1
|
Arora M, Kumari S, Kadian L, Anupa G, Singh J, Kumar A, Verma D, Pramanik R, Kumar S, Yadav R, Chopra A, Chauhan S. Involvement of DPP3 in modulating oncological features and oxidative stress response in esophageal squamous cell carcinoma. Biosci Rep 2023; 43:BSR20222472. [PMID: 37531267 PMCID: PMC10500228 DOI: 10.1042/bsr20222472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 07/13/2023] [Accepted: 08/02/2023] [Indexed: 08/04/2023] Open
Abstract
Resistance to therapy in esophageal squamous cell carcinoma (ESCC) is a critical clinical problem and identification of novel therapeutic targets is highly warranted. Dipeptidyl peptidase III (DPP3) is a zinc-dependent aminopeptidase and functions in the terminal stages of the protein turnover. Several studies have reported overexpression and oncogenic functions of DPP3 in numerous malignancies. The present study aimed to determine the expression pattern and functional role of DPP3 in ESCC. DPP3 expression was assessed in normal and tumor tissues using quantitative real-time (qRT)-PCR and corroborated with ESCC gene expression datasets from Gene Expression Omnibus (GEO) and The cancer genome atlas (TCGA). DPP3 stable knockdown was performed in ESCC cells by shRNA and its effect on cell proliferation, migration, cell cycle, apoptosis, and activation of nuclear factor erythroid 2-related factor 2 (NRF2) pathway was assessed. The results suggested that DPP3 is overexpressed in ESCC and its knockdown leads to reduced proliferation, increased apoptosis, and inhibited migration of ESCC cells. Additionally, DPP3 knockdown leads to down-regulation of the NRF2 pathway proteins, such as NRF2, G6PD, and NQO1 along with increased sensitivity toward oxidative stress-induced cell death and chemotherapy. Conclusively, these results demonstrate critical role of DPP3 in ESCC and DPP3/NRF2 axis may serve as an attractive therapeutic target against chemoresistance in this malignancy.
Collapse
Affiliation(s)
- Mohit Arora
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Sarita Kumari
- Laboratory Oncology Unit, Dr. BRA-IRCH, All India Institute of Medical Sciences, New Delhi, India
| | - Lokesh Kadian
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Geethadevi Anupa
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Jay Singh
- Laboratory Oncology Unit, Dr. BRA-IRCH, All India Institute of Medical Sciences, New Delhi, India
| | - Anurag Kumar
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Deepika Verma
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Raja Pramanik
- Department of Medical Oncology, All India Institute of Medical Sciences, New Delhi, India
| | - Sunil Kumar
- Department of Surgical Oncology, All India Institute of Medical Sciences, New Delhi, India
| | - Rajni Yadav
- Department of Pathology, All India Institute of Medical Sciences, New Delhi, India
| | - Anita Chopra
- Laboratory Oncology Unit, Dr. BRA-IRCH, All India Institute of Medical Sciences, New Delhi, India
| | - Shyam S. Chauhan
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
2
|
Matovina M, Tomašić Paić A, Tomić S, Brkić H, Horvat L, Barbarić L, Filić V, Pinterić M, Jurić S, Kussayeva A. Identification of SH2 Domain-Containing Protein 3C as a Novel, Putative Interactor of Dipeptidyl Peptidase 3. Int J Mol Sci 2023; 24:14178. [PMID: 37762480 PMCID: PMC10532290 DOI: 10.3390/ijms241814178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/11/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
Dipeptidyl peptidase 3 (DPP3) is a zinc-dependent exopeptidase with broad specificity for four to eight amino acid residue substrates. It has a role in the regulation of oxidative stress response NRF2-KEAP1 pathway through the interaction with KEAP1. We have conducted stable isotope labeling by amino acids in a cell culture coupled to mass spectrometry (SILAC-MS) interactome analysis of TRex HEK293T cells using DPP3 as bait and identified SH2 Domain-Containing Protein 3C (SH2D3C) as prey. SH2D3C is one of three members of a family of proteins that contain both the SH2 domain and a domain similar to guanine nucleotide exchange factor domains of Ras family GTPases (Ras GEF-like domain), named novel SH2-containing proteins (NSP). NSPs, including SH2D3C (NSP3), are adaptor proteins involved in the regulation of adhesion, migration, tissue organization, and immune response. We have shown that SH2D3C binds to DPP3 through its C-terminal Ras GEF-like domain, detected the colocalization of the proteins in living cells, and confirmed direct interaction in the cytosol and membrane ruffles. Computational analysis also confirmed the binding of the C-terminal domain of SH2D3C to DPP3, but the exact model could not be discerned. This is the first indication that DPP3 and SH2D3C are interacting partners, and further studies to elucidate the physiological significance of this interaction are on the way.
Collapse
Affiliation(s)
- Mihaela Matovina
- Division of Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Bijenička Cesta 54, 10000 Zagreb, Croatia; (A.T.P.); (S.T.); (L.B.); (S.J.); (A.K.)
| | - Ana Tomašić Paić
- Division of Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Bijenička Cesta 54, 10000 Zagreb, Croatia; (A.T.P.); (S.T.); (L.B.); (S.J.); (A.K.)
| | - Sanja Tomić
- Division of Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Bijenička Cesta 54, 10000 Zagreb, Croatia; (A.T.P.); (S.T.); (L.B.); (S.J.); (A.K.)
| | - Hrvoje Brkić
- Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia;
| | - Lucija Horvat
- Division of Molecular Biology, Ruđer Bošković Institute, Bijenička Cesta 54, 10000 Zagreb, Croatia; (L.H.); (V.F.)
| | - Lea Barbarić
- Division of Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Bijenička Cesta 54, 10000 Zagreb, Croatia; (A.T.P.); (S.T.); (L.B.); (S.J.); (A.K.)
| | - Vedrana Filić
- Division of Molecular Biology, Ruđer Bošković Institute, Bijenička Cesta 54, 10000 Zagreb, Croatia; (L.H.); (V.F.)
| | - Marija Pinterić
- Division of Molecular Medicine, Ruđer Bošković Institute, Bijenička Cesta 54, 10000 Zagreb, Croatia;
| | - Snježana Jurić
- Division of Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Bijenička Cesta 54, 10000 Zagreb, Croatia; (A.T.P.); (S.T.); (L.B.); (S.J.); (A.K.)
| | - Akmaral Kussayeva
- Division of Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Bijenička Cesta 54, 10000 Zagreb, Croatia; (A.T.P.); (S.T.); (L.B.); (S.J.); (A.K.)
| |
Collapse
|
3
|
Karolczak K, Watala C. Estradiol as the Trigger of Sirtuin-1-Dependent Cell Signaling with a Potential Utility in Anti-Aging Therapies. Int J Mol Sci 2023; 24:13753. [PMID: 37762053 PMCID: PMC10530977 DOI: 10.3390/ijms241813753] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/01/2023] [Accepted: 09/03/2023] [Indexed: 09/29/2023] Open
Abstract
Aging entails the inevitable loss of the structural and functional integrity of cells and tissues during the lifetime. It is a highly hormone-dependent process; although, the exact mechanism of hormone involvement, including sex hormones, is unclear. The marked suppression of estradiol synthesis during menopause suggests that the hormone may be crucial in maintaining cell lifespan and viability in women. Recent studies also indicate that the same may be true for men. Similar anti-aging features are attributed to sirtuin 1 (SIRT1), which may possibly be linked at the molecular level with estradiol. This finding may be valuable for understanding the aging process, its regulation, and possible prevention against unhealthy aging. The following article summarizes the initial studies published in this field with a focus on age-associated diseases, like cancer, cardiovascular disease and atherogenic metabolic shift, osteoarthritis, osteoporosis, and muscle damage, as well as neurodegenerative and neuropsychiatric diseases.
Collapse
Affiliation(s)
- Kamil Karolczak
- Department of Haemostatic Disorders, Medical University of Lodz, ul. Mazowiecka 6/8, 92-215 Lodz, Poland;
| | | |
Collapse
|
4
|
Tian X, Gao Z, Yin D, Hu Y, Fang B, Li C, Lou S, Rao Z, Shi R. 17beta-estradiol alleviates contusion-induced skeletal muscle injury by decreasing oxidative stress via SIRT1/PGC-1α/Nrf2 pathway. Steroids 2023; 191:109160. [PMID: 36574869 DOI: 10.1016/j.steroids.2022.109160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 11/28/2022] [Accepted: 12/18/2022] [Indexed: 12/25/2022]
Abstract
PURPOSE This study aimed to investigate the role of 17β-estradiol (E2) in the repair of contusion-induced myoinjury in mice and to identify the underlying molecular mechanisms. METHODS In vivo, contusion protocol was performed for preparing mice myoinjury model, and Injection (i.p.) of 17β-estradiol (E2) or estrogen receptor antagonist ICI 182,780, or ovariectomy (OVX), was used to alter estrogen level of animal models. In vitro, C2C12 myoblasts were treated with H2O2 (oxidative stress inducer), SIRT1 inhibitor EX527, or aromatase inhibitor anastrozole. Serum E2 level was assessed by enzyme-linked immunosorbent assay (ELISA). Muscle damage repair was evaluated by H&E staining and the activities of serum creatine kinase (CK) and lactate dehydrogenase (LDH). The oxidative stress was estimated by the levels of catalase (CAT), superoxide dismutase (SOD), and malondialdehyde (MDA). Western blot was performed to measure the protein expressions of SIRT1, PGC-1α, Nrf2, and HO-1. RESULTS We observed the elevated serum E2 levels and the upregulated oxidative stress in damaged muscle in female mice after contusion-induction. The E2 administration in vivo alleviated contusion-induced myoinjury in OVX mice by reducing CK and LDH activities, suppressing oxidative stress, and enhancing the expression levels of SIRT1, PGC-1α, Nrf2, and HO-1. These effects were inhibited by treatment with an ERα/β antagonist. Moreover, EX527 or anastrozole treatment exacerbated H2O2-induced growth inhibition and oxidative stress, and expression downregulation of SIRT1, PGC-1α, Nrf2, and HO-1 in C2C12 cells in vitro. CONCLUSION Our results suggest that E2 is a positive intervention factor for muscle repair followed contusion-induced myoinjury, through its effects on suppressing oxidative stress via activating the SIRT1/PGC-1α/Nrf2 pathway.
Collapse
Affiliation(s)
- Xu Tian
- School of Kinesiology, Shanghai University of Sport, 188 Hengren Road, Yangpu District, Shanghai, China
| | - Zelin Gao
- School of Kinesiology, Shanghai University of Sport, 188 Hengren Road, Yangpu District, Shanghai, China
| | - Danyang Yin
- School of Kinesiology, Shanghai University of Sport, 188 Hengren Road, Yangpu District, Shanghai, China
| | - Yi Hu
- School of Kinesiology, Shanghai University of Sport, 188 Hengren Road, Yangpu District, Shanghai, China
| | - Biqing Fang
- School of Kinesiology, Shanghai University of Sport, 188 Hengren Road, Yangpu District, Shanghai, China
| | - Cong Li
- School of Kinesiology, Shanghai University of Sport, 188 Hengren Road, Yangpu District, Shanghai, China
| | - Shujie Lou
- School of Kinesiology, Shanghai University of Sport, 188 Hengren Road, Yangpu District, Shanghai, China
| | - Zhijian Rao
- College of Physical Education, Shanghai Normal University, Shanghai, China
| | - Rengfei Shi
- School of Kinesiology, Shanghai University of Sport, 188 Hengren Road, Yangpu District, Shanghai, China.
| |
Collapse
|
5
|
Malovan G, Hierzberger B, Suraci S, Schaefer M, Santos K, Jha S, Macheroux P. The emerging role of dipeptidyl peptidase 3 in pathophysiology. FEBS J 2022; 290:2246-2262. [PMID: 35278345 DOI: 10.1111/febs.16429] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 02/25/2022] [Accepted: 03/10/2022] [Indexed: 12/17/2022]
Abstract
Dipeptidyl peptidase 3 (DPP3), a zinc-dependent aminopeptidase, is a highly conserved enzyme among higher animals. The enzyme cleaves dipeptides from the N-terminus of tetra- to decapeptides, thereby taking part in activation as well as degradation of signalling peptides critical in physiological and pathological processes such as blood pressure regulation, nociception, inflammation and cancer. Besides its catalytic activity, DPP3 moonlights as a regulator of the cellular oxidative stress response pathway, e.g., the Keap1-Nrf2 mediated antioxidative response. The enzyme is also recognized as a key modulator of the renin-angiotensin system. Recently, DPP3 has been attracting growing attention within the scientific community, which has significantly augmented our knowledge of its physiological relevance. Herein, we review recent advances in our understanding of the structure and catalytic activity of DPP3, with a focus on attributing its molecular architecture and catalytic mechanism to its wide-ranging biological functions. We further highlight recent intriguing reports that implicate a broader role for DPP3 as a valuable biomarker in cardiovascular and renal pathologies and furthermore discuss its potential as a promising drug target.
Collapse
Affiliation(s)
- Grazia Malovan
- Institute of Biochemistry, Graz University of Technology, Austria
| | | | - Samuele Suraci
- Department of Experimental and Clinical Medicine, University of Florence, Italy
| | - Maximilian Schaefer
- Institute of Pharmacy, Freie Universität Berlin, Germany.,4TEEN4 Pharmaceuticals GmbH, Hennigsdorf, Germany.,Department of Biology, ETH Zurich, Switzerland
| | | | - Shalinee Jha
- Institute of Biochemistry, Graz University of Technology, Austria
| | - Peter Macheroux
- Institute of Biochemistry, Graz University of Technology, Austria
| |
Collapse
|
6
|
Jha S, Taschler U, Domenig O, Poglitsch M, Bourgeois B, Pollheimer M, Pusch LM, Malovan G, Frank S, Madl T, Gruber K, Zimmermann R, Macheroux P. Dipeptidyl peptidase 3 modulates the renin-angiotensin system in mice. J Biol Chem 2020; 295:13711-13723. [PMID: 32546481 PMCID: PMC7535908 DOI: 10.1074/jbc.ra120.014183] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 06/12/2020] [Indexed: 12/12/2022] Open
Abstract
Dipeptidyl peptidase 3 (DPP3) is a zinc-dependent hydrolase involved in degrading oligopeptides with 4-12 amino acid residues. It has been associated with several pathophysiological processes, including blood pressure regulation, pain signaling, and cancer cell defense against oxidative stress. However, the physiological substrates and the cellular pathways that are potentially targeted by DPP3 to mediate these effects remain unknown. Here, we show that global DPP3 deficiency in mice (DPP3-/-) affects the renin-angiotensin system (RAS). LC-MS-based profiling of circulating angiotensin peptides revealed elevated levels of angiotensin II, III, IV, and 1-5 in DPP3-/- mice, whereas blood pressure, renin activity, and aldosterone levels remained unchanged. Activity assays using the purified enzyme confirmed that angiotensin peptides are substrates for DPP3. Aberrant angiotensin signaling was associated with substantially higher water intake and increased renal reactive oxygen species formation in the kidneys of DPP3-/- mice. The metabolic changes and altered angiotensin levels observed in male DPP3-/- mice were either absent or attenuated in female DPP3-/- mice, indicating sex-specific differences. Taken together, our observations suggest that DPP3 regulates the RAS pathway and water homeostasis by degrading circulating angiotensin peptides.
Collapse
Affiliation(s)
- Shalinee Jha
- Institute of Biochemistry, Graz University of Technology, NAWI Graz, Graz, Austria
| | - Ulrike Taschler
- Institute of Molecular Biosciences, University of Graz, NAWI Graz, Graz, Austria
| | | | | | - Benjamin Bourgeois
- Gottfried Schatz Research Center, Division of Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria
| | - Marion Pollheimer
- Diagnostic & Research Institute of Pathology, Medical University of Graz, Graz, Austria
| | - Lisa M Pusch
- Institute of Molecular Biosciences, University of Graz, NAWI Graz, Graz, Austria
| | - Grazia Malovan
- Institute of Biochemistry, Graz University of Technology, NAWI Graz, Graz, Austria
| | - Saša Frank
- Gottfried Schatz Research Center, Division of Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria
| | - Tobias Madl
- Gottfried Schatz Research Center, Division of Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria; BioTechMed Graz, Graz, Austria
| | - Karl Gruber
- Institute of Molecular Biosciences, University of Graz, NAWI Graz, Graz, Austria
| | - Robert Zimmermann
- Institute of Molecular Biosciences, University of Graz, NAWI Graz, Graz, Austria; BioTechMed Graz, Graz, Austria
| | - Peter Macheroux
- Institute of Biochemistry, Graz University of Technology, NAWI Graz, Graz, Austria.
| |
Collapse
|
7
|
The oxygen concentration in cultures modulates protein expression and enzymatic antioxidant responses in Metarhizium lepidiotae conidia. Fungal Biol 2018; 122:487-496. [DOI: 10.1016/j.funbio.2017.10.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 10/29/2017] [Accepted: 10/31/2017] [Indexed: 11/21/2022]
|
8
|
Per S, Kose M, Ozdemir A, Pandir D. Hepatoprotective effects of capping protein gelsolin against hyperoxia-induced hepatotoxicity, oxidative stress and DNA damage in neonatal rats. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2018; 58:189-195. [PMID: 29408761 DOI: 10.1016/j.etap.2018.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 01/15/2018] [Accepted: 01/18/2018] [Indexed: 06/07/2023]
Abstract
Tissues and organs get exposed to high oxygen (O2) supply in hyperoxia conditions. The goal of this research was to investigate the protective effect of actin binding protein gelsolin on hyperoxia-induced hepatotoxicity through histopathology and measurement of oxidative stress parameters and DNA damage in a neonatal Wistar albino rats. The pups were randomly separated to four equal groups such as: normoxia control group (NC), normoxia plus gelsolin group (NG, 10 ng/kg bw/day gelsolin), hyperoxia (≥85% O2) group (HC), hyperoxia plus gelsolin group (HG, ≥85% O2; 10 ng/kg bw/day gelsolin). Histopathological changes of pups in hyperoxia condition were revealed in the form of severe leukocyte infiltration, vascular congestion, necrosis, vacuolar degeneration, binucleated hepatocytes and hemorrhage in the liver tissue. SOD, CAT, GPx and GST activities decreased and MDA level increased in the hyperoxia-induced group in liver tissue (P < 0.05). Tail DNA%, tail length and moment indicating DNA damage statistically increased in hyperoxia treatment groups when compared to controls. Treatment of rats with hyperoxia plus gelsolin prevented hyperoxia-induced changes in tissue structure, antioxidant enzyme activities and MDA level, mean tail DNA% and length. Based on these findings, gelsolin restored these changing to near normal levels but it does not protect completely in the hyperoxia conditions.
Collapse
Affiliation(s)
- Sedat Per
- Department of Biology, Bozok University, Yozgat, Turkey.
| | - Mehmet Kose
- Department of Pediatrics, Division of Pediatric Pulmonology Unit, Erciyes University, Kayseri, Turkey
| | - Ahmet Ozdemir
- Department of Pediatrics, Division of Neonatology, Erciyes University, Kayseri, Turkey
| | - Dilek Pandir
- Department of Biology, Bozok University, Yozgat, Turkey
| |
Collapse
|
9
|
Tomin M, Tomić S. Dynamic properties of dipeptidyl peptidase III from Bacteroides thetaiotaomicron and the structural basis for its substrate specificity – a computational study. MOLECULAR BIOSYSTEMS 2017; 13:2407-2417. [PMID: 28971197 DOI: 10.1039/c7mb00310b] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Dynamics and enzyme activity of dipeptidyl peptidase III, wild type and mutants, from the human gut symbiont Bacteroides thetaiotaomicron.
Collapse
Affiliation(s)
- M. Tomin
- Division of Organic Chemistry and Biochemistry
- Rudjer Boskovic Institute
- Croatia
| | - S. Tomić
- Division of Organic Chemistry and Biochemistry
- Rudjer Boskovic Institute
- Croatia
| |
Collapse
|