| | - Xiujing Peng
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, PR China
- Institute for Smart Materials & Engineering, University of Jinan, Jinan 250022, PR China
| | - Yu Cui
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, PR China
| |
Collapse
|
3
|
Kazemi D, Yaftian MR. PVDF-HFP-based polymer inclusion membrane functionalized with D2EHPA for the selective extraction of bismuth(III) from sulfate media. Sci Rep 2024; 14:11622. [PMID: 38773177 PMCID: PMC11109169 DOI: 10.1038/s41598-024-62401-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 05/16/2024] [Indexed: 05/23/2024] Open
Abstract
This study is the first application of a PVDF-HFP-based polymer inclusion membrane incorporating the poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP) and di(2-ethylhexyl)phosphoric acid (D2EHPA) as the base polymer and extractant for the extraction of bismuth(III), respectively. It is demonstrated that the PIM comprised of 60 wt% PVDF-HFP and 40 wt% D2EHPA is the most effective in the extraction of bismuth(III) from feed solution containing 20 mg L-1 bismuth(III) and 0.2 mol L-1 sulfate adjusted to pH 1.4. The extracted bismuth(III) ions are back-extracted quantitatively to the receiving solution containing 1 mol L-1 sulfuric acid. The stoichiometry experiments reveal that the Bi: D2EHPA ratio in the bismuth(III) extracted complex is 1:6, and D2EHPA is dimer. Moreover, it is shown that the studied PIM has high selectivity in the extraction of bismuth(III) over other interfering ions such as Mo(VI), Cr(III), Al(III), Fe(III), Ni(II), Zn(II), Cd(II), Co(II), Cu(II), and Mn(II). The interference of Fe(III) is also eliminated by masking with fluoride, leading finally to a nearly pure extraction of bismuth(III).
Collapse
Affiliation(s)
- Davood Kazemi
- Department of Chemistry, Faculty of Science, University of Zanjan, Zanjan, 45371-38791, Iran.
| | - Mohammad Reza Yaftian
- Department of Chemistry, Faculty of Science, University of Zanjan, Zanjan, 45371-38791, Iran.
| |
Collapse
|
4
|
Alcalde B, Elias G, Kolev SD, Méndez JA, Díez S, Oliver-Ortega H, Anticó E, Fontàs C. A Comprehensive Study on the Effect of Plasticizers on the Characteristics of Polymer Inclusion Membranes (PIMs): Exploring Butyl Stearate as a Promising Alternative. MEMBRANES 2024; 14:19. [PMID: 38248709 PMCID: PMC10818669 DOI: 10.3390/membranes14010019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/03/2024] [Accepted: 01/05/2024] [Indexed: 01/23/2024]
Abstract
This study investigated the influence of various plasticizers commonly used in the manufacture of polymer inclusion membranes (PIMs), such as 2-nitrophenyl octyl ether (NPOE), phthalates, adipates, and sebacates on the mechanical, thermal, and transport properties of membranes. Additionally, butyl stearate (BTS), chosen for its non-toxic nature compared to phthalates and its cost-effectiveness relative to adipates and sebacates, was evaluated as a plasticizer in PIMs for the first time. All plasticizers were incorporated in PIMs made of either cellulose triacetate (CTA) or poly(vinyl chloride) (PVC) as the base polymers and the task-specific ionic liquid trioctylmethylammonium thiosalicylate (TOMATS) as the carrier. The plasticizers were found to significantly affect the characteristics of membrane hydrophilicity, mechanical flexibility, and thermal stability. Transport experiments using Hg(II) as a model target ion revealed that, for CTA-based PIMs, the plasticizer did not significantly affect transport efficiency. However, for PVC-based PIMs, BTS exhibited better efficiency when compared to NPOE. These findings highlight the potential of BTS as an attractive alternative to currently used plasticizers in PVC-based PIM formulations.
Collapse
Affiliation(s)
- Berta Alcalde
- Chemistry Department, University of Girona, C/Maria Aurèlia Capmany, 69, 17003 Girona, Spain; (B.A.); (G.E.); (E.A.)
| | - Gemma Elias
- Chemistry Department, University of Girona, C/Maria Aurèlia Capmany, 69, 17003 Girona, Spain; (B.A.); (G.E.); (E.A.)
| | - Spas D. Kolev
- School of Chemistry, The University of Melbourne, Melbourne, VIC 3010, Australia;
- Department of Chemical Engineering, The University of Melbourne, Melbourne, VIC 3010, Australia
- Faculty of Chemistry and Pharmacy, Sofia University “St. Kl. Ohridski”, 1 James Bourchier Blvd., 1164 Sofia, Bulgaria
| | - José Alberto Méndez
- Chemical Engineering Department, University of Girona, Edifici PI, 17003 Girona, Spain;
| | - Sergi Díez
- Environmental Chemistry Department, Institute of Environmental Assessment and Water Research (IDAEA-CSIC), C/Jordi Girona, 18-26, 08034 Barcelona, Spain;
| | - Helena Oliver-Ortega
- Department of Materials Science and Engineering, Universitat Politècnica de Catalunya, C/Colom 1, 08222 Terrassa, Spain;
- Institut d’Investigació Tèxtil i Cooperació Industrial de Terrassa (INTEXTER), C/Colom 15, 08222 Terrassa, Spain
| | - Enriqueta Anticó
- Chemistry Department, University of Girona, C/Maria Aurèlia Capmany, 69, 17003 Girona, Spain; (B.A.); (G.E.); (E.A.)
| | - Clàudia Fontàs
- Chemistry Department, University of Girona, C/Maria Aurèlia Capmany, 69, 17003 Girona, Spain; (B.A.); (G.E.); (E.A.)
| |
Collapse
|
5
|
Huang X, Jin K, Yang S, Zeng J, Zhou H, Zhang R, Xue J, Liu Y, Liu G, Peng H. Fabrication of polyvinylidene fluoride and acylthiourea composite membrane and its adsorption performance and mechanism on silver ions. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2023]
|
6
|
Kaczorowska MA. The Use of Polymer Inclusion Membranes for the Removal of Metal Ions from Aqueous Solutions-The Latest Achievements and Potential Industrial Applications: A Review. MEMBRANES 2022; 12:1135. [PMID: 36422127 PMCID: PMC9695490 DOI: 10.3390/membranes12111135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/08/2022] [Accepted: 11/09/2022] [Indexed: 05/12/2023]
Abstract
The growing demand for environmentally friendly and economical methods of removing toxic metal ions from polluted waters and for the recovery of valuable noble metal ions from various types of waste, which are often treated as their secondary source, has resulted in increased interest in techniques based on the utilization of polymer inclusion membranes (PIMs). PIMs are characterized by many advantages (e.g., the possibility of simultaneous extraction and back extraction, excellent stability and high reusability), and can be adapted to the properties of the removed target analyte by appropriate selection of carriers, polymers and plasticizers used for their formulation. However, the selectivity and efficiency of the membrane process depends on many factors (e.g., membrane composition, nature of removed metal ions, composition of aqueous feed solution, etc.), and new membranes are systematically designed to improve these parameters. Numerous studies aimed at improving PIM technology may contribute to the wider use of these methods in the future on an industrial scale, e.g., in wastewater treatment. This review describes the latest achievements related to the removal of various metal ions by PIMs over the past 3 years, with particular emphasis on solutions with potential industrial application.
Collapse
Affiliation(s)
- Małgorzata A Kaczorowska
- Faculty of Chemical Technology and Engineering, Bydgoszcz University of Science and Technology, 3 Seminaryjna Street, 85326 Bydgoszcz, Poland
| |
Collapse
|
7
|
Jin X, Liu G, Bao C, Chen D, Du X, Chen K, Rao L, Huang Z, Huang Q. Selectively sequestrating aqueous Bi(III) with titanium pyrophosphate polyhedral submicro-particles. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
8
|
Shang Q, Mei H, Huang C, Shen X. Fundamentals, operations and applications of electromembrane extraction: An overview of reviews. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
9
|
Bahrami S, Dolatyari L, Shayani‐Jam H, Yaftian MR. Membrane extraction of V(V) by an oleic acid plasticized poly(vinyl chloride)/Aliquat® 336 polymer inclusion membrane. J Appl Polym Sci 2022. [DOI: 10.1002/app.52434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Salar Bahrami
- Department of Chemistry, Faculty of Science The University of Zanjan Zanjan Iran
| | - Leila Dolatyari
- Department of Chemistry Zanjan Branch, Islamic Azad University Zanjan Iran
| | - Hassan Shayani‐Jam
- Department of Chemistry, Faculty of Science The University of Zanjan Zanjan Iran
| | | |
Collapse
|
10
|
Kazemi D, Yaftian MR. Selective transport-recovery of bismuth(III) by a polymer inclusion membrane containing polyvinyl chloride base polymer and bis(2-ethylhexyl)phosphoric acid. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.120375] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
11
|
Ghaderi N, Dolatyari L, Kazemi D, Sharafi HR, Shayani‐Jam H, Yaftian MR. Application of a polymer inclusion membrane made of cellulose triacetate base polymer and trioctylamine for the selective extraction of bismuth(
III
) from chloride solutions. J Appl Polym Sci 2021. [DOI: 10.1002/app.51480] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Narges Ghaderi
- Department of Chemistry, Faculty of Science The University of Zanjan Zanjan Iran
| | - Leila Dolatyari
- Department of Chemistry, Zanjan Branch Islamic Azad University Zanjan Iran
| | - Davood Kazemi
- Department of Chemistry, Faculty of Science The University of Zanjan Zanjan Iran
| | - Hamid Reza Sharafi
- Department of Chemistry, Faculty of Science The University of Zanjan Zanjan Iran
| | - Hassan Shayani‐Jam
- Department of Chemistry, Faculty of Science The University of Zanjan Zanjan Iran
| | | |
Collapse
|