1
|
Glavaški M, Velicki L. Shared Molecular Mechanisms of Hypertrophic Cardiomyopathy and Its Clinical Presentations: Automated Molecular Mechanisms Extraction Approach. Life (Basel) 2021; 11:life11080785. [PMID: 34440529 PMCID: PMC8398249 DOI: 10.3390/life11080785] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/23/2021] [Accepted: 07/30/2021] [Indexed: 12/30/2022] Open
Abstract
Hypertrophic cardiomyopathy (HCM) is the most common inherited cardiovascular disease with a prevalence of 1 in 500 people and varying clinical presentations. Although there is much research on HCM, underlying molecular mechanisms are poorly understood, and research on the molecular mechanisms of its specific clinical presentations is scarce. Our aim was to explore the molecular mechanisms shared by HCM and its clinical presentations through the automated extraction of molecular mechanisms. Molecular mechanisms were congregated by a query of the INDRA database, which aggregates knowledge from pathway databases and combines it with molecular mechanisms extracted from abstracts and open-access full articles by multiple machine-reading systems. The molecular mechanisms were extracted from 230,072 articles on HCM and 19 HCM clinical presentations, and their intersections were found. Shared molecular mechanisms of HCM and its clinical presentations were represented as networks; the most important elements in the intersections’ networks were found, centrality scores for each element of each network calculated, networks with reduced level of noise generated, and cooperatively working elements detected in each intersection network. The identified shared molecular mechanisms represent possible mechanisms underlying different HCM clinical presentations. Applied methodology produced results consistent with the information in the scientific literature.
Collapse
Affiliation(s)
- Mila Glavaški
- Faculty of Medicine, University of Novi Sad, Hajduk Veljkova 3, 21000 Novi Sad, Serbia;
- Correspondence: or
| | - Lazar Velicki
- Faculty of Medicine, University of Novi Sad, Hajduk Veljkova 3, 21000 Novi Sad, Serbia;
- Institute of Cardiovascular Diseases Vojvodina, Put Doktora Goldmana 4, 21204 Sremska Kamenica, Serbia
| |
Collapse
|
2
|
Casanova JD, Carrillo JG, Jiménez JM, Muñoz JC, Esparza CM, Alvárez MS, Escribá R, Milla EB, de la Pompa JL, Raya Á, Gimeno JR, Molina MS, García GB. Trabeculated Myocardium in Hypertrophic Cardiomyopathy: Clinical Consequences. J Clin Med 2020; 9:jcm9103171. [PMID: 33007916 PMCID: PMC7600439 DOI: 10.3390/jcm9103171] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 09/26/2020] [Accepted: 09/27/2020] [Indexed: 12/25/2022] Open
Abstract
Aims: Hypertrophic cardiomyopathy (HCM) is often accompanied by increased trabeculated myocardium (TM)—which clinical relevance is unknown. We aim to measure the left ventricular (LV) mass and proportion of trabeculation in an HCM population and to analyze its clinical implication. Methods and Results: We evaluated 211 patients with HCM (mean age 47.8 ± 16.3 years, 73.0% males) with cardiac magnetic resonance (CMR) studies. LV trabecular and compacted mass were measured using dedicated software for automatic delineation of borders. Mean compacted myocardium (CM) was 160.0 ± 62.0 g and trabecular myocardium (TM) 55.5 ± 18.7 g. The percentage of trabeculated myocardium (TM%) was 26.7% ± 6.4%. Females had significantly increased TM% compared to males (29.7 ± 7.2 vs. 25.6 ± 5.8, p < 0.0001). Patients with LVEF < 50% had significantly higher values of TM% (30.2% ± 6.0% vs. 26.6% ± 6.4%, p = 0.02). Multivariable analysis showed that female gender and neutral pattern of hypertrophy were directly associated with TM%, while dynamic obstruction, maximal wall thickness and LVEF% were inversely associated with TM%. There was no association between TM% with arterial hypertension, physical activity, or symptoms. Atrial fibrillation and severity of hypertrophy were the only variables associated with cardiovascular death. Multivariable analysis failed to demonstrate any correlation between TM% and arrhythmias. Conclusions: Approximately 25% of myocardium appears non-compacted and can automatically be measured in HCM series. Proportion of non-compacted myocardium is increased in female, non-obstructives, and in those with lower contractility. The amount of trabeculation might help to identify HCM patients prone to systolic heart failure.
Collapse
Affiliation(s)
- José David Casanova
- Departamento de Ingeniería y Tecnología de Computadores, Universidad de Murcia, Espinardo, 30100 Murcia, Spain; (J.D.C.); (J.C.M.); (G.B.G.)
| | - Josefa González Carrillo
- Unidad CSUR de Cardiopatías Familiares, Servicio de Cardiología, Hospital Universitario Virgen de la Arrixaca, Universidad de Murcia, El Palmar, 30120 Murcia, Spain; (J.G.C.); (J.M.J.); (C.M.E.); (E.B.M.); (M.S.M.)
- Instituto Murciano de Investigación Biosanitaria (IMIB), El Palmar, 30120 Murcia, Spain
- European Reference Networks (Guard-Heart), Red de Investigación Cardiovascular (CIBERCV), Instituto de Salud Carlos III, El Palmar, 30120 Murcia, Spain
| | - Jesús Martín Jiménez
- Unidad CSUR de Cardiopatías Familiares, Servicio de Cardiología, Hospital Universitario Virgen de la Arrixaca, Universidad de Murcia, El Palmar, 30120 Murcia, Spain; (J.G.C.); (J.M.J.); (C.M.E.); (E.B.M.); (M.S.M.)
- Instituto Murciano de Investigación Biosanitaria (IMIB), El Palmar, 30120 Murcia, Spain
| | - Javier Cuenca Muñoz
- Departamento de Ingeniería y Tecnología de Computadores, Universidad de Murcia, Espinardo, 30100 Murcia, Spain; (J.D.C.); (J.C.M.); (G.B.G.)
| | - Carmen Muñoz Esparza
- Unidad CSUR de Cardiopatías Familiares, Servicio de Cardiología, Hospital Universitario Virgen de la Arrixaca, Universidad de Murcia, El Palmar, 30120 Murcia, Spain; (J.G.C.); (J.M.J.); (C.M.E.); (E.B.M.); (M.S.M.)
- Instituto Murciano de Investigación Biosanitaria (IMIB), El Palmar, 30120 Murcia, Spain
- European Reference Networks (Guard-Heart), Red de Investigación Cardiovascular (CIBERCV), Instituto de Salud Carlos III, El Palmar, 30120 Murcia, Spain
| | - Marcos Siguero Alvárez
- Intercellular Signalling in Cardiovascular Development and Disease Laboratory, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro 3, 28029 Madrid, Spain; (M.S.A.); (J.L.d.l.P.)
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Rubén Escribá
- Regenerative Medicine Program, Bellvitge Biomedical Research Institute (IDIBELL) and Program for Clinical Translation of Regenerative Medicine in Catalonia (P-CMRC), Hospital Duran i Reynals, Hospitalet de Llobregat, 08908 Barcelona, Spain; (R.E.); (Á.R.)
- Centre for Networked Biomedical Research on Bioengineering, Biomaterials, and Nanomedicine (CIBER-BBN), 28029 Madrid, Spain
| | - Esther Burillo Milla
- Unidad CSUR de Cardiopatías Familiares, Servicio de Cardiología, Hospital Universitario Virgen de la Arrixaca, Universidad de Murcia, El Palmar, 30120 Murcia, Spain; (J.G.C.); (J.M.J.); (C.M.E.); (E.B.M.); (M.S.M.)
| | - José Luis de la Pompa
- Intercellular Signalling in Cardiovascular Development and Disease Laboratory, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro 3, 28029 Madrid, Spain; (M.S.A.); (J.L.d.l.P.)
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Ángel Raya
- Regenerative Medicine Program, Bellvitge Biomedical Research Institute (IDIBELL) and Program for Clinical Translation of Regenerative Medicine in Catalonia (P-CMRC), Hospital Duran i Reynals, Hospitalet de Llobregat, 08908 Barcelona, Spain; (R.E.); (Á.R.)
- Centre for Networked Biomedical Research on Bioengineering, Biomaterials, and Nanomedicine (CIBER-BBN), 28029 Madrid, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), 08010 Barcelona, Spain
| | - Juan Ramón Gimeno
- Unidad CSUR de Cardiopatías Familiares, Servicio de Cardiología, Hospital Universitario Virgen de la Arrixaca, Universidad de Murcia, El Palmar, 30120 Murcia, Spain; (J.G.C.); (J.M.J.); (C.M.E.); (E.B.M.); (M.S.M.)
- Instituto Murciano de Investigación Biosanitaria (IMIB), El Palmar, 30120 Murcia, Spain
- European Reference Networks (Guard-Heart), Red de Investigación Cardiovascular (CIBERCV), Instituto de Salud Carlos III, El Palmar, 30120 Murcia, Spain
- Correspondence: ; Tel.: +34-968-369-558
| | - María Sabater Molina
- Unidad CSUR de Cardiopatías Familiares, Servicio de Cardiología, Hospital Universitario Virgen de la Arrixaca, Universidad de Murcia, El Palmar, 30120 Murcia, Spain; (J.G.C.); (J.M.J.); (C.M.E.); (E.B.M.); (M.S.M.)
| | - Gregorio Bernabé García
- Departamento de Ingeniería y Tecnología de Computadores, Universidad de Murcia, Espinardo, 30100 Murcia, Spain; (J.D.C.); (J.C.M.); (G.B.G.)
| |
Collapse
|
3
|
McVeigh TP, Kelly LJ, Whitmore E, Clark T, Mullaney B, Barton DE, Ward A, Lynch SA. Managing uncertainty in inherited cardiac pathologies-an international multidisciplinary survey. Eur J Hum Genet 2019; 27:1178-1185. [PMID: 30979968 DOI: 10.1038/s41431-019-0391-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 01/31/2019] [Accepted: 03/12/2019] [Indexed: 12/16/2022] Open
Abstract
Multi-gene testing is useful in genetically heterogeneous conditions, including inherited cardiac pathologies. Increasing the number of genes analysed increases diagnostic yield of variants of certain, likely, or uncertain pathogenicity. Concerns exist regarding management of variants of uncertain/likely pathogenicity in conditions of oligogenic inheritance or variable expressivity. We surveyed a sample of colleagues across different specialties and departments internationally to compare management of patients with class 3 or class 4 variants in genes associated with non-syndromic cardiomyopathy or arrhythmia. An electronic survey regarding clinical management of variants ( www.surveymonkey.com/r/cardiacvariants ) was designed and distributed to colleagues internationally via professional bodies and direct email. 150 respondents (88 centres, 27 countries) completed the survey, most of whom were Clinical Geneticists or Genetic Counsellors. Most respondents offer pre-symptomatic testing to asymptomatic relatives of an individual with class 4 or class 5 variants. A minority of respondents offer pre-symptomatic testing for class 3 variants. Considering class 4 variants, 22 (15%) are fully reassuring that the patient with a negative predictive test would not develop the familial phenotype, while 123 (82%) counselled patients about the possibility of variant reclassification. Variability existed between and within centres and specialties. Multiple "free text" comments were provided. Recurring themes including need for multidisciplinary input, technical concerns, and concern regarding duty to review variants of uncertain significance. This study demonstrates that variability in management of likely pathogenic/uncertain variants exists. Close multi-disciplinary input is essential. The development of disorder or gene-specific evidence-based guidelines might ameliorate uncertainty in management.
Collapse
Affiliation(s)
| | - Luke J Kelly
- School of Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Elizabeth Whitmore
- The Children's University Hospital, Temple St, Dublin 1, Dublin, Ireland
| | - Tara Clark
- Our Lady's Children's Hospital Crumlin, Dublin 12, Dublin, Ireland
| | - Brendan Mullaney
- Our Lady's Children's Hospital Crumlin, Dublin 12, Dublin, Ireland
| | - David E Barton
- Our Lady's Children's Hospital Crumlin, Dublin 12, Dublin, Ireland
| | - Alana Ward
- Our Lady's Children's Hospital Crumlin, Dublin 12, Dublin, Ireland
| | - Sally Ann Lynch
- Our Lady's Children's Hospital Crumlin, Dublin 12, Dublin, Ireland.,The Children's University Hospital, Temple St, Dublin 1, Dublin, Ireland.,University College Dublin, Dublin, Ireland
| |
Collapse
|
4
|
Kraft T, Montag J. Altered force generation and cell-to-cell contractile imbalance in hypertrophic cardiomyopathy. Pflugers Arch 2019; 471:719-733. [PMID: 30740621 PMCID: PMC6475633 DOI: 10.1007/s00424-019-02260-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 01/20/2019] [Indexed: 01/18/2023]
Abstract
Hypertrophic cardiomyopathy (HCM) is mainly caused by mutations in sarcomeric proteins. Thirty to forty percent of identified mutations are found in the ventricular myosin heavy chain (β-MyHC). A common mechanism explaining how numerous mutations in several different proteins induce a similar HCM-phenotype is unclear. It was proposed that HCM-mutations cause hypercontractility, which for some mutations is thought to result from mutation-induced unlocking of myosin heads from a so-called super-relaxed state (SRX). The SRX was suggested to be related to the "interacting head motif," i.e., pairs of myosin heads folded back onto their S2-region. Here, we address these structural states of myosin in context of earlier work on weak binding cross-bridges. However, not all HCM-mutations cause hypercontractility and/or are involved in the interacting head motif. But most likely, all mutations alter the force generating mechanism, yet in different ways, possibly including inhibition of SRX. Such functional-hyper- and hypocontractile-changes are the basis of our previously proposed concept stating that contractile imbalance due to unequal fractions of mutated and wildtype protein among individual cardiomyocytes over time will induce cardiomyocyte disarray and fibrosis, hallmarks of HCM. Studying β-MyHC-mutations, we found substantial contractile variability from cardiomyocyte to cardiomyocyte within a patient's myocardium, much higher than in controls. This was paralleled by a similarly variable fraction of mutant MYH7-mRNA (cell-to-cell allelic imbalance), due to random, burst-like transcription, independent for mutant and wildtype MYH7-alleles. Evidence suggests that HCM-mutations in other sarcomeric proteins follow the same disease mechanism.
Collapse
Affiliation(s)
- Theresia Kraft
- Molecular and Cell Physiology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Judith Montag
- Molecular and Cell Physiology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany.
| |
Collapse
|
5
|
Doh CY, Li J, Mamidi R, Stelzer JE. The HCM-causing Y235S cMyBPC mutation accelerates contractile function by altering C1 domain structure. Biochim Biophys Acta Mol Basis Dis 2019; 1865:661-677. [PMID: 30611859 DOI: 10.1016/j.bbadis.2019.01.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 12/18/2018] [Accepted: 01/02/2019] [Indexed: 12/20/2022]
Abstract
Mutations in cardiac myosin binding protein C (cMyBPC) are a major cause of hypertrophic cardiomyopathy (HCM). In particular, a single amino acid substitution of tyrosine to serine at residue 237 in humans (residue 235 in mice) has been linked to HCM with strong disease association. Although cMyBPC truncations, deletions and insertions, and frame shift mutations have been studied, relatively little is known about the functional consequences of missense mutations in cMyBPC. In this study, we characterized the functional and structural effects of the HCM-causing Y235S mutation by performing mechanical experiments and molecular dynamics simulations (MDS). cMyBPC null mouse myocardium was virally transfected with wild-type (WT) or Y235S cMyBPC (KOY235S). We found that Y235S cMyBPC was properly expressed and incorporated into the cardiac sarcomere, suggesting that the mechanism of disease of the Y235S mutation is not haploinsufficiency or poison peptides. Mechanical experiments in detergent-skinned myocardium isolated from KOY235S hearts revealed hypercontractile behavior compared to KOWT hearts, evidenced by accelerated cross-bridge kinetics and increased Ca2+ sensitivity of force generation. In addition, MDS revealed that the Y235S mutation causes alterations in important intramolecular interactions, surface conformations, and electrostatic potential of the C1 domain of cMyBPC. Our combined in vitro and in silico data suggest that the Y235S mutation directly disrupts internal and surface properties of the C1 domain of cMyBPC, which potentially alters its ligand-binding interactions. These molecular changes may underlie the mechanism for hypercontractile cross-bridge behavior, which ultimately results in the development of cardiac hypertrophy and in vivo cardiac dysfunction.
Collapse
Affiliation(s)
- Chang Yoon Doh
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Jiayang Li
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Ranganath Mamidi
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Julian E Stelzer
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, OH, USA.
| |
Collapse
|
6
|
Smelter DF, de Lange WJ, Cai W, Ge Y, Ralphe JC. The HCM-linked W792R mutation in cardiac myosin-binding protein C reduces C6 FnIII domain stability. Am J Physiol Heart Circ Physiol 2018; 314:H1179-H1191. [PMID: 29451820 PMCID: PMC6032085 DOI: 10.1152/ajpheart.00686.2017] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 02/02/2018] [Accepted: 02/05/2018] [Indexed: 12/16/2022]
Abstract
Cardiac myosin-binding protein C (cMyBP-C) is a functional sarcomeric protein that regulates contractility in response to contractile demand, and many mutations in cMyBP-C lead to hypertrophic cardiomyopathy (HCM). To gain insight into the effects of disease-causing cMyBP-C missense mutations on contractile function, we expressed the pathogenic W792R mutation (substitution of a highly conserved tryptophan residue by an arginine residue at position 792) in mouse cardiomyocytes lacking endogenous cMyBP-C and studied the functional effects using three-dimensional engineered cardiac tissue constructs (mECTs). Based on complete conservation of tryptophan at this location in fibronectin type II (FnIII) domains, we hypothesized that the W792R mutation affects folding of the C6 FnIII domain, destabilizing the mutant protein. Adenoviral transduction of wild-type (WT) and W792R cDNA achieved equivalent mRNA transcript abundance, but not equivalent protein levels, with W792R compared with WT controls. mECTs expressing W792R demonstrated abnormal contractile kinetics compared with WT mECTs that were nearly identical to cMyBP-C-deficient mECTs. We studied whether common pathways of protein degradation were responsible for the rapid degradation of W792R cMyBP-C. Inhibition of both ubiquitin-proteasome and lysosomal degradation pathways failed to increase full-length mutant protein abundance to WT equivalence, suggesting rapid cytosolic degradation. Bacterial expression of WT and W792R protein fragments demonstrated decreased mutant stability with altered thermal denaturation and increased susceptibility to trypsin digestion. These data suggest that the W792R mutation destabilizes the C6 FnIII domain of cMyBP-C, resulting in decreased full-length protein expression. This study highlights the vulnerability of FnIII-like domains to mutations that alter domain stability and further indicates that missense mutations in cMyBP-C can cause disease through a mechanism of haploinsufficiency. NEW & NOTEWORTHY This study is one of the first to describe a disease mechanism for a missense mutation in cardiac myosin-binding protein C linked to hypertrophic cardiomyopathy. The mutation decreases stability of the fibronectin type III domain and results in substantially reduced mutant protein expression dissonant to transcript abundance.
Collapse
Affiliation(s)
- Dan F Smelter
- Department of Pediatrics, University of Wisconsin-Madison , Madison, Wisconsin
| | - Willem J de Lange
- Department of Pediatrics, University of Wisconsin-Madison , Madison, Wisconsin
| | - Wenxuan Cai
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison , Madison, Wisconsin
- Molecular and Cellular Pharmacology Program, University of Wisconsin-Madison , Madison, Wisconsin
| | - Ying Ge
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison , Madison, Wisconsin
- Human Proteomics Program, University of Wisconsin-Madison , Madison, Wisconsin
- Department of Chemistry, School of Medicine and Public Health, University of Wisconsin-Madison , Madison, Wisconsin
| | - J Carter Ralphe
- Department of Pediatrics, University of Wisconsin-Madison , Madison, Wisconsin
| |
Collapse
|
7
|
Exploring evidence of positive selection signatures in cattle breeds selected for different traits. Mamm Genome 2017; 28:528-541. [PMID: 28905131 DOI: 10.1007/s00335-017-9715-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 09/05/2017] [Indexed: 02/07/2023]
Abstract
Since domestication, the genome landscape of cattle has been changing due to natural and artificial selection forces resulting in several general and specialized cattle breeds of the world. Identifying genomic regions affected due to these forces in livestock gives an insight into the history of selection for economically important traits and genetic adaptation to specific environments of the populations under consideration. This study explores the genes/genomic regions under selection in relation to the phenotypes of Holstein, Hanwoo, and N'Dama cattle breeds using Tajima's D, XP-CLR, and XP-EHH population statistical methods. The whole genomes of 10 Holstein (South Korea), 11 Hanwoo (South Korea), and 10 N'Dama (West Africa-Guinea) cattle breeds re-sequenced to ~11x coverage and retained 37 million SNPs were used for the study. Selection signature analysis revealed 441, 512, and 461 genes under selection from Holstein, Hanwoo, and N'Dama cattle breeds, respectively. Among all these, seven genes including ARFGAP3, SNORA70, and other RNA genes were common between the breeds. From each of the gene lists, significant functional annotation cluster terms including milk protein and thyroid hormone signaling pathway (Holstein), histone acetyltransferase activity (Hanwoo), and renin secretion (N'Dama) were enriched. Genes that are related to the phenotypes of the respective breeds were also identified. Moreover, significant breed-specific missense variants were identified in CSN3, PAPPA2 (Holstein), C1orf116 (Hanwoo), and COMMD1 (N'Dama) genes. The genes identified from this study provide an insight into the biological mechanisms and pathways that are important in cattle breeds selected for different traits of economic significance.
Collapse
|