1
|
Chen M, Li H, Xue X, Tan F, Ye L. Signal amplification in molecular sensing by imprinted polymers. Mikrochim Acta 2024; 191:574. [PMID: 39230601 PMCID: PMC11374865 DOI: 10.1007/s00604-024-06649-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 08/21/2024] [Indexed: 09/05/2024]
Abstract
In the field of sensing, the development of sensors with high sensitivity, accuracy, selectivity, sustainability, simplicity, and low cost remains a key focus. Over the past decades, optical and electrochemical sensors based on molecular imprinting techniques have garnered significant attention due to the above advantages. Molecular imprinting technology utilizes molecularly imprinted polymers (MIPs) to mimic the specific recognition capabilities of enzymes or antibodies for target molecules. Recently, MIP-based sensors rooting in signal amplification techniques have been employed to enhance molecular detection level and the quantitative ability for environmental pollutants, biomolecules, therapeutic compounds, bacteria, and viruses. The signal amplification techniques involved in MIP-based sensors mainly cover nucleic acid chain amplification, enzyme-catalyzed cascade, introduction of high-performance nanomaterials, and rapid chemical reactions. The amplified analytical signals are centered around electrochemical, fluorescence, colorimetric, and surface-enhanced Raman techniques, which can effectively realize the determination of some low-abundance targets in biological samples. This review highlights the recent advancements of electrochemical/optical sensors based on molecular imprinting integrated with various signal amplification strategies and their dedication to the study of trace biomolecules. Finally, future research directions on developing multidimensional output signals of MIP-based sensors and introducing multiple signal amplification strategies are proposed.
Collapse
Affiliation(s)
- Mingli Chen
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, BOX 332, Shenyang, Liaoning, 110819, P.R. China.
- Division of Pure and Applied Biochemistry, Department of Chemistry, Lund University, Box124, 22100, Lund, Sweden.
| | - Haiyan Li
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, BOX 332, Shenyang, Liaoning, 110819, P.R. China
| | - Xiaoting Xue
- Division of Pure and Applied Biochemistry, Department of Chemistry, Lund University, Box124, 22100, Lund, Sweden
| | - Fang Tan
- Division of Pure and Applied Biochemistry, Department of Chemistry, Lund University, Box124, 22100, Lund, Sweden
- School of Optoelectronic Materials & Technology, Jianghan University, Wuhan, Hubei, 430056, P.R. China
| | - Lei Ye
- Division of Pure and Applied Biochemistry, Department of Chemistry, Lund University, Box124, 22100, Lund, Sweden.
| |
Collapse
|
2
|
Hou H, Jin Y, Sheng L, Huang Y, Zhao R. One-step synthesis of well-defined molecularly imprinted nanospheres for the class-selective recognition and separation of β-blockers in human serum. J Chromatogr A 2022; 1673:463204. [PMID: 35689880 DOI: 10.1016/j.chroma.2022.463204] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 06/02/2022] [Accepted: 06/06/2022] [Indexed: 01/20/2023]
Abstract
β-blockers are a class of medications that are used to treat abnormal heart rhythms and hypertension. Molecularly imprinted polymers (MIPs) capable of selective recognizing and extracting β-blockers from complex biological samples hold great promise in bioanalytical and biomedical applications, but developing such artificial receptor materials is still challenging. Herein, we introduce a simple one-step method for the synthesis of well-defined molecularly imprinted nanospheres in high yield (83.6-94.4%) via reversible addition-fragmentation chain transfer (RAFT) precipitation polymerization for the selective recognition and extraction of the β-blockers from human serum. The prepared MIPs are characterized in terms of morphology, pore properties, binding kinetics, capacity, selectivity, and recognition mechanisms. The uniform nanoscale-imprinted layer favored the rapid mass transfer of β-blockers. The binding studies showed the high adsorption capacity (126.8 μmol/g) and selectivity of the developed nanomaterial. The investigation on the recognition mechanism reveals that multiple driving forces participate in the binding between MIP and β-blockers, where hydrogen bonding plays as the dominating role for the specific recognition. The MIP was successfully applied for the direct enrichment of five β-blockers from human serum with HPLC recoveries ranging from 82.9 to 100.3% and RSD of 0.5-6.9% (n = 3).
Collapse
Affiliation(s)
- Huiqing Hou
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; School of Chemistry, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yulong Jin
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; School of Chemistry, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Le Sheng
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; School of Chemistry, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanyan Huang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; School of Chemistry, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Rui Zhao
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; School of Chemistry, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
3
|
An Update on the Use of Molecularly Imprinted Polymers in Beta-Blocker Drug Analysis as a Selective Separation Method in Biological and Environmental Analysis. Molecules 2022; 27:molecules27092880. [PMID: 35566233 PMCID: PMC9104958 DOI: 10.3390/molecules27092880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 04/19/2022] [Accepted: 04/28/2022] [Indexed: 11/17/2022] Open
Abstract
Beta-blockers are antihypertensive drugs and can be abused by athletes in some sport competitions; it is therefore necessary to monitor beta-blocker levels in biological samples. In addition, beta-blocker levels in environmental samples need to be monitored to determine whether there are contaminants from the activities of the pharmaceutical industry. Several extraction methods have been developed to separate beta-blocker drugs in a sample, one of which is molecularly imprinted polymer solid-phase extraction (MIP-SPE). MIPs have some advantages, including good selectivity, high affinity, ease of synthesis, and low cost. This review provides an overview of the polymerization methods for synthesizing MIPs of beta-blocker groups. The methods that are still widely used to synthesize MIPs for beta-blockers are the bulk polymerization method and the precipitation polymerization method. MIPs for beta-blockers still need further development, especially since many types of beta-blockers have not been used as templates in the MIP synthesis process and modification of the MIP sorbent is required, to obtain high throughput analysis.
Collapse
|
4
|
Cho MG, Hyeong S, Park KK, Chough SH. Characterization of hydrogel type molecularly imprinted polymer for creatinine prepared by precipitation polymerization. POLYMER 2021. [DOI: 10.1016/j.polymer.2021.124348] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|