1
|
Li S, Hussain S, Liu H. Facile Synthesis of Silsesquioxane-Based Hybrid Crosslinked Polymers via One-Step Amine-Ene Reaction for Efficient Adsorption of Various Pollutants. Chem Asian J 2025; 20:e202401254. [PMID: 39714377 DOI: 10.1002/asia.202401254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 12/01/2024] [Accepted: 12/19/2024] [Indexed: 12/24/2024]
Abstract
The rapid advancement of industrial production has led to an increase in water pollutants, posing a significant threat to public health. With the deepening of research on pollutant adsorbents. The application of silsesquioxane-based cross-linked polymer networks in water pollution treatment has gradually attracted people's attention. This study introduces two new crosslinked hybrid network, PCS-OB and PCS-OP, which were created through one-step amine-ene reaction between octa(aminophenyl) silsesquioxane (OAPS) and bismaleimide or N, N'-1,3-phenylenedimaleimide. The synthesized hybrid networks were characterized using Fourier-transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), Brunauer-Emmett-Teller (BET) surface area analysis, thermogravimetric analysis (TGA), and solid-state nuclear magnetic resonance (NMR) spectroscopy. The successful synthesis of the material is proved. PCS-OB and PCS-OP exhibited remarkable efficiency in the adsorption and removal of contaminants such as antibiotics, dyes, and iodine from wastewater. The maximum adsorbents for Rhodamine B (RhB), iodine vapor and berberine hydrochloride (BCH) were 1069 mg g-1, 1590 mg g-1 and 294 mg g-1, respectively. In conclusion, this work proves that PCS-OB and PCS-OP have broad application prospects in pollutant treatment.
Collapse
Affiliation(s)
- Shusen Li
- International Center for Interdisciplinary Research and Innovation of Silsesquioxane Science, School of Chemistry and Chemical Engineering, Shandong University, Jinan, P. R. China
| | - Saddam Hussain
- International Center for Interdisciplinary Research and Innovation of Silsesquioxane Science, School of Chemistry and Chemical Engineering, Shandong University, Jinan, P. R. China
| | - Hongzhi Liu
- International Center for Interdisciplinary Research and Innovation of Silsesquioxane Science, School of Chemistry and Chemical Engineering, Shandong University, Jinan, P. R. China
| |
Collapse
|
2
|
Abid A, Raza S, Qureshi AK, Ali S, Areej I, Nazeer S, Tan B, Al-Onazi WA, Rizwan M, Iqbal R. Facile synthesis of anthranilic acid based dual functionalized novel hyper cross-linked polymer for promising CO 2 capture and efficient Cr 3+ adsorption. Sci Rep 2024; 14:11328. [PMID: 38760400 PMCID: PMC11101437 DOI: 10.1038/s41598-024-61584-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 05/07/2024] [Indexed: 05/19/2024] Open
Abstract
A novel hyper cross-linked polymer of 2-Aminobenzoic acid (HCP-AA) is synthesized for the adsorption of Cr3+ and CO2. The Brunauer-Emmett-Teller surface area of HCP-AA is 615 m2 g-1. HCP-AA of particle size 0.5 nm showed maximum adsorption of Cr3+ for lab prepared wastewater (93%) while it was 88% for real industrial wastewater. It is might be due to electrostatic interactions, cation-π interactions, lone pair interactions and cation exchange at pH 7; contact time of 8 min; adsorbent dose 0.8 g. The adsorption capacity was calculated 52.63 mg g-1 for chromium metal ions at optimum conditions. Freundlich isotherm studies R2 = 0.9273 value is the best fit and follows pseudo second order kinetic model (R2 = 0.979). The adsorption is found non-spontaneous and exothermic through thermodynamic calculations like Gibbs free energy (ΔG), enthalpy change (ΔH) and entropy change (ΔS) were 6.58 kJ mol-1, - 60.91 kJ mol-1 and - 45.79 kJ mol-1 K-1, respectively. The CO2 adsorption capacity of HCP-AA is 1.39 mmol/g with quantity of 31.1 cm3/g (6.1 wt%) at 273Kwhile at 298 K adsorption capacity is 1.12 mmol/g with quantity 25.2 cm3/g (5 wt%). Overall, study suggests that carboxyl (-COOH) and amino (-NH2) groups may be actively enhancing the adsorption capacity of HCP-AA for Cr3+ and CO2.
Collapse
Affiliation(s)
- Amin Abid
- Department of Chemistry, University of Sahiwal, Sahiwal, 57000, Pakistan
| | - Saqlain Raza
- Department of Chemistry, University of Sahiwal, Sahiwal, 57000, Pakistan
| | | | - Sajjad Ali
- Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
| | - Isham Areej
- Department of Chemistry, University of Sahiwal, Sahiwal, 57000, Pakistan
| | - Shahid Nazeer
- Department of Chemistry, University of Sahiwal, Sahiwal, 57000, Pakistan
| | - Bien Tan
- Huazhong University of Science and Technology (HUST), Wuhan, China
| | - Wedad A Al-Onazi
- Department of Chemistry, College of Science, King Saud University, P.O. 22452, 11495, Riyadh, Saudi Arabia
| | - Muhammad Rizwan
- Institute of Crops Science and Resource Conservation (INRES), University of Bonn, Bonn, Germany.
| | - Rashid Iqbal
- Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
| |
Collapse
|
3
|
Synthesis, characterization and uranium (VI) adsorption mechanism of novel adsorption material poly(tetraethylenepentamine–trimesoyl chloride). J Radioanal Nucl Chem 2023. [DOI: 10.1007/s10967-022-08739-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
4
|
Sowmya P, Prakash S, Joseph A. Adsorption of heavy metal ions by thiophene containing mesoporous polymers: An experimental and theoretical study. J SOLID STATE CHEM 2023. [DOI: 10.1016/j.jssc.2023.123836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
5
|
Yu CH, Betrehem UM, Ali N, Khan A, Ali F, Nawaz S, Sajid M, Yang Y, Chen T, Bilal M. Design strategies, surface functionalization, and environmental remediation potentialities of polymer-functionalized nanocomposites. CHEMOSPHERE 2022; 306:135656. [PMID: 35820475 DOI: 10.1016/j.chemosphere.2022.135656] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 07/02/2022] [Accepted: 07/05/2022] [Indexed: 06/15/2023]
Abstract
Inorganic nanoparticles (NPs) have a tunable shape, size, surface morphology, and unique physical properties like catalytic, magnetic, electronic, and optical capabilities. Unlike inorganic nanomaterials, organic polymers exhibit excellent stability, biocompatibility, and processability with a tailored response to external stimuli, including pH, heat, light, and degradation properties. Nano-sized assemblies derived from inorganic and polymeric NPs are combined in a functionalized composite form to import high strength and synergistically promising features not reflected in their part as a single constituent. These new properties of polymer/inorganic functionalized materials have led to emerging applications in a variety of fields, such as environmental remediation, drug delivery, and imaging. This review spotlights recent advances in the design and construction of polymer/inorganic functionalized materials with improved attributes compared to single inorganic and polymeric materials for environmental sustainability. Following an introduction, a comprehensive review of the design and potential applications of polymer/inorganic materials for removing organic pollutants and heavy metals from wastewater is presented. We have offered valuable suggestions for piloting, and scaling-up polymer functionalized nanomaterials using simple concepts. This review is wrapped up with a discussion of perspectives on future research in the field.
Collapse
Affiliation(s)
- Chun-Hao Yu
- Jiangsu Key Laboratory of Regional Resource Exploitation and Medicinal Research, National & Local Joint Engineering Research Center for Mineral Salt Deep Utilization, Huaiyin Institute of Technology, Huai'an, 223003, China.
| | - Uwase Marie Betrehem
- Jiangsu Key Laboratory of Regional Resource Exploitation and Medicinal Research, National & Local Joint Engineering Research Center for Mineral Salt Deep Utilization, Huaiyin Institute of Technology, Huai'an, 223003, China
| | - Nisar Ali
- Jiangsu Key Laboratory of Regional Resource Exploitation and Medicinal Research, National & Local Joint Engineering Research Center for Mineral Salt Deep Utilization, Huaiyin Institute of Technology, Huai'an, 223003, China.
| | - Adnan Khan
- Institute of Chemical Sciences, University of Peshawar, Khyber Pakhtunkhwa, 25120, Pakistan
| | - Farman Ali
- Department of Chemistry, Hazara University, KPK, Mansehra, 21300, Pakistan
| | - Shahid Nawaz
- Department of Chemistry, The University of Lahore, Lahore, Pakistan
| | - Muhammad Sajid
- Faculty of Materials and Chemical Engineering, Yibin University, Yibin, 644000, Sichuan, China
| | - Yong Yang
- Key Laboratory of Regional Resource Exploitation and Medicinal Research, Faculty of Chemical Engineering, Huaiyin Institute of Technology, Huai'an, Jiangsu Province, PR China
| | - Tiantian Chen
- Key Laboratory of Regional Resource Exploitation and Medicinal Research, Faculty of Chemical Engineering, Huaiyin Institute of Technology, Huai'an, Jiangsu Province, PR China
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an, 223003, China.
| |
Collapse
|
6
|
Ahmad M, Nawaz T, Hussain I, Chen X, Imran M, Hussain R, Assiri MA, Ali S, Wu Z. Phosphazene Cyclomatrix Network-Based Polymer: Chemistry, Synthesis, and Applications. ACS OMEGA 2022; 7:28694-28707. [PMID: 36033672 PMCID: PMC9404196 DOI: 10.1021/acsomega.2c01573] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 07/28/2022] [Indexed: 06/15/2023]
Abstract
Polyphosphazenes are an inorganic molecular hybrid family with multifunctional properties due to their wide range of organic substitutes. This review intends to propose the basics of the synthetic chemistry of polyphosphazene, describing for researchers outside the field the basic knowledge required to design and prepare polyphosphazenes with desired properties. A special emphasis is placed on recent advances in chemical synthesis, which allow not only the synthesis of polyphosphazenes with controlled molecular weights and polydispersities but also the synthesis of novel branched designs and block copolymers. We also investigated the synthesis of polyphosphazenes using various functional materials. This review aims to assist researchers in synthesizing their specific polyphosphazene material with unique property combinations, with the hope of stimulating further research and even more innovative applications for these highly interesting multifaceted materials.
Collapse
Affiliation(s)
- Muhammad Ahmad
- Department
of Mechanical Engineering, City University
of Hong Kong, Kowloon
Tong, Hong Kong
| | - Tehseen Nawaz
- Department
of Chemistry, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Iftikhar Hussain
- Department
of Mechanical Engineering, City University
of Hong Kong, Kowloon
Tong, Hong Kong
| | - Xi Chen
- Department
of Mechanical Engineering, City University
of Hong Kong, Kowloon
Tong, Hong Kong
| | - Muhammad Imran
- Department
of Chemistry, Faculty of Science, King Khalid
University, P.O. Box 9004, Abha 61413, Saudi Arabia
- Research
Center for Advanced Materials Science (RCAMS), King Khalid University, P. O. Box 9004, Abha 61514, Saudi Arabia
| | - Riaz Hussain
- Division
of Science and Technology, University of
Education, Lahore 54770, Pakistan
| | - Mohammed A. Assiri
- Department
of Chemistry, Faculty of Science, King Khalid
University, P.O. Box 9004, Abha 61413, Saudi Arabia
- Research
Center for Advanced Materials Science (RCAMS), King Khalid University, P. O. Box 9004, Abha 61514, Saudi Arabia
| | - Shafqat Ali
- Department
of Environment and Civil Engineering, Dongguan
University of Technology, Dongguan 523808, P. R. China
| | - Zhanpeng Wu
- State
Key
Laboratory of Organic−Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| |
Collapse
|
7
|
Synthesis of Metalorganic Copolymers Containing Various Contorted Units and Iron(II) Clathrochelates with Lateral Butyl Chains: Conspicuous Adsorbents of Lithium Ions and Methylene Blue. Polymers (Basel) 2022; 14:polym14163394. [PMID: 36015650 PMCID: PMC9412635 DOI: 10.3390/polym14163394] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 08/16/2022] [Accepted: 08/17/2022] [Indexed: 12/12/2022] Open
Abstract
We report the synthesis of three highly soluble metalorganic copolymers, TCP1-3, that were made from a one-pot complexation of iron(II) clathrochelate units that are interconnected by various thioether-containing contorted groups. TCP1-3 were converted into their poly(vinyl sulfone) derivatives OTCP1-3 quantitatively via the selective oxidation of the thioether moieties into their respective sulfones. All of the copolymers, TCP1-3 and OTCP1-3, underwent structural analysis by various techniques; namely, 1H- and 13C-nuclear magnetic resonance (NMR), Fourier transform infrared (FTIR), X-ray photoelectron spectroscopy (XPS), and gel permeation chromatography (GPC). The copolymers were tested as potent lithium ions adsorbents revealing a maximum adsorption (qm) value of 2.31 mg g-1 for OTCP2. Furthermore, this same copolymer was found to be a promising adsorbent of methylene blue (MEB); an isothermal adsorption study divulged that OTCP2's uptake of MEB from an aqueous solution (following the Langmuir model) was, at maximum adsorption capacity, (qm) of 480.77 mg g-1; whereas the kinetic study divulged that the adsorption follows pseudo second-order kinetics with an equilibrium adsorption capacity (qe,cal) of 45.40 mg g-1.
Collapse
|