1
|
Kharazmi F, Hosseini FS, Ebrahimzadeh H. Synthesis, characterization of MOF NiCoZn-LDH@GO on carbon cloth as sensitive and novel nanocomposite applied to electrospun nanofibers network as thin-film microextraction sorbent for detection trace amount of opioid and analgesic drugs from biological fluids. Talanta 2024; 267:125241. [PMID: 37804789 DOI: 10.1016/j.talanta.2023.125241] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 09/20/2023] [Accepted: 09/22/2023] [Indexed: 10/09/2023]
Abstract
Today, the widespread use of opioid and analgesic drugs (OAs) has caused global concern due to their addictive properties and side effects. Therefore, in this study, polyvinyl alcohol (PVA)/poly acrylic acid (PAA)/MOF NiCoZn-LDH@graphene oxide (GO) electrospun nanofiber was synthesized and employed as an effective and novel sorbent at thin-film microextraction (TF-μSPE) method for the fast and simultaneous extraction of seven opioid and analgesic drugs in human biological fluids (plasma, urine) before performing quantitative analysis by high-pressure liquid chromatography (HPLC-UV) device. This new nano-absorbent was characterized by energy dispersive X-ray spectrometer (EDX), X-ray photoelectron spectroscope (XPS), Fourier transforms infrared spectrometer (FT-IR), field emission scanning electron microscopy (FE-SEM), X-ray diffraction analysis (XRD), and nitrogen absorption-desorption analysis (BET). The combination of MOF NiCoZn-LDH@GO with a highly porous structure and rich functional groups in the PVA/PAA substrate casing significantly improves the absorption properties of the nanofibers. In other words, the existence, of MOF NiCoZn-LDH@GO composite in the polymer network PVA/PAA causes an increase in the extraction efficiency of the electrospinning adsorbent due to the creation of hydrogen bonds and π-π interactions with the intended analytes. Various effective factors in the extraction efficiency of the desired analytes were optimized using a one-variable-at-a-time method. Under the optimum conditions, the linearity dynamic range was achieved in the range of 0.3-1000.0 for caffeine, naloxone, noscapine, and celecoxib, and 0.5-1000.0 μg L-1 for tramadol, codeine, and hydrocodone with correlation coefficients ≥0.999. The lowest detection limit (LODs) and the lowest quantitative limit (LOQs) of the TF-μSPE method were obtained in the range of (0.1-0.15) and (0.3-0.5), respectively.
Collapse
Affiliation(s)
- Farbod Kharazmi
- Department of Analytical Chemistry and Pollutants, Faculty of Chemistry and Petroleum Sciences, Shahid Beheshti University, Tehran, Iran
| | - Fatemeh Sadat Hosseini
- Department of Analytical Chemistry and Pollutants, Faculty of Chemistry and Petroleum Sciences, Shahid Beheshti University, Tehran, Iran
| | - Homeira Ebrahimzadeh
- Department of Analytical Chemistry and Pollutants, Faculty of Chemistry and Petroleum Sciences, Shahid Beheshti University, Tehran, Iran.
| |
Collapse
|
2
|
Bagheri AR, Aramesh N, Lee HK. Chitosan- and/or cellulose-based materials in analytical extraction processes: A review. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116770] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
3
|
da Mata GC, Morais MS, de Oliveira WP, Aguiar ML. Composition Effects on the Morphology of PVA/Chitosan Electrospun Nanofibers. Polymers (Basel) 2022; 14:polym14224856. [PMID: 36432987 PMCID: PMC9698655 DOI: 10.3390/polym14224856] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 11/01/2022] [Accepted: 11/03/2022] [Indexed: 11/16/2022] Open
Abstract
Since the SARS-CoV-2 pandemic, the interest in applying nanofibers t air filtration and personal protective equipment has grown significantly. Due to their morphological and structural properties, nanofibers have potential applications for air filtration in masks and air filters. However, most nanofiber membrane materials used for these purposes are generally non-degradable materials, which can contribute to the disposal of plastic waste into the environment. Hence, this work aims to produce polyvinyl alcohol (PVA) and chitosan (CS) biodegradable nanofibers with controlled morphology and structure via electrospinning. An experimental design was used to investigate the effects of the PVA|CS ratio and concentration on the properties of the electrospinning compositions and electrospun nanofiber mat. The electrospinning parameters were constant for all experiments: Voltage of 20 kV, a feed rate of 0.5 mL·h−1, and a distance of 10 cm between the needle and a drum collector. CS proved to be an efficient adjuvant to the PVA’s electrospinning, obtaining a wide range of nanofiber diameters. Furthermore, 6.0% PVA and 1% CS were the best compositions after optimization with the response surface methodology, with a mean fiber diameter of 204 nm. The addition of biocide agents using the optimized condition was also investigated, using surfactants, citric acid, and pure and encapsulated essential oils of Lippia sidoides. Pure oil improved the material without enlarging the nanofiber sizes compared to the other additives. The nanofiber membranes produced have the potential to be used in air filtration or wound-dressing applications where biocidal activity is needed.
Collapse
Affiliation(s)
- Gustavo Cardoso da Mata
- Department of Chemical Engineering, Federal University of São Carlos, Rod. Washington Luiz, km 235, SP310, São Carlos 13565-905, SP, Brazil
| | - Maria Sirlene Morais
- Faculty of Pharmaceutical Science of Ribeirão Preto, University of São Paulo, Av. do Café s/no, Bairro Monte Alegre, Ribeirão Preto 14040-903, SP, Brazil
| | - Wanderley Pereira de Oliveira
- Faculty of Pharmaceutical Science of Ribeirão Preto, University of São Paulo, Av. do Café s/no, Bairro Monte Alegre, Ribeirão Preto 14040-903, SP, Brazil
| | - Mônica Lopes Aguiar
- Department of Chemical Engineering, Federal University of São Carlos, Rod. Washington Luiz, km 235, SP310, São Carlos 13565-905, SP, Brazil
- Correspondence:
| |
Collapse
|
4
|
Zhang S, Ange KU, Ali N, Yang Y, Khan A, Ali F, Sajid M, Tian CT, Bilal M. Analytical perspective and environmental remediation potentials of magnetic composite nanosorbents. CHEMOSPHERE 2022; 304:135312. [PMID: 35709848 DOI: 10.1016/j.chemosphere.2022.135312] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 06/02/2022] [Accepted: 06/09/2022] [Indexed: 06/15/2023]
Abstract
The synthesis and application of magnetic nanosorbents to remove emerging pollutants have been considered the best environmental remediation and sustainability option. Incorporating magnetism shortens the treatment time and allows the sorbent to be recovered quickly using external magnetic with many cycles. The implementation of magnetic solid-phase extraction (MSPE) using magnetic materials of different shapes, sizes, and surface morphology can be a valuable tool in applying materials to prepare analytical samples. In MSPE applications, materials with strong magnetic domain can be used as precursors for constructing magnetic composite as a promising sorbent. This article focuses on the most recent and exceptional applications of magnetic adsorbents for preconcentration and removal purposes. Magnetic adsorbents, such as nanoparticles (NPs), foam, sponges, nanocomposites, hydrogels, and beads with multifunctional attributes have been comprehensively studied in terms of preparation procedures, limitations, advantages, and interactions between pollutants and magnetic composites. The role of magnetic sorbents in sample preparation methods, such as simple solid-phase extraction and microextraction, as well as sorptive extraction using a stir bar, was also examined. The use of magnetic adsorbents with analytical techniques, such as solid-phase extraction and solid-phase microextraction improves the method for preparing samples concerning the influential role of magnetic adsorbents. Towards the end, promising features and future outlook are also directed.
Collapse
Affiliation(s)
- Shizhong Zhang
- Key Laboratory for Palygorskite Science and Applied Technology of Jiangsu Province, National & Local Joint Engineering Research Center for Mineral Salt Deep Utilization, Huaiyin Institute of Technology, Huai'an, 223003, China.
| | - Kunda Umuhoza Ange
- Key Laboratory for Palygorskite Science and Applied Technology of Jiangsu Province, National & Local Joint Engineering Research Center for Mineral Salt Deep Utilization, Huaiyin Institute of Technology, Huai'an, 223003, China
| | - Nisar Ali
- Key Laboratory for Palygorskite Science and Applied Technology of Jiangsu Province, National & Local Joint Engineering Research Center for Mineral Salt Deep Utilization, Huaiyin Institute of Technology, Huai'an, 223003, China.
| | - Yong Yang
- Key Laboratory of Regional Resource Exploitation and Medicinal Research, Faculty of Chemical Engineering, Huaiyin Institute of Technology, Huai'an, Jiangsu Province, PR China
| | - Adnan Khan
- Institute of Chemical Sciences, University of Peshawar, Khyber Pakhtunkhwa, 25120, Pakistan
| | - Farman Ali
- Department of Chemistry, Hazara University, KPK, Mansehra, 21300, Pakistan
| | - Muhammad Sajid
- Faculty of Materials and Chemical Engineering, Yibin University, Yibin, 644000, Sichuan, China
| | - Chen Tian Tian
- Key Laboratory of Regional Resource Exploitation and Medicinal Research, Faculty of Chemical Engineering, Huaiyin Institute of Technology, Huai'an, Jiangsu Province, PR China
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an, 223003, China.
| |
Collapse
|
5
|
Huang C, Xu X, Fu J, Yu DG, Liu Y. Recent Progress in Electrospun Polyacrylonitrile Nanofiber-Based Wound Dressing. Polymers (Basel) 2022; 14:3266. [PMID: 36015523 PMCID: PMC9415690 DOI: 10.3390/polym14163266] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 07/31/2022] [Accepted: 08/08/2022] [Indexed: 02/07/2023] Open
Abstract
Bleeding control plays a very important role in worldwide healthcare, which also promotes research and development of wound dressings. The wound healing process involves four stages of hemostasis, inflammation, proliferation and remodeling, which is a complex process, and wound dressings play a huge role in it. Electrospinning technology is simple to operate. Electrospun nanofibers have a high specific surface area, high porosity, high oxygen permeability, and excellent mechanical properties, which show great utilization value in the manufacture of wound dressings. As one of the most popular reactive and functional synthetic polymers, polyacrylonitrile (PAN) is frequently explored to create nanofibers for a wide variety of applications. In recent years, researchers have invested in the application of PAN nanofibers in wound dressings. Research on spun nanofibers is reviewed, and future development directions and prospects of electrospun PAN nanofibers for wound dressings are proposed.
Collapse
Affiliation(s)
- Chang Huang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Xizi Xu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Junhao Fu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Deng-Guang Yu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Yanbo Liu
- School of Textile Science and Engineering, Wuhan Textile University, Wuhan 430200, China
| |
Collapse
|