1
|
Jiao W, Zhou J, Gu Q, Liu Z, Pan J, Qin J, Zhu Y, Jiang D, Hu J. Preparation, Thermal Stability, and Preliminary Gas Separation Performance of Furan-Based Bio-Polyimide Films. Polymers (Basel) 2025; 17:1362. [PMID: 40430658 PMCID: PMC12115040 DOI: 10.3390/polym17101362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2025] [Revised: 05/10/2025] [Accepted: 05/13/2025] [Indexed: 05/29/2025] Open
Abstract
The need for renewable alternatives to petroleum-based polymers is growing in response to environmental concerns and resource depletion. Polyimides (PIs), which are traditionally synthesized from petroleum-derived monomers, raise sustainability issues. In this work, renewable 2,5-furandicarboxylic acid (FDCA) was employed as a sustainable feedstock to synthesize a bio-based diamine monomer, N,N'-bis(4-aminophenyl)furan-2,5-dicarboxamide (FPA). Subsequently, FPA was polymerized with various aromatic dianhydrides through thermal imidization, yielding four distinct bio-based polyimide (FPA-PI) films. The resulting films exhibited exceptional thermal stability, with 5% weight loss temperatures exceeding 425 °C and char yields ranging from 54% to 60%. Mechanical characterization revealed high elastic moduli (2.14-3.20 GPa), moderate tensile strengths (50-99 MPa), and favorable aging resistance. Gas permeation tests demonstrated promising CO2/N2 separation performance, with FPA-DODDA achieving superior CO2/N2 selectivity (27.721) compared to commercial films such as Matrimid®, polysulfone, and polycarbonate, while FPA-BPFLDA exhibited enhanced CO2 permeability (P(CO2) = 2.526 Barrer), surpassing that of Torlon®. The CO2/N2 separation performance of these FPA-PI films is governed synergistically by size-sieving effects and solution-diffusion mechanisms. This work not only introduces a novel synthetic route for bio-based polymers but also highlights the potential of replacing conventional petroleum-based materials with renewable alternatives in high-temperature and gas separation applications, thereby advancing environmental sustainability.
Collapse
Affiliation(s)
- Wei Jiao
- National and Local Joint Engineering Research Center for Green Preparation Technology of Biobased Materials, Yunnan Minzu University, Kunming 650500, China; (W.J.); (J.Z.); (Q.G.); (Z.L.); (J.P.); (J.Q.); (Y.Z.)
| | - Jie Zhou
- National and Local Joint Engineering Research Center for Green Preparation Technology of Biobased Materials, Yunnan Minzu University, Kunming 650500, China; (W.J.); (J.Z.); (Q.G.); (Z.L.); (J.P.); (J.Q.); (Y.Z.)
| | - Qinying Gu
- National and Local Joint Engineering Research Center for Green Preparation Technology of Biobased Materials, Yunnan Minzu University, Kunming 650500, China; (W.J.); (J.Z.); (Q.G.); (Z.L.); (J.P.); (J.Q.); (Y.Z.)
| | - Zijun Liu
- National and Local Joint Engineering Research Center for Green Preparation Technology of Biobased Materials, Yunnan Minzu University, Kunming 650500, China; (W.J.); (J.Z.); (Q.G.); (Z.L.); (J.P.); (J.Q.); (Y.Z.)
| | - Jiashu Pan
- National and Local Joint Engineering Research Center for Green Preparation Technology of Biobased Materials, Yunnan Minzu University, Kunming 650500, China; (W.J.); (J.Z.); (Q.G.); (Z.L.); (J.P.); (J.Q.); (Y.Z.)
| | - Jiangchun Qin
- National and Local Joint Engineering Research Center for Green Preparation Technology of Biobased Materials, Yunnan Minzu University, Kunming 650500, China; (W.J.); (J.Z.); (Q.G.); (Z.L.); (J.P.); (J.Q.); (Y.Z.)
| | - Yiyi Zhu
- National and Local Joint Engineering Research Center for Green Preparation Technology of Biobased Materials, Yunnan Minzu University, Kunming 650500, China; (W.J.); (J.Z.); (Q.G.); (Z.L.); (J.P.); (J.Q.); (Y.Z.)
| | - Dengbang Jiang
- National and Local Joint Engineering Research Center for Green Preparation Technology of Biobased Materials, Yunnan Minzu University, Kunming 650500, China; (W.J.); (J.Z.); (Q.G.); (Z.L.); (J.P.); (J.Q.); (Y.Z.)
| | - Jiayang Hu
- Hubei Academy of Forestry, Wuhan 430075, China
| |
Collapse
|
2
|
Fang Y, Lu X, Xiao J, Zhang SY, Lu Q. Thermally Stable and Transparent Polyimide Derived from Side-Group-Regulated Spirobifluorene Unit for Substrate Application. Macromol Rapid Commun 2024; 45:e2400245. [PMID: 39012277 DOI: 10.1002/marc.202400245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 07/03/2024] [Indexed: 07/17/2024]
Abstract
Advancements in flexible electronic technology, especially the progress in foldable displays and under-display cameras (UDC), have created an urgent demand for high-performance colorless polyimide (CPI). However, current CPIs lack sufficient heat resistance for substrate applications. In this work, four kinds of rigid spirobifluorene diamines are designed, and the corresponding polyimides are prepared by their condensation with 5,5'-(perfluoropropane-2,2-diyl) bis(isobenzofuran-1,3-dione) (6FDA) or 9,9-bis(3,4-dicarboxyphenyl) fluorene dianhydride (BPAF). The rigid and conjugated spirobifluorene units endow the polyimides with higher glass transition temperature (Tg) ranging from 356 to 468 °C. Their optical properties are regulated by small side groups and spirobifluorene structure with a periodically twisted molecular conformation. Consequently, a series of CPIs with an average transmittance ranging from 75% to 88% and a yellowness index (YI) as low as 2.48 are obtained. Among these, 27SPFTFA-BPAF presents excellent comprehensive performance, with a Tg of 422 °C, a 5 wt.% loss temperature (Td5) of 562 °C, a YI of 3.53, and a tensile strength (δmax) of 140 MPa, respectively. The mechanism underlying the structure-property relationship is investigated by experimental comparison and theoretical calculation, and the proposed method provides a pathway for designing highly rigid conjugated CPIs with excellent thermal stability and transparency for photoelectric engineering.
Collapse
Affiliation(s)
- Yunzhi Fang
- School of Chemistry and Chemical Engineering, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Xuemin Lu
- School of Chemistry and Chemical Engineering, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Junjie Xiao
- School of Chemistry and Chemical Engineering, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Shu-Yu Zhang
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
- Qinghai Institute of Salt Lakes, Key Laboratory of Green and High-End Utilization of Salt Lake Resources, Chinese Academy of Sciences, Xining, 810008, P. R. China
| | - Qinghua Lu
- School of Chemistry and Chemical Engineering, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| |
Collapse
|
3
|
Lian M, Tian L, Huang G, Liang S, Zhang Y, Yi N, Fan L, Wu Q, Gan F, Wu Y. Recent Advances in Fluorescent Polyimides. Molecules 2024; 29:4072. [PMID: 39274921 PMCID: PMC11397098 DOI: 10.3390/molecules29174072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/23/2024] [Accepted: 08/26/2024] [Indexed: 09/16/2024] Open
Abstract
Polyimide (PI) refers to a type of high-performance polymer containing imide rings in the main chain, which has been widely used in fields of aerospace, microelectronic and photonic devices, gas separation technology, and so on. However, traditional aromatic PIs are, in general, the inefficient fluorescence or even no fluorescence, due to the strong inter- and intramolecular charge transfer (CT) interactions causing unavoidable fluorescence quenching, which greatly restricts their applications as light-emitting functional layers in the fabrication of organic light-emitting diode (OLED) devices. As such, the development of fluorescent PIs with high fluorescence quantum efficiency for their application fields in the OLED is an important research direction in the near future. In this review, we provide a comprehensive overview of fluorescent PIs as well as the methods to improve the fluorescence quantum efficiency of PIs. It is anticipated that this review will serve as a valuable reference and offer guidance for the design and development of fluorescent PIs with high fluorescence quantum efficiency, ultimately fostering further progress in OLED research.
Collapse
Affiliation(s)
- Manyu Lian
- College of Textile Science and Engineering, Wuyi University, Jiangmen 529020, China
| | - Liyong Tian
- College of Textile Science and Engineering, Wuyi University, Jiangmen 529020, China
| | - Guotao Huang
- College of Textile Science and Engineering, Wuyi University, Jiangmen 529020, China
| | - Siming Liang
- College of Textile Science and Engineering, Wuyi University, Jiangmen 529020, China
| | - Yangfan Zhang
- College of Textile Science and Engineering, Wuyi University, Jiangmen 529020, China
| | - Ningbo Yi
- College of Textile Science and Engineering, Wuyi University, Jiangmen 529020, China
| | - Longfei Fan
- College of Textile Science and Engineering, Wuyi University, Jiangmen 529020, China
| | - Qinghua Wu
- College of Textile Science and Engineering, Wuyi University, Jiangmen 529020, China
| | - Feng Gan
- College of Textile Science and Engineering, Wuyi University, Jiangmen 529020, China
| | - Yancheng Wu
- College of Textile Science and Engineering, Wuyi University, Jiangmen 529020, China
| |
Collapse
|
4
|
Zhang Y, Zhou Y, Wang Z, Yan J. Colorless poly(amide‐imide) copolymers for flexible display applications. J Appl Polym Sci 2022. [DOI: 10.1002/app.53082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Yuanhao Zhang
- Ningbo Institute of Materials Technology and Engineering Chinese Academy of Science Ningbo China
- Ningbo Solartron Technology Co., Ltd Ningbo China
| | - Yubo Zhou
- Ningbo Solartron Technology Co., Ltd Ningbo China
| | - Zhen Wang
- Ningbo Institute of Materials Technology and Engineering Chinese Academy of Science Ningbo China
| | - Jingling Yan
- Ningbo Institute of Materials Technology and Engineering Chinese Academy of Science Ningbo China
| |
Collapse
|
5
|
Terraza CA, Cruz Y, Rodríguez A, Velázquez‐Tundidor MV, Hauyon RA, Rodríguez‐González FE, Niebla V, Aguilar‐Vega M, Sulub‐Sulub R, Coll D, Ortiz PA, Pérez YP, Comesaña‐Gándara B, Tundidor‐Camba A. New polyimides containing methyl benzamidobenzoate or dimethyl benzamidoisophthalate as bulky pendant groups. Effects on solubility, thermal and gas transport properties. J Appl Polym Sci 2022. [DOI: 10.1002/app.53036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Claudio A. Terraza
- Research Laboratory for Organic Polymers (RLOP), Department of Organic Chemistry Pontificia Universidad Católica de Chile Santiago Chile
- UC Energy Research Center Pontificia Universidad Católica de Chile Santiago Chile
| | - Yennier Cruz
- Research Laboratory for Organic Polymers (RLOP), Department of Organic Chemistry Pontificia Universidad Católica de Chile Santiago Chile
| | - Ary Rodríguez
- Research Laboratory for Organic Polymers (RLOP), Department of Organic Chemistry Pontificia Universidad Católica de Chile Santiago Chile
| | - María Victoria Velázquez‐Tundidor
- Research Laboratory for Organic Polymers (RLOP), Department of Organic Chemistry Pontificia Universidad Católica de Chile Santiago Chile
| | - René A. Hauyon
- Research Laboratory for Organic Polymers (RLOP), Department of Organic Chemistry Pontificia Universidad Católica de Chile Santiago Chile
| | - Fidel E. Rodríguez‐González
- Research Laboratory for Organic Polymers (RLOP), Department of Organic Chemistry Pontificia Universidad Católica de Chile Santiago Chile
| | - Vladimir Niebla
- Research Laboratory for Organic Polymers (RLOP), Department of Organic Chemistry Pontificia Universidad Católica de Chile Santiago Chile
| | - Manuel Aguilar‐Vega
- Unidad de Materiales, Laboratorio de Membranas Centro de Investigación Científica de Yucatán A.C Mérida Mexico
| | - Rita Sulub‐Sulub
- Unidad de Materiales, Laboratorio de Membranas Centro de Investigación Científica de Yucatán A.C Mérida Mexico
| | - Deysma Coll
- Centro de Nanotecnología Aplicada y Núcleo de Química y Bioquímica, Facultad de Ciencias Ingeniería y Tecnología. Universidad Mayor Santiago Chile
| | - Pablo A. Ortiz
- Centro de Nanotecnología Aplicada, Facultad de Ciencias, Ingeniería y Tecnología Universidad Mayor Santiago Chile
| | - Yasmín P. Pérez
- Laboratory of Organic and Polymeric Materials, Faculty of Sciences, Department of Chemistry Universidad de Tarapacá Arica Chile
| | | | - Alain Tundidor‐Camba
- Research Laboratory for Organic Polymers (RLOP), Department of Organic Chemistry Pontificia Universidad Católica de Chile Santiago Chile
- UC Energy Research Center Pontificia Universidad Católica de Chile Santiago Chile
| |
Collapse
|
6
|
Wu Y, Liu S, Zhao J. Simultaneously Improving the Optical, Dielectric, and Solubility Properties of Fluorene-Based Polyimide with Silyl Ether Side Groups. ACS OMEGA 2022; 7:11939-11945. [PMID: 35449909 PMCID: PMC9016839 DOI: 10.1021/acsomega.2c00069] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 03/18/2022] [Indexed: 06/14/2023]
Abstract
Three fluorene-based polyimides with silyl ether groups (Si-PIs) were successfully synthesized by a simple and efficient silicon etherification reaction of hydroxyl-containing polyimides (OH-PIs) and tert-butylchlorodiphenylsilane (TBDPSCl), and their structures were confirmed by 1H NMR and IR spectra. The bulky nonpolar tert-butyldiphenylsilyl (TBDPS) side groups in the modified PI unit instead of the strong electron donor -OH group is conducive to decreasing electronic conjugation and charge transfer (CT) interaction along the PI chain. Accordingly, the optical, dielectric, and solubility properties of the modified Si-PI films are simultaneously improved compared with the precursor OH-PI films. The modified Si-PI films demonstrate a meaningful enhancement in the transmittances at a wavelength of 400 nm (T 400 ) to 74-81% from 42 to 55% of OH-PI films and the regeneration of fluorescence characteristics. The dielectric constant and loss of Si-PI films are also obviously reduced to 2.63-2.75 and 0.0024-0.0091 at 1 kHz from 4.19 to 4.78 and 0.0173-0.0295 of OH-PI films, respectively, due to substituted with the bulky nonpolar TBDPS groups to increase the free volume and hydrophobicity of Si-PI films. The solubility of Si-PIs in low- or nonpolar solvents (such as CHCl3, CH2Cl2, acetone, and toluene) is significantly improved. Furthermore, Si-PI films still maintain relatively good thermal properties with the 5% weight loss temperature (T 5% ) in the range 470-491 °C under a nitrogen atmosphere and the glass transition temperature (T g ) in the range 245-308 °C.
Collapse
Affiliation(s)
- Yancheng Wu
- Guangdong−Hong
Kong Joint Laboratory for New Textile Materials, School of Textile
Materials and Engineering, Wuyi University, Jiangmen, Guangdong 529020, P. R. China
- School
of Materials Science and Engineering, South
China University of Technology, Guangzhou, 510640, P. R. China
| | - Shumei Liu
- School
of Materials Science and Engineering, South
China University of Technology, Guangzhou, 510640, P. R. China
| | - Jianqing Zhao
- School
of Materials Science and Engineering, South
China University of Technology, Guangzhou, 510640, P. R. China
| |
Collapse
|
7
|
Ning Y, Li DS, Jiang L. Thermally stable and deformation-reversible eugenol-derived bismaleimide resin: Synthesis and structure-property relationships. REACT FUNCT POLYM 2022. [DOI: 10.1016/j.reactfunctpolym.2022.105236] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
8
|
Zheng H, Wang C, Ma Y, Tao Z, Zhao X, Li J, Ren Q. High thermal stability and low dielectric constant of soluble polyimides containing asymmetric bulky pendant groups. JOURNAL OF MACROMOLECULAR SCIENCE PART A-PURE AND APPLIED CHEMISTRY 2021. [DOI: 10.1080/10601325.2021.1964370] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Hui Zheng
- Jiangsu Key Laboratory of Environmentally Friendly Polymeric Materials, School of Materials Science and Engineering, Changzhou University, Changzhou, China
| | - Chenyi Wang
- Jiangsu Key Laboratory of Environmentally Friendly Polymeric Materials, School of Materials Science and Engineering, Changzhou University, Changzhou, China
| | - Yan Ma
- Jiangsu Key Laboratory of Environmentally Friendly Polymeric Materials, School of Materials Science and Engineering, Changzhou University, Changzhou, China
| | - Zhengwang Tao
- Jiangsu Key Laboratory of Environmentally Friendly Polymeric Materials, School of Materials Science and Engineering, Changzhou University, Changzhou, China
| | - Xiaoyan Zhao
- Jiangsu Key Laboratory of Environmentally Friendly Polymeric Materials, School of Materials Science and Engineering, Changzhou University, Changzhou, China
| | - Jian Li
- Jiangsu Key Laboratory of Environmentally Friendly Polymeric Materials, School of Materials Science and Engineering, Changzhou University, Changzhou, China
| | - Qiang Ren
- Jiangsu Key Laboratory of Environmentally Friendly Polymeric Materials, School of Materials Science and Engineering, Changzhou University, Changzhou, China
| |
Collapse
|