1
|
Roshanzadeh A, Medeiros HCD, Herrera CK, Malhado C, Tomich AW, Fisher SP, Lovera SO, Bates M, Lavallo V, Lunt RR, Lunt SY. Next-Generation Photosensitizers: Cyanine-Carborane Salts for Superior Photodynamic Therapy of Metastatic Cancer. Angew Chem Int Ed Engl 2025; 64:e202419759. [PMID: 39841576 PMCID: PMC11848969 DOI: 10.1002/anie.202419759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 01/03/2025] [Accepted: 01/22/2025] [Indexed: 01/24/2025]
Abstract
Photodynamic therapy (PDT) has emerged as a promising targeted treatment for cancer. However, current PDT is limited by low tissue penetration, insufficient phototoxicity (toxicity with light irradiation), and undesirable cytotoxicity (toxicity without light irradiation). Here, we report the discovery of cyanine-carborane salts as potent photosensitizers (PSs) that harness the near-infrared (NIR) absorbing [cyanine+] with the inertness of [carborane-]. The implementation of [cyanine+] [carborane-] salts dramatically enhance cancer targeting of the PSs and decrease cytotoxicity. We characterize the cellular uptake of the cyanine-carborane PSs, organelle localization, generation of reactive oxygen species (ROS) with the ability to cogenerate multiple ROS species, suppression of pro-metastatic pathways, and activation of apoptotic pathways. We further demonstrate the ability of optimized PSs to eliminate tumors in vivo using an orthotopic mouse model of breast cancer. These newly developed [cyanine+] [carborane-] salt PSs introduce a potent therapeutic approach against aggressive breast cancer while decreasing side effects.
Collapse
Affiliation(s)
- Amir Roshanzadeh
- Department of Biochemistry and Molecular BiologyMichigan State UniversityEast LansingMI 48824United States
| | - Hyllana C. D. Medeiros
- Department of Biochemistry and Molecular BiologyMichigan State UniversityEast LansingMI 48824United States
| | - Christopher K. Herrera
- Department of Chemical Engineering and Materials ScienceMichigan State UniversityEast LansingMI 48824United States
| | - Carson Malhado
- Department of Chemical Engineering and Materials ScienceMichigan State UniversityEast LansingMI 48824United States
| | - Anton W. Tomich
- Department of ChemistryUniversity of CaliforniaRiversideCA 92521United States
| | - Steven P. Fisher
- Department of ChemistryUniversity of CaliforniaRiversideCA 92521United States
| | - Sergio O. Lovera
- Department of ChemistryUniversity of CaliforniaRiversideCA 92521United States
| | - Matthew Bates
- Department of Chemical Engineering and Materials ScienceMichigan State UniversityEast LansingMI 48824United States
| | - Vincent Lavallo
- Department of ChemistryUniversity of CaliforniaRiversideCA 92521United States
| | - Richard R. Lunt
- Department of Chemical Engineering and Materials ScienceMichigan State UniversityEast LansingMI 48824United States
- Department of Physics and AstronomyMichigan State UniversityEast LansingMI 48824United States
| | - Sophia Y. Lunt
- Department of Biochemistry and Molecular BiologyMichigan State UniversityEast LansingMI 48824United States
- Department of Chemical Engineering and Materials ScienceMichigan State UniversityEast LansingMI 48824United States
| |
Collapse
|
2
|
Du C, Wang C, Liu Z, Xin W, Zhang Q, Ali A, Zeng X, Li Z, Ma C. Machine learning algorithms integrate bulk and single-cell RNA data to unveil oxidative stress following intracerebral hemorrhage. Int Immunopharmacol 2024; 137:112449. [PMID: 38865753 DOI: 10.1016/j.intimp.2024.112449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 06/04/2024] [Accepted: 06/06/2024] [Indexed: 06/14/2024]
Abstract
BACKGROUND Increased oxidative stress (OS) activity following intracerebral hemorrhage (ICH) had significantly impacting patient prognosis. Identifying optimal genes associated with OS could enhance the understanding of OS after ICH. METHODS We employed single-cell RNA sequencing (scRNA-seq) to investigate the heterogeneity of OS across various cellular tiers following ICH, aiming to acquire biological insights into ICH. We utilized AUCell, Ucell, singscore, ssgsea, and AddModuleScore algorithms, along with correlation analysis, to identify hub genes influencing high OS post-ICH. Furthermore, we employed four machine learning algorithms, eXtreme Gradient Boosting, Boruta, Random Forest, and Least Absolute Shrinkage and Selection Operator, to identify the optimal feature genes. To validate the accuracy of our analysis, we conducted validation in ICH animal experiments. RESULTS After analyzing the scRNA-seq dataset using various algorithms, we found that OS activity exhibited heterogeneity across different cellular layers following ICH, with particularly heightened activity observed in monocytes. Further integration of bulk data and machine learning algorithms revealed that ANXA2 and COTL1 were closely associated with high OS after ICH. Our animal experiments demonstrated an increase in OS expression post-ICH. Additionally, the protein expression of ANXA2 and COTL1 was significantly elevated and co-localized with microglia. Pearson correlation coefficient analysis revealed a significant correlation between ANXA2 and OS, indicating strong consistency (r = 0.84, p < 0.05). Similar results were observed for COTL1 and OS (r = 0.69, p < 0.05). CONCLUSIONS Following ICH, ANXA2 and COTL1 might penetrate the brain via monocytes, localize within microglia, and enhance OS activity. This might help us better understand OS after ICH.
Collapse
Affiliation(s)
- Chaonan Du
- Department of Neurosurgery, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Cong Wang
- Jinling Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China; Department of Neurosurgery, Anhui Wannan Rehabilitation Hospital (The Fifth People's Hospital of Wuhu), Wuhu, China
| | - Zhiwei Liu
- Jinling Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Wenxuan Xin
- Jinling Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Qizhe Zhang
- Department of Neurosurgery, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Alleyar Ali
- Department of Neurosurgery, The Affiliated Jinling Hospital of Nanjing Medical University, Nanjing, China
| | - Xinrui Zeng
- Department of Neurosurgery, School of Medicine, Southeast University, Nanjing, China
| | - Zhenxing Li
- Department of Neurosurgery, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China.
| | - Chiyuan Ma
- Department of Neurosurgery, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China; Jinling Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China; Department of Neurosurgery, The Affiliated Jinling Hospital of Nanjing Medical University, Nanjing, China; Department of Neurosurgery, School of Medicine, Southeast University, Nanjing, China; Department of Neurosurgery, The First School of Clinical Medicine, Southern Medical University, Guangzhou, China.
| |
Collapse
|
3
|
Xiao S, Ouyang Q, Feng Y, Lu X, Han Y, Ren H, Huang Q, Zhao J, Xiao C, Yang M. LncNFYB promotes the proliferation of rheumatoid arthritis fibroblast-like synoviocytes via LncNFYB/ANXA2/ERK1/2 axis. J Biol Chem 2024; 300:105591. [PMID: 38141769 PMCID: PMC10867587 DOI: 10.1016/j.jbc.2023.105591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 11/28/2023] [Accepted: 12/11/2023] [Indexed: 12/25/2023] Open
Abstract
Long noncoding RNAs (lncRNAs) are specifically expressed in different diseases and regulate disease progression. To explore the functions of rheumatoid arthritis (RA)-specific lncRNA, we determined the lncRNA expression profile of fibroblast-like synoviocytes (FLS) obtained from patients with RA and osteoarthritis (OA) using a LncRNA microarray and identified up-regulated LncNFYB in RA as a potential therapeutic target. Using gain- and loss-of-function studies, LncNFYB was proven to promote FLS proliferation and cell cycle progress but not affect their invasion, migration, and apoptotic abilities. Further investigation discovered that LncRNA could combine with annexin A2 (ANXA2) and enhance the level of phospho-ANXA2 (Tyr24) in the plasma membrane area, which induced the activation of ERK1/2 to promote proliferation. These findings provide new insights into the biological functions of LncNFYB on modification of FLS, which may be exploited for the therapy of RA.
Collapse
Affiliation(s)
- Shibai Xiao
- Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Qingqing Ouyang
- Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yi Feng
- Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xiaoxi Lu
- Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yipeng Han
- Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Hao Ren
- Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Qin Huang
- Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jinjun Zhao
- Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Changhong Xiao
- Department of Rheumatology and Immunology, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China.
| | - Min Yang
- Nanfang Hospital, Southern Medical University, Guangzhou, China.
| |
Collapse
|
4
|
Pan H, Guo Z, Lv P, Hu K, Wu T, Lin Z, Xue Y, Zhang Y, Guo Z. Proline/serine-rich coiled-coil protein 1 inhibits macrophage inflammation and delays atherosclerotic progression by binding to Annexin A2. Clin Transl Med 2023; 13:e1220. [PMID: 36932468 PMCID: PMC10023832 DOI: 10.1002/ctm2.1220] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 02/21/2023] [Accepted: 02/28/2023] [Indexed: 03/19/2023] Open
Abstract
BACKGROUND Atherosclerosis (AS), the main pathological basis of life-threatening cardiovascular disease, is essentially caused by chronic macrophage inflammation. Overexpression of proline/serine-rich coiled-coil protein 1 (PSRC1) reduces macrophage inflammatory responses and delays AS development. However, the exact mechanism of PSRC1 is unclear. METHODS Proteins interacting with PSRC1 were screened by proteomics in RAW264.7 cells, followed by RT-qPCR, immunoprecipitation and immunofluorescence to explore the specific mechanistic pathways affecting inflammation. CRISPR-Cas9 constructs for PSRC1-/- ApoE-/- (DKO) mice and high-fat diet-fed ApoE-/- and DKO mice were used for AS models for in vivo experiments. Upstream transcription factors of PSRC1 were predicted by ATAC-seq, ChIP-seq and UCSC, and the regulatory mechanism was verified by ChIP-qPCR and dual luciferase assays. Peripheral blood serum and monocytes were collected from coronary artery disease (CAD) patients and non-CAD patients. RESULTS Increased binding of ANXA2 to PSRC1 in macrophages under oxidized low-density lipoprotein stimulation and decreased release of ANXA2 to the extracellular compartment were observed. Knockdown of ANXA2 in AS model mice delayed AS progression. Knockdown of ANXA2 in DKO mice reversed the AS-promoting effect of PSRC1 knockdown. Mechanistically, ANXA2 promotes STAT3 phosphorylation, which in turn promotes inflammatory responses. In addition, SP1 is a PSRC1 upstream repressive transcription factor, and the SP1 inhibitor mithramycin (Mith) elevated PSRC1 expression and exerted anti-AS effects in AS model mice. Patients with CAD had considerably greater serum levels of ANXA2 than those without CAD, and Mith reduced the secretion of ANXA2 in peripheral blood monocytes of CAD patients. CONCLUSION In macrophages, PSRC1 can interact with ANXA2 to inhibit its extracellular release and delay AS development. SP1 is an upstream transcription factor of PSRC1 and inhibits the transcription of PSRC1. The SP1 inhibitor Mith can elevate PSRC1 levels and slow AS progression while reducing ANXA2 release from monocytes in CAD patients. Mith is expected to be a new agent for AS treatment.
Collapse
Affiliation(s)
- Hangyu Pan
- Department of CardiologyState Key Laboratory of Organ Failure ResearchNanfang HospitalSouthern Medical UniversityGuangzhouChina
| | - Zhongzhou Guo
- Department of PharmacyZhujiang HospitalSouthern Medical UniversityGuangzhouChina
| | - Ping Lv
- Department of Cardiovascular SurgeryNanfang HospitalSouthern Medical UniversityGuangzhouChina
| | - Kexin Hu
- Department of CardiologyState Key Laboratory of Organ Failure ResearchNanfang HospitalSouthern Medical UniversityGuangzhouChina
| | - Tongwei Wu
- Department of Medicine UltrasonicsNanfang HospitalSouthern Medical UniversityGuangzhouChina
| | - Zixiang Lin
- Department of CardiologyShenzhen HospitalHuazhong University of Science and Technology UnionShenzhenChina
| | - Yazhi Xue
- Department of General PracticeNanfang HospitalSouthern Medical UniversityGuangzhouChina
| | - Yanan Zhang
- Department of CardiologyState Key Laboratory of Organ Failure ResearchNanfang HospitalSouthern Medical UniversityGuangzhouChina
| | - Zhigang Guo
- Department of CardiologyHuiqiao Medical CenterNanfang HospitalSouthern Medical UniversityGuangzhouChina
| |
Collapse
|
5
|
Long Y, Chong T, Lyu X, Chen L, Luo X, Faleti OD, Deng S, Wang F, He M, Qian Z, Zhao H, Zhou W, Guo X, Chen C, Li X. FOXD1-dependent RalA-ANXA2-Src complex promotes CTC formation in breast cancer. J Exp Clin Cancer Res 2022; 41:301. [PMID: 36229838 PMCID: PMC9558416 DOI: 10.1186/s13046-022-02504-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Accepted: 09/27/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Early metastasis is a key factor contributing to poor breast cancer (BC) prognosis. Circulating tumor cells (CTCs) are regarded as the precursor cells of metastasis, which are ultimately responsible for the main cause of death in BC. However, to date molecular mechanisms underlying CTC formation in BC have been insufficiently defined. METHODS RNA-seq was carried out in primary tissues from early-stage BC patients (with CTCs≥5 and CTCs = 0, respectively) and the validation study was conducted in untreated 80 BC patients. Multiple in vitro and in vivo models were used in functional studies. Luciferase reporter, ChIP-seq, CUT&Tag-seq, and GST-pulldown, etc. were utilized in mechanistic studies. CTCs were counted by the CanPatrol™ CTC classification system or LiquidBiospy™ microfluidic chips. ERK1/2 inhibitor SCH772984 was applied to in vivo treatment. RESULTS Highly expressed FOXD1 of primary BC tissues was observed to be significantly associated with increased CTCs in BC patients, particularly in early BC patients. Overexpressing FOXD1 enhanced the migration capability of BC cells, CTC formation and BC metastasis, via facilitating epithelial-mesenchymal transition of tumor cells. Mechanistically, FOXD1 was discovered to induce RalA expression by directly bound to RalA promotor. Then, RalA formed a complex with ANXA2 and Src, promoting the interaction between ANXA2 and Src, thus increasing the phosphorylation (Tyr23) of ANXA2. Inhibiting RalA-GTP form attenuated the interaction between ANXA2 and Src. This cascade culminated in the activation of ERK1/2 signal that enhanced metastatic ability of BC cells. In addition, in vivo treatment with SCH772984, a specific inhibitor of ERK1/2, was used to dramatically inhibit the CTC formation and BC metastasis. CONCLUSION Here, we report a FOXD1-dependent RalA-ANXA2-Src complex that promotes CTC formation via activating ERK1/2 signal in BC. FOXD1 may serve as a prognostic factor in evaluation of BC metastasis risks. This signaling cascade is druggable and effective for overcoming CTC formation from the early stages of BC.
Collapse
Affiliation(s)
- Yufei Long
- grid.284723.80000 0000 8877 7471Shenzhen Key Laboratory of Viral Oncology, The Clinical Innovation & Research Center (CIRC), Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong China ,grid.284723.80000 0000 8877 7471The Third School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong China
| | - Tuotuo Chong
- grid.284723.80000 0000 8877 7471Shenzhen Key Laboratory of Viral Oncology, The Clinical Innovation & Research Center (CIRC), Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong China ,grid.284723.80000 0000 8877 7471The Third School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong China
| | - Xiaoming Lyu
- grid.284723.80000 0000 8877 7471Department of laboratory medicine, The Third Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong China
| | - Lujia Chen
- grid.284723.80000 0000 8877 7471Breast Center, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong China
| | - Xiaomin Luo
- grid.284723.80000 0000 8877 7471Shenzhen Key Laboratory of Viral Oncology, The Clinical Innovation & Research Center (CIRC), Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong China ,grid.284723.80000 0000 8877 7471The Third School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong China
| | - Oluwasijibomi Damola Faleti
- grid.284723.80000 0000 8877 7471Department of laboratory medicine, The Third Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong China ,grid.35030.350000 0004 1792 6846Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China
| | - Simin Deng
- grid.284723.80000 0000 8877 7471Department of laboratory medicine, The Third Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong China
| | - Fei Wang
- grid.284723.80000 0000 8877 7471Shenzhen Key Laboratory of Viral Oncology, The Clinical Innovation & Research Center (CIRC), Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong China
| | - Mingliang He
- grid.35030.350000 0004 1792 6846Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China
| | - Zhipeng Qian
- Guangzhou SaiCheng Bio Co. Ltd, Guangzhou, Guangdong China
| | - Hongli Zhao
- grid.284723.80000 0000 8877 7471Shenzhen Key Laboratory of Viral Oncology, The Clinical Innovation & Research Center (CIRC), Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong China
| | - Wenyan Zhou
- grid.284723.80000 0000 8877 7471Shenzhen Key Laboratory of Viral Oncology, The Clinical Innovation & Research Center (CIRC), Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong China
| | - Xia Guo
- grid.284723.80000 0000 8877 7471Shenzhen Key Laboratory of Viral Oncology, The Clinical Innovation & Research Center (CIRC), Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong China ,grid.284723.80000 0000 8877 7471The Third School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong China
| | - Ceshi Chen
- grid.9227.e0000000119573309Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences Kunming, Kunming, Yunnan China ,grid.285847.40000 0000 9588 0960Academy of Biomedical Engineering, Kunming Medical University, Kunming, Yunnan China ,grid.285847.40000 0000 9588 0960The Third Affiliated Hospital, Kunming Medical University, Kunming, Yunnan China
| | - Xin Li
- grid.284723.80000 0000 8877 7471Shenzhen Key Laboratory of Viral Oncology, The Clinical Innovation & Research Center (CIRC), Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong China ,grid.284723.80000 0000 8877 7471The Third School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong China
| |
Collapse
|
6
|
Ishimoto T, Mori H. Control of actin polymerization via reactive oxygen species generation using light or radiation. Front Cell Dev Biol 2022; 10:1014008. [PMID: 36211457 PMCID: PMC9538341 DOI: 10.3389/fcell.2022.1014008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 09/07/2022] [Indexed: 11/25/2022] Open
Abstract
Actin is one of the most prevalent proteins in cells, and its amino acid sequence is remarkably conserved from protozoa to humans. The polymerization-depolymerization cycle of actin immediately below the plasma membrane regulates cell function, motility, and morphology. It is known that actin and other actin-binding proteins are targets for reactive oxygen species (ROS), indicating that ROS affects cells through actin reorganization. Several researchers have attempted to control actin polymerization from outside the cell to mimic or inhibit actin reorganization. To modify the polymerization state of actin, ultraviolet, visible, and near-infrared light, ionizing radiation, and chromophore-assisted light inactivation have all been reported to induce ROS. Additionally, a combination of the fluorescent protein KillerRed and the luminescent protein luciferase can generate ROS on actin fibers and promote actin polymerization. These techniques are very useful tools for analyzing the relationship between ROS and cell function, movement, and morphology, and are also expected to be used in therapeutics. In this mini review, we offer an overview of the advancements in this field, with a particular focus on how to control intracellular actin polymerization using such optical approaches, and discuss future challenges.
Collapse
Affiliation(s)
- Tetsuya Ishimoto
- Department of Molecular Neuroscience, Faculty of Medicine, University of Toyama, Toyama, Japan
- Research Center for Idling Brain Science, University of Toyama, Toyama, Japan
- *Correspondence: Tetsuya Ishimoto,
| | - Hisashi Mori
- Department of Molecular Neuroscience, Faculty of Medicine, University of Toyama, Toyama, Japan
- Research Center for Idling Brain Science, University of Toyama, Toyama, Japan
- Research Center for Pre-Disease Science, University of Toyama, Toyama, Japan
| |
Collapse
|
7
|
Protein phosphorylation and its role in the regulation of Annexin A2 function. Biochim Biophys Acta Gen Subj 2017; 1861:2515-2529. [PMID: 28867585 DOI: 10.1016/j.bbagen.2017.08.024] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 08/17/2017] [Accepted: 08/30/2017] [Indexed: 02/08/2023]
Abstract
BACKGROUND Annexin A2 (AnxA2) is a multifunctional protein involved in endocytosis, exocytosis, membrane domain organisation, actin remodelling, signal transduction, protein assembly, transcription and mRNA transport, as well as DNA replication and repair. SCOPE OF REVIEW The current knowledge of the role of phosphorylation in the functional regulation of AnxA2 is reviewed. To provide a more comprehensive treatment of this topic, we also address in depth the phosphorylation process in general and discuss its possible conformational effects. Furthermore, we discuss the apparent limitations of the methods used to investigate phosphoproteins, as exemplified by the study of AnxA2. MAJOR CONCLUSIONS AnxA2 is subjected to complex regulation by post-translational modifications affecting its cellular functions, with Ser11, Ser25 and Tyr23 representing important phosphorylation sites. Thus, Ser phosphorylation of AnxA2 is involved in the recruitment and docking of secretory granules, the regulation of its association with S100A10, and sequestration of perinuclear, translationally inactive mRNP complexes. By contrast, Tyr phosphorylation of AnxA2 regulates its role in actin dynamics and increases its association with endosomal compartments. Modification of its three main phosphorylation sites is not sufficient to discriminate between its numerous functions. Thus, fine-tuning of AnxA2 function is mediated by the joint action of several post-translational modifications. GENERAL SIGNIFICANCE AnxA2 participates in malignant cell transformation, and its overexpression and/or phosphorylation is associated with cancer progression and metastasis. Thus, tight regulation of AnxA2 function is an integral aspect of cellular homeostasis. The presence of AnxA2 in cancer cell-derived exosomes, as well as the potential regulation of exosomal AnxA2 by phosphorylation or other PTMs, are topics of great interest.
Collapse
|
8
|
Liberman M, Marti LC. Vascular Calcification Regulation by Exosomes in the Vascular Wall. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 998:151-160. [DOI: 10.1007/978-981-10-4397-0_10] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
9
|
Kapustin AN, Shanahan CM. Emerging roles for vascular smooth muscle cell exosomes in calcification and coagulation. J Physiol 2016; 594:2905-14. [PMID: 26864864 DOI: 10.1113/jp271340] [Citation(s) in RCA: 112] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 11/25/2015] [Indexed: 12/26/2022] Open
Abstract
Vascular smooth muscle cell (VSMC) phenotypic conversion from a contractile to 'synthetic' state contributes to vascular pathologies including restenosis, atherosclerosis and vascular calcification. We have recently found that the secretion of exosomes is a feature of 'synthetic' VSMCs and that exosomes are novel players in vascular repair processes as well as pathological vascular thrombosis and calcification. Pro-inflammatory cytokines and growth factors as well as mineral imbalance stimulate exosome secretion by VSMCs, most likely by the activation of sphingomyelin phosphodiesterase 3 (SMPD3) and cytoskeletal remodelling. Calcium stress induces dramatic changes in VSMC exosome composition and accumulation of phosphatidylserine (PS), annexin A6 and matrix metalloproteinase-2, which converts exosomes into a nidus for calcification. In addition, by presenting PS, VSMC exosomes can also provide the catalytic surface for the activation of coagulation factors. Recent data showing that VSMC exosomes are loaded with proteins and miRNA regulating cell adhesion and migration highlight VSMC exosomes as potentially important communication messengers in vascular repair. Thus, the identification of signalling pathways regulating VSMC exosome secretion, including activation of SMPD3 and cytoskeletal rearrangements, opens up novel avenues for a deeper understanding of vascular remodelling processes.
Collapse
Affiliation(s)
- A N Kapustin
- BHF Centre of Research Excellence, Cardiovascular Division, King's College London, London, UK
| | - C M Shanahan
- BHF Centre of Research Excellence, Cardiovascular Division, King's College London, London, UK
| |
Collapse
|
10
|
Grindheim AK, Hollås H, Raddum AM, Saraste J, Vedeler A. Reactive oxygen species exert opposite effects on Tyr23 phosphorylation of the nuclear and cortical pools of annexin A2. J Cell Sci 2015; 129:314-28. [PMID: 26644180 PMCID: PMC4732284 DOI: 10.1242/jcs.173195] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Accepted: 11/27/2015] [Indexed: 01/09/2023] Open
Abstract
Annexin A2 (AnxA2) is a multi-functional and -compartmental protein whose subcellular localisation and functions are tightly regulated by its post-translational modifications. AnxA2 and its Tyr23-phosphorylated form (pTyr23AnxA2) are involved in malignant cell transformation, metastasis and angiogenesis. Here, we show that H2O2 exerts rapid, simultaneous and opposite effects on the Tyr23 phosphorylation status of AnxA2 in two distinct compartments of rat pheochromocytoma (PC12) cells. Reactive oxygen species induce dephosphorylation of pTyr23AnxA2 located in the PML bodies of the nucleus, whereas AnxA2 associated with F-actin at the cell cortex is Tyr23 phosphorylated. The H2O2-induced responses in both compartments are transient and the pTyr23AnxA2 accumulating at the cell cortex is subsequently incorporated into vesicles and then released to the extracellular space. Blocking nuclear export by leptomycin B does not affect the nuclear pool of pTyr23AnxA2, but increases the amount of total AnxA2 in this compartment, indicating that the protein might have several functions in the nucleus. These results suggest that Tyr23 phosphorylation can regulate the function of AnxA2 at distinct subcellular sites. Summary: Reactive oxygen species cause two opposite and transient Tyr23-based modifications of annexin A2; its dephosphorylation in the nucleus and phosphorylation at the cell cortex, resulting in release of the protein in exosomes.
Collapse
Affiliation(s)
- Ann Kari Grindheim
- Department of Biomedicine, University of Bergen, Jonas Lies vei 91, Bergen N-5009, Norway Molecular Imaging Center (MIC), University of Bergen, Jonas Lies vei 91, Bergen N-5009, Norway
| | - Hanne Hollås
- Department of Biomedicine, University of Bergen, Jonas Lies vei 91, Bergen N-5009, Norway
| | - Aase M Raddum
- Department of Biomedicine, University of Bergen, Jonas Lies vei 91, Bergen N-5009, Norway
| | - Jaakko Saraste
- Department of Biomedicine, University of Bergen, Jonas Lies vei 91, Bergen N-5009, Norway Molecular Imaging Center (MIC), University of Bergen, Jonas Lies vei 91, Bergen N-5009, Norway
| | - Anni Vedeler
- Department of Biomedicine, University of Bergen, Jonas Lies vei 91, Bergen N-5009, Norway
| |
Collapse
|