1
|
Castro Cabello M, Kandhan P, Tao P, Lippert AR. Viscosity effects on the chemiluminescence emission of 1,2-dioxetanes in water. Org Biomol Chem 2025. [PMID: 40343772 DOI: 10.1039/d5ob00254k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2025]
Abstract
Chemiluminescence emission from 1,2-dioxetanes offers a versatile framework for molecular imaging in cells and animals. Here, we observe an increase in chemiluminescence emission intensity with increasing solvent viscosity in aqueous systems, and interpret these observations within the context of chemically initiated electron exchange luminescence (CIEEL), concerted charge transfer induced luminescence (CTIL), and gradually reversible charge transfer induced luminescence (GR-CTIL) mechanisms.
Collapse
Affiliation(s)
| | - Palanisamy Kandhan
- Department of Chemistry, Southern Methodist University, Dallas, TX 75275-0314, USA.
| | - Peng Tao
- Department of Chemistry, Southern Methodist University, Dallas, TX 75275-0314, USA.
| | - Alexander R Lippert
- Department of Chemistry, Southern Methodist University, Dallas, TX 75275-0314, USA.
| |
Collapse
|
2
|
Cabello MC, Chen G, Melville MJ, Osman R, Kumar GD, Domaille DW, Lippert AR. Ex Tenebris Lux: Illuminating Reactive Oxygen and Nitrogen Species with Small Molecule Probes. Chem Rev 2024; 124:9225-9375. [PMID: 39137397 DOI: 10.1021/acs.chemrev.3c00892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
Reactive oxygen and nitrogen species are small reactive molecules derived from elements in the air─oxygen and nitrogen. They are produced in biological systems to mediate fundamental aspects of cellular signaling but must be very tightly balanced to prevent indiscriminate damage to biological molecules. Small molecule probes can transmute the specific nature of each reactive oxygen and nitrogen species into an observable luminescent signal (or even an acoustic wave) to offer sensitive and selective imaging in living cells and whole animals. This review focuses specifically on small molecule probes for superoxide, hydrogen peroxide, hypochlorite, nitric oxide, and peroxynitrite that provide a luminescent or photoacoustic signal. Important background information on general photophysical phenomena, common probe designs, mechanisms, and imaging modalities will be provided, and then, probes for each analyte will be thoroughly evaluated. A discussion of the successes of the field will be presented, followed by recommendations for improvement and a future outlook of emerging trends. Our objectives are to provide an informative, useful, and thorough field guide to small molecule probes for reactive oxygen and nitrogen species as well as important context to compare the ecosystem of chemistries and molecular scaffolds that has manifested within the field.
Collapse
Affiliation(s)
- Maidileyvis C Cabello
- Department of Chemistry, Southern Methodist University, Dallas, Texas 75275-0314, United States
| | - Gen Chen
- Department of Chemistry, Southern Methodist University, Dallas, Texas 75275-0314, United States
| | - Michael J Melville
- Department of Chemistry, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Rokia Osman
- Department of Chemistry, Southern Methodist University, Dallas, Texas 75275-0314, United States
| | - G Dinesh Kumar
- Department of Chemistry, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Dylan W Domaille
- Department of Chemistry, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Alexander R Lippert
- Department of Chemistry, Southern Methodist University, Dallas, Texas 75275-0314, United States
| |
Collapse
|
3
|
Abstract
Chemiluminescent molecules which emit light in response to a chemical reaction are powerful tools for the detection and measurement of biological analytes and enable the understanding of complex biochemical processes in living systems. Triggerable chemiluminescent 1,2-dioxetanes have been studied and tuned over the past decades to advance quantitative measurement of biological analytes and molecular imaging in live cells and animals. A crucial determinant of success for these 1,2-dioxetane based sensors is their chemical structure, which can be manipulated to achieve desired chemical properties. In this Perspective, we survey the structural space of triggerable 1,2-dioxetane and assess how their design features affect chemiluminescence properties including quantum yield, emission wavelength, and decomposition kinetics. Based on this appraisal, we identify some structural modifications of 1,2-dioxetanes that are ripe for exploration in the context of chemiluminescent biological sensors.
Collapse
|
4
|
Tzani MA, Gioftsidou DK, Kallitsakis MG, Pliatsios NV, Kalogiouri NP, Angaridis PA, Lykakis IN, Terzidis MA. Direct and Indirect Chemiluminescence: Reactions, Mechanisms and Challenges. Molecules 2021; 26:7664. [PMID: 34946744 PMCID: PMC8705051 DOI: 10.3390/molecules26247664] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 12/12/2021] [Accepted: 12/14/2021] [Indexed: 11/29/2022] Open
Abstract
Emission of light by matter can occur through a variety of mechanisms. When it results from an electronically excited state of a species produced by a chemical reaction, it is called chemiluminescence (CL). The phenomenon can take place both in natural and artificial chemical systems and it has been utilized in a variety of applications. In this review, we aim to revisit some of the latest CL applications based on direct and indirect production modes. The characteristics of the chemical reactions and the underpinning CL mechanisms are thoroughly discussed in view of studies from the very recent bibliography. Different methodologies aiming at higher CL efficiencies are summarized and presented in detail, including CL type and scaffolds used in each study. The CL role in the development of efficient therapeutic platforms is also discussed in relation to the Reactive Oxygen Species (ROS) and singlet oxygen (1O2) produced, as final products. Moreover, recent research results from our team are included regarding the behavior of commonly used photosensitizers upon chemical activation under CL conditions. The CL prospects in imaging, biomimetic organic and radical chemistry, and therapeutics are critically presented in respect to the persisting challenges and limitations of the existing strategies to date.
Collapse
Affiliation(s)
- Marina A. Tzani
- Department of Chemistry, Aristotle University of Thessaloniki, University Campus, 54124 Thessaloniki, Greece; (M.A.Tz.); (D.K.G.); (M.G.K.); (N.V.P.); (N.P.K.); (P.A.A.)
| | - Dimitra K. Gioftsidou
- Department of Chemistry, Aristotle University of Thessaloniki, University Campus, 54124 Thessaloniki, Greece; (M.A.Tz.); (D.K.G.); (M.G.K.); (N.V.P.); (N.P.K.); (P.A.A.)
| | - Michael G. Kallitsakis
- Department of Chemistry, Aristotle University of Thessaloniki, University Campus, 54124 Thessaloniki, Greece; (M.A.Tz.); (D.K.G.); (M.G.K.); (N.V.P.); (N.P.K.); (P.A.A.)
| | - Nikolaos V. Pliatsios
- Department of Chemistry, Aristotle University of Thessaloniki, University Campus, 54124 Thessaloniki, Greece; (M.A.Tz.); (D.K.G.); (M.G.K.); (N.V.P.); (N.P.K.); (P.A.A.)
| | - Natasa P. Kalogiouri
- Department of Chemistry, Aristotle University of Thessaloniki, University Campus, 54124 Thessaloniki, Greece; (M.A.Tz.); (D.K.G.); (M.G.K.); (N.V.P.); (N.P.K.); (P.A.A.)
| | - Panagiotis A. Angaridis
- Department of Chemistry, Aristotle University of Thessaloniki, University Campus, 54124 Thessaloniki, Greece; (M.A.Tz.); (D.K.G.); (M.G.K.); (N.V.P.); (N.P.K.); (P.A.A.)
| | - Ioannis N. Lykakis
- Department of Chemistry, Aristotle University of Thessaloniki, University Campus, 54124 Thessaloniki, Greece; (M.A.Tz.); (D.K.G.); (M.G.K.); (N.V.P.); (N.P.K.); (P.A.A.)
| | - Michael A. Terzidis
- Department of Nutritional Sciences and Dietetics, International Hellenic University, Sindos Campus, 57400 Thessaloniki, Greece
| |
Collapse
|
5
|
Haris U, Kagalwala HN, Kim YL, Lippert AR. Seeking Illumination: The Path to Chemiluminescent 1,2-Dioxetanes for Quantitative Measurements and In Vivo Imaging. Acc Chem Res 2021; 54:2844-2857. [PMID: 34110136 DOI: 10.1021/acs.accounts.1c00185] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Chemiluminescence is a fascinating phenomenon that evolved in nature and has been harnessed by chemists in diverse ways to improve life. This Account tells the story of our research group's efforts to formulate and manifest spiroadamantane 1,2-dioxetanes with triggerable chemiluminescence for imaging and monitoring important reactive analytes in living cells, animals, and human clinical samples. Analytes like reactive sulfur, oxygen and nitrogen species, as well as pH and hypoxia can be indicators of cellular function or dysfunction and are often implicated in the causes and effects of disease. We begin with a foundation in binding-based and activity-based fluorescence imaging that has provided transformative tools for understanding biological systems. The intense light sources required for fluorescence excitation, however, introduce autofluorescence and light scattering that reduces sensitivity and complicates in vivo imaging. Our work and the work of our collaborators were the first to demonstrate that spiroadamantane 1,2-dioxetanes had sufficient brightness and biological compatibility for in vivo imaging of enzyme activity and reactive analytes like hydrogen sulfide (H2S) inside of living mice. This launched an era of renewed interest in 1,2-dioxetanes that has resulted in a plethora of new chemiluminescence imaging agents developed by groups around the world. Our own research group focused its efforts on reactive sulfur, oxygen, and nitrogen species, pH, and hypoxia, resulting in a large family of bright chemiluminescent 1,2-dioxetanes validated for cell monitoring and in vivo imaging. These chemiluminescent probes feature low background and high sensitivity that have been proven quite useful for studying signaling, for example, the generation of peroxynitrite (ONOO-) in cellular models of immune function and phagocytosis. This high sensitivity has also enabled real-time quantitative reporting of oxygen-dependent enzyme activity and hypoxia in living cells and tumor xenograft models. We reported some of the first ratiometric chemiluminescent 1,2-dioxetane systems for imaging pH and have introduced a powerful kinetics-based approach for quantification of reactive species like azanone (nitroxyl, HNO) and enzyme activity in living cells. These tools have been applied to untangle complex signaling pathways of peroxynitrite production in radiation therapy and as substrates in a split esterase system to provide an enzyme/substrate pair to rival luciferase/luciferin. Furthermore, we have pushed chemiluminescence toward commercialization and clinical translation by demonstrating the ability to monitor airway hydrogen peroxide in the exhaled breath of asthma patients using transiently produced chemiluminescent 1,2-dioxetanedione intermediates. This body of work shows the powerful possibilities that can emerge when working at the interface of light and chemistry, and we hope that it will inspire future scientists to seek out ever brighter and more illuminating ideas.
Collapse
Affiliation(s)
- Uroob Haris
- Department of Chemistry, Southern Methodist University, Dallas, Texas 75275-0314, United States
| | - Husain N. Kagalwala
- Department of Chemistry, Southern Methodist University, Dallas, Texas 75275-0314, United States
| | - Yujin Lisa Kim
- Department of Chemistry, Southern Methodist University, Dallas, Texas 75275-0314, United States
| | - Alexander R. Lippert
- Department of Chemistry, Southern Methodist University, Dallas, Texas 75275-0314, United States
| |
Collapse
|