1
|
Chen B, Wang Y, Dang R, Zhao S, Wei S, Li J, Meng X, Rong R, Jiang P. Elucidating the complexity of radiation-induced brain injury: comprehensive assessment of hippocampal and cortical impacts. J Neurooncol 2025:10.1007/s11060-025-05018-9. [PMID: 40244522 DOI: 10.1007/s11060-025-05018-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Accepted: 03/18/2025] [Indexed: 04/18/2025]
Abstract
PURPOSE Radiation-induced brain injury (RIBI) poses significant clinical challenges, underscoring the limited mechanistic understanding in this field. This study systematically investigates both the genetic and metabolic alterations induced by RIBI and their differential regional impacts across brain structures. METHODS Mice received cranial irradiation with a single 30 Gy X-ray dose. Behavioral assessments, including the open field test (OFT), elevated plus maze test (EPM), and Morris water maze test (MWM), were conducted to evaluate the impact of RIBI on mouse behavior. Hippocampal and cortical tissues were subjected to transcriptomic and metabolomic analyses to identify alterations in gene expression and metabolic profiles. RESULTS Behavioral tests indicated that irradiated mice exhibited significant impairments in exploration behavior, anxiety levels, and memory capabilities compared to controls. Transcriptomic analysis identified 456 and 516 significantly altered genes in the hippocampus and cerebral cortex, respectively. Metabolomic analysis identified 253 and 335 significantly altered metabolites in the hippocampus and cerebral cortex, respectively. Integrated pathway analysis uncovered region-specific alterations, while also highlighting shared perturbations in pathways such as glycerophospholipid metabolism, cAMP signaling, and the TCA cycle, suggesting these pathways as key biological processes affected by RIBI. CONCLUSIONS This study delineates the genetic and metabolic alterations induced by RIBI in the hippocampus and cerebral cortex. Our findings reveal both region-specific and shared characteristics of RIBI, providing a foundation for understanding the differential effects of radiation-induced injury across brain regions.
Collapse
Affiliation(s)
- Beibei Chen
- College of Pharmaceutical Science, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
- Translational Pharmaceutical Laboratory, Jining First People's Hospital, Shandong First Medical University, Jining, 272000, China
| | - Yao Wang
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University, Shandong Academy of Medical Sciences, Jiyan Road 440, Jinan, 250117, China
| | - Ruili Dang
- Translational Pharmaceutical Laboratory, Jining First People's Hospital, Shandong First Medical University, Jining, 272000, China
| | - ShiYuan Zhao
- Translational Pharmaceutical Laboratory, Jining First People's Hospital, Shandong First Medical University, Jining, 272000, China
| | - Shanshan Wei
- Department of Pharmacy, Jining First People's Hospital, Shandong First Medical University, Jining, 272000, China
| | - Jialu Li
- Department of graduate, Jacob school of engineering, University of California San Diego, 9500 Gilman Dr, La Jolla, CA, 92093, USA
| | - Xiangjiao Meng
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University, Shandong Academy of Medical Sciences, Jiyan Road 440, Jinan, 250117, China.
| | - Rong Rong
- College of Pharmaceutical Science, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China.
| | - Pei Jiang
- Translational Pharmaceutical Laboratory, Jining First People's Hospital, Shandong First Medical University, Jining, 272000, China.
- Shandong Provincial Key Medical and Health Laboratory of Neuroinjury and Repair, Jining, 272000, China.
| |
Collapse
|
2
|
Filice M, Caferro A, Gattuso A, Sperone E, Agnisola C, Faggio C, Cerra MC, Imbrogno S. Effects of environmental hypoxia on the goldfish skeletal muscle: Focus on oxidative status and mitochondrial dynamics. JOURNAL OF CONTAMINANT HYDROLOGY 2024; 261:104299. [PMID: 38237486 DOI: 10.1016/j.jconhyd.2024.104299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 01/02/2024] [Accepted: 01/11/2024] [Indexed: 02/13/2024]
Abstract
The skeletal muscle is a highly plastic tissue. Its ability to respond to external stimuli and challenges allows it to face the functional needs of the organism. In the goldfish Carassius auratus, a model of hypoxia resistance, exposure to reduced oxygen is accompanied by an improvement of the swimming performance, relying on a sustained contractile behavior of the skeletal muscle. At the moment, limited information is available on the mechanisms underlying these responses. We here evaluated the effects of short- (4 days) and long- (20 days) term exposure to moderate water hypoxia on the goldfish white skeletal muscle, focusing on oxidative status and mitochondrial dynamics. No differences in lipid peroxidation, measured as 2-thiobarbituric acid-reacting substances (TBARS), and oxidatively modified proteins (OMP) were detected in animals exposed to hypoxia with respect to their normoxic counterparts. Exposure to short-term hypoxia was characterized by an enhanced SOD activity and expression, paralleled by increased levels of Nrf2, a regulator of the antioxidant cell response, and HSP70, a chaperone also acting as a redox sensor. The expression of markers of mitochondrial biogenesis (TFAM) and abundance (VDAC) and of the mtDNA/nDNA ratio was similar under normoxia and under both short- and long-term hypoxia, thus excluding a rearrangement of the mitochondrial apparatus. Only an increase of PGC1α (a transcription factor involved in mitochondrial dynamics) was detected after 20 days of hypoxia. Our results revealed novel aspects of the molecular mechanisms that in the goldfish skeletal muscle may sustain the response to hypoxia, thus contributing to adequate tissue function to organism requirements.
Collapse
Affiliation(s)
- Mariacristina Filice
- Dept. of Biology, Ecology and Earth Sciences, University of Calabria, Rende, Italy
| | - Alessia Caferro
- Dept. of Biology, Ecology and Earth Sciences, University of Calabria, Rende, Italy
| | - Alfonsina Gattuso
- Dept. of Biology, Ecology and Earth Sciences, University of Calabria, Rende, Italy.
| | - Emilio Sperone
- Dept. of Biology, Ecology and Earth Sciences, University of Calabria, Rende, Italy
| | - Claudio Agnisola
- Dept. of Biological Sciences, University of Naples Federico II, Napoli, Italy
| | - Caterina Faggio
- Dept. of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy; Dept. of Ecosustainable Marine Biotechnology, Stazione Zoologica Anton Dohrn, Naples, Italy.
| | - Maria Carmela Cerra
- Dept. of Biology, Ecology and Earth Sciences, University of Calabria, Rende, Italy
| | - Sandra Imbrogno
- Dept. of Biology, Ecology and Earth Sciences, University of Calabria, Rende, Italy
| |
Collapse
|
3
|
Sukhovskaya IV, Kantserova NP, Lysenko LA, Morozov AA. Taxifolin Modulates Transcriptomic Response to Heat Stress in Rainbow Trout, Oncorhynchus mykiss. Animals (Basel) 2022; 12:ani12101321. [PMID: 35625167 PMCID: PMC9137817 DOI: 10.3390/ani12101321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/18/2022] [Accepted: 05/20/2022] [Indexed: 12/10/2022] Open
Abstract
Taxifolin is a natural flavonoid known for its antioxidant, anti-inflammatory, and antiproliferative effects on animals. In this work, we have studied the effect of this compound on rainbow trout, Oncorhynchus mykiss, a major object of aquaculture, under slowly increasing ambient temperature and Gyrodactylus flatworm infection. Transcriptomic profiling of liver samples performed by using the Illumina HiSeq 2500 sequencing platform shows that a combined taxifolin/heat treatment, unlike heat treatment alone, downregulates the production of isopentenyl diphosphate, likely affecting the production of cholesterol and other sterols. Taxifolin treatment also modulates multiple apoptosis regulators and affects the expression of HSPs in response to increasing temperature. On the other hand, the expression of antioxidant enzymes in response to heat is not significantly affected by taxifolin. As for the Gyrodactylus infection, the parasite load is not affected by taxifolin treatment, although it was lower in the high-temperature group. Parasite load also did not induce a statistically significant transcriptomic response within the no heat/no taxifolin group.
Collapse
Affiliation(s)
- Irina V. Sukhovskaya
- Institute of Biology of the Karelian Research Centre of the Russian Academy of Sciences (IB KarRC RAS), 11 Pushkinskaya Street, 185910 Petrozavodsk, Russia; (I.V.S.); (L.A.L.)
| | - Nadezhda P. Kantserova
- Institute of Biology of the Karelian Research Centre of the Russian Academy of Sciences (IB KarRC RAS), 11 Pushkinskaya Street, 185910 Petrozavodsk, Russia; (I.V.S.); (L.A.L.)
- Correspondence:
| | - Liudmila A. Lysenko
- Institute of Biology of the Karelian Research Centre of the Russian Academy of Sciences (IB KarRC RAS), 11 Pushkinskaya Street, 185910 Petrozavodsk, Russia; (I.V.S.); (L.A.L.)
| | - Alexey A. Morozov
- Limnological Institute of the Siberian Branch of the Russian Academy of Sciences (LIN SB RAS), 3 Ulan-Batorskaya Street, 664033 Irkutsk, Russia;
| |
Collapse
|
4
|
Bowen L, von Biela VR, McCormick SD, Regish AM, Waters SC, Durbin-Johnson B, Britton M, Settles ML, Donnelly DS, Laske SM, Carey MP, Brown RJ, Zimmerman CE. Transcriptomic response to elevated water temperatures in adult migrating Yukon River Chinook salmon ( Oncorhynchus tshawytscha). CONSERVATION PHYSIOLOGY 2020; 8:coaa084. [PMID: 34512988 PMCID: PMC7486460 DOI: 10.1093/conphys/coaa084] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 07/01/2020] [Accepted: 08/25/2020] [Indexed: 06/01/2023]
Abstract
Chinook salmon (Oncorhynchus tshawytscha) declines are widespread and may be attributed, at least in part, to warming river temperatures. Water temperatures in the Yukon River and tributaries often exceed 18°C, a threshold commonly associated with heat stress and elevated mortality in Pacific salmon. Untangling the complex web of direct and indirect physiological effects of heat stress on salmon is difficult in a natural setting with innumerable system challenges but is necessary to increase our understanding of both lethal and sublethal impacts of heat stress on populations. The goal of this study was to characterize the cellular stress response in multiple Chinook salmon tissues after acute elevated temperature challenges. We conducted a controlled 4-hour temperature exposure (control, 18°C and 21°C) experiment on the bank of the Yukon River followed by gene expression (GE) profiling using a 3'-Tag-RNA-Seq protocol. The full transcriptome was analysed for 22 Chinook salmon in muscle, gill and liver tissue. Both the 21°C and 18°C treatments induced greater activity in genes associated with protein folding (e.g. HSP70, HSP90 mRNA) processes in all tissues. Global GE patterns indicate that transcriptomic responses to heat stress were highly tissue-specific, underscoring the importance of analyzing multiple tissues for determination of physiological effect. Primary superclusters (i.e. groupings of loosely related terms) of altered biological processes were identified in each tissue type, including regulation of DNA damage response (gill), regulation by host of viral transcription (liver) and regulation of the force of heart contraction (muscle) in the 21°C treatment. This study provides insight into mechanisms potentially affecting adult Chinook salmon as they encounter warm water during their spawning migration in the Yukon River and suggests that both basic and more specialized cellular functions may be disrupted.
Collapse
Affiliation(s)
- Lizabeth Bowen
- U.S. Geological Survey, Western Ecological Research Center, One Shields Avenue, Davis, CA, 95616, USA
| | - Vanessa R von Biela
- U.S. Geological Survey, Alaska Science Center, 4210 University Drive, Anchorage, AK, 99508, USA
| | - Stephen D McCormick
- U.S. Geological Survey, Leetown Science Center, Conte Anadromous Fish Research Laboratory, 1 Migratory Way, Turner Falls, Massachusetts, 01376, USA
- Department of Biology, University of Massachusetts, Amherst, MA, 01003, USA
| | - Amy M Regish
- U.S. Geological Survey, Leetown Science Center, Conte Anadromous Fish Research Laboratory, 1 Migratory Way, Turner Falls, Massachusetts, 01376, USA
| | - Shannon C Waters
- U.S. Geological Survey, Western Ecological Research Center, One Shields Avenue, Davis, CA, 95616, USA
| | - Blythe Durbin-Johnson
- University of California, Genome Center and Bioinformatics Core Facility, One Shields Avenue, Davis, CA, 95616, USA
| | - Monica Britton
- University of California, Genome Center and Bioinformatics Core Facility, One Shields Avenue, Davis, CA, 95616, USA
| | - Matthew L Settles
- University of California, Genome Center and Bioinformatics Core Facility, One Shields Avenue, Davis, CA, 95616, USA
| | - Daniel S Donnelly
- U.S. Geological Survey, Alaska Science Center, 4210 University Drive, Anchorage, AK, 99508, USA
| | - Sarah M Laske
- U.S. Geological Survey, Alaska Science Center, 4210 University Drive, Anchorage, AK, 99508, USA
| | - Michael P Carey
- U.S. Geological Survey, Alaska Science Center, 4210 University Drive, Anchorage, AK, 99508, USA
| | - Randy J Brown
- U.S. Fish and Wildlife Service, 101 12 Avenue, Room 110, Fairbanks, AK, 99701, USA
| | - Christian E Zimmerman
- U.S. Geological Survey, Alaska Science Center, 4210 University Drive, Anchorage, AK, 99508, USA
| |
Collapse
|
5
|
Mills MG, Ramsden R, Ma EY, Corrales J, Kristofco LA, Steele WB, Saari GN, Melnikov F, Kostal J, Kavanagh TJ, Zimmerman JB, Voutchkova-Kostal AM, Brooks BW, Coish P, Anastas PT, Gallagher E. CRISPR-Generated Nrf2a Loss- and Gain-of-Function Mutants Facilitate Mechanistic Analysis of Chemical Oxidative Stress-Mediated Toxicity in Zebrafish. Chem Res Toxicol 2020; 33:426-435. [PMID: 31858786 PMCID: PMC7749997 DOI: 10.1021/acs.chemrestox.9b00346] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The transcription factor Nrf2a induces a cellular antioxidant response and provides protection against chemical-induced oxidative stress, as well as playing a critical role in development and disease. Zebrafish are a powerful model to study the role of Nrf2a in these processes but have been limited by reliance on transient gene knockdown techniques or mutants with only partial functional alteration. We developed several lines of zebrafish carrying different null (loss of function, LOF) or hyperactive (gain of function, GOF) mutations to facilitate our understanding of the Nrf2a pathway in protecting against oxidative stress. The mutants confirmed Nrf2a dependence for induction of the antioxidant genes gclc, gstp, prdx1, and gpx1a and identified a role for Nrf2a in the baseline expression of these genes, as well as for sod1. Specifically, the 4-fold induction of gstp by tert-butyl hydroperoxide (tBHP) in wild type fish was abolished in LOF mutants. In addition, baseline gstp expression in GOF mutants increased by 12.6-fold and in LOF mutants was 0.8-fold relative to wild type. Nrf2a LOF mutants showed increased sensitivity to the acute toxicity of cumene hydroperoxide (CHP) and tBHP throughout the first 4 days of development. Conversely, GOF mutants were less sensitive to CHP toxicity during the first 4 days of development and were protected against the toxicity of both hydroperoxides after 4 dpf. Neither gain nor loss of Nrf2a modulated the toxicity of R-(-)-carvone (CAR), despite the ability of this compound to potently induce Nrf2a-dependent antioxidant genes. Similar to other species, GOF zebrafish mutants exhibited significant growth and survival defects. In summary, these new genetic tools can be used to facilitate the identification of downstream gene targets of Nrf2a, better define the role of Nrf2a in the toxicity of environmental chemicals, and further the study of diseases involving altered Nrf2a function.
Collapse
Affiliation(s)
- Margaret G. Mills
- Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, 4225 Roosevelt Way NE, Seattle, Washington 98105, United States
| | - Richard Ramsden
- Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, 4225 Roosevelt Way NE, Seattle, Washington 98105, United States
| | - Eva Y. Ma
- Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, 4225 Roosevelt Way NE, Seattle, Washington 98105, United States
| | - Jone Corrales
- Department of Environmental Sciences, Baylor University, Baylor Sciences Building, One Bear Place #97266, Waco Texas 76798, United States
| | - Lauren A. Kristofco
- Department of Environmental Sciences, Baylor University, Baylor Sciences Building, One Bear Place #97266, Waco Texas 76798, United States
| | - W. Baylor Steele
- Department of Environmental Sciences, Baylor University, Baylor Sciences Building, One Bear Place #97266, Waco Texas 76798, United States
| | - Gavin N. Saari
- Department of Environmental Sciences, Baylor University, Baylor Sciences Building, One Bear Place #97266, Waco Texas 76798, United States
| | - Fjodor Melnikov
- School of Forestry and Environmental Science, Yale University, 195 Prospect St., New Haven, Connecticut 06511, United States
| | - Jakub Kostal
- Department of Chemistry, The George Washington University, Science & Engineering Hall, Suite 4000, 800 22nd St NW, Washington, DC 20052, United States
| | - Terrance J. Kavanagh
- Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, 4225 Roosevelt Way NE, Seattle, Washington 98105, United States
| | - Julie B. Zimmerman
- School of Forestry and Environmental Science, Yale University, 195 Prospect St., New Haven, Connecticut 06511, United States
- Department of Chemical and Environmental Engineering, Yale University, PO Box 208292, New Haven, Connecticut 06520, United States
| | - Adelina M. Voutchkova-Kostal
- Department of Chemistry, The George Washington University, Science & Engineering Hall, Suite 4000, 800 22nd St NW, Washington, DC 20052, United States
| | - Bryan W. Brooks
- Department of Environmental Sciences, Baylor University, Baylor Sciences Building, One Bear Place #97266, Waco Texas 76798, United States
| | - Philip Coish
- School of Forestry and Environmental Science, Yale University, 195 Prospect St., New Haven, Connecticut 06511, United States
| | - Paul T. Anastas
- School of Forestry and Environmental Science, Yale University, 195 Prospect St., New Haven, Connecticut 06511, United States
- School of Public Health, Yale University, PO Box 208034, New Haven, Connecticut 06520, United States
| | - Evan Gallagher
- Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, 4225 Roosevelt Way NE, Seattle, Washington 98105, United States
| |
Collapse
|
6
|
Zhou B, Zhang X, Wang G, Barbour KW, Berger FG, Wang Q. Drug screening assay based on the interaction of intact Keap1 and Nrf2 proteins in cancer cells. Bioorg Med Chem 2019; 27:92-99. [PMID: 30473361 DOI: 10.1016/j.bmc.2018.11.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 10/29/2018] [Accepted: 11/13/2018] [Indexed: 12/15/2022]
Abstract
BACKGROUND The Nrf2-Keap1 interaction is the major regulatory pathway for cytoprotective responses against oxidative and electrophilic stresses. Keap1, a substrate protein of a Cul3-dependent E3 ubiquitin ligase complex, is a negative regulator of Nrf2. The use of chemicals to regulate the interaction between Keap1 and Nrf2 has been proposed as a strategy for the chemoprevention of degenerative diseases and cancers. RESULTS The interactions between Keap1 and Nrf2 in vitro and in vivo were investigated using fluorescence resonance energy transfer (FRET) and bimolecular fluorescence complementation (BiFC) strategies in our study. Nrf2 with its N-terminal fused to eGFP and Keap1 with its C-terminal fused to mCherry were expressed and purified in vitro. When purified eGFP-Nrf2 and Keap1-mChrry proteins were mixed together, a strong FRET signal could be detected, indicating an efficient energy transfer from eGFP to mCherry. Moreover, the FRET was detected in vivo using confocal microscopy in colon cancer HCT-116 cells that were co-transfected with eGFP-Nrf2 and Keap1-mCherry. Finally, using an eGFP BiFC approach, the Keap1-Nrf2 interaction was also detected in MCF7 cells by transfecting eGFP N-terminal fused to Nrf2 (eN158-Nrf2) and eGFP C-terminal fused to Keap1 (eC159-Keap1). Using the BiFC and FRET systems, we demonstrated that the prototypical Nrf2-activiting compound tBHQ and the antitumor drug F-dUrd might interfere with the intracellular interaction between Keap1 and Nrf2 whereas the 5-Fu have little role in activating the protective response of Nrf2 pathway in cancer cells. CONCLUSIONS By analyzing the perturbation of the energy transfer between the donor and acceptor fluorophores and the bimolecular fluorescence complementation of eGFP, we can screen potential inhibitors for the interaction between Keap1 and Nrf2.
Collapse
Affiliation(s)
- Bo Zhou
- College of Life Science, Northeast Forestry University, Harbin, China; Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, USA
| | - Xiaolei Zhang
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, USA
| | - Guiren Wang
- Biomedical Engineering Program and Mechanical Engineering Department, University of South Carolina, Columbia, SC, USA.
| | - Karen W Barbour
- Center for Colon Cancer Research, University of South Carolina, Columbia, SC, USA.
| | - Franklin G Berger
- Center for Colon Cancer Research, University of South Carolina, Columbia, SC, USA.
| | - Qian Wang
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, USA.
| |
Collapse
|
7
|
Raghunath A, Nagarajan R, Sundarraj K, Panneerselvam L, Perumal E. Genome-wide identification and analysis of Nrf2 binding sites - Antioxidant response elements in zebrafish. Toxicol Appl Pharmacol 2018; 360:236-248. [PMID: 30243843 DOI: 10.1016/j.taap.2018.09.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Revised: 09/08/2018] [Accepted: 09/13/2018] [Indexed: 12/30/2022]
Abstract
In the post-genomic era, deciphering the Nrf2 binding sites - antioxidant response elements (AREs) is an essential task that underlies and governs the Keap1-Nrf2-ARE pathway - a cell survival response pathway to environmental stresses in the vertebrate model system. AREs regulate the transcription of a repertoire of phase II detoxifying and/or oxidative-stress responsive genes, offering protection against toxic chemicals, carcinogens, and xenobiotics. In order to identify and analyze AREs in zebrafish, a pattern search algorithm was developed to identify AREs and computational tools available online were utilized to analyze the identified AREs in zebrafish. This study identified the AREs within 30 kb upstream from the transcription start site of antioxidant genes and mitochondrial genes. We report for the first time the AREs of all the known protein coding genes in the zebrafish genome. Western blotting, RT2 profiler array PCR, and qRT-PCR were performed to test whether AREs influence the Nrf2 target genes expression in the zebrafish larvae using sulforaphane. This study reveals unique AREs that have not been previously reported in the cytoprotective genes. Nine TGAG/CNNNTC and six TGAG/CNNNGC AREs were observed significantly. Our findings suggest that AREs drive the dynamic transcriptional events of Nrf2 target genes in the zebrafish larvae on exposure to sulforaphane. The identified abundant putative AREs will define the Keap1-Nrf2-ARE network and elucidate the precise regulation of Nrf2-ARE pathway in not only diseases but also in embryonic development, inflammation, and aerobic respiration. Our results help to understand the dynamic complexity of the Nrf2-ARE system in zebrafish.
Collapse
Affiliation(s)
- Azhwar Raghunath
- Molecular Toxicology Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore 641 046, Tamilnadu, India
| | - Raju Nagarajan
- Department of Biotechnology, Indian Institute of Technology Madras, Chennai 600 036, Tamilnadu, India
| | - Kiruthika Sundarraj
- Molecular Toxicology Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore 641 046, Tamilnadu, India
| | - Lakshmikanthan Panneerselvam
- Molecular Toxicology Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore 641 046, Tamilnadu, India
| | - Ekambaram Perumal
- Molecular Toxicology Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore 641 046, Tamilnadu, India.
| |
Collapse
|
8
|
Wang C, Zhou YL, Zhu QH, Zhou ZK, Gu WB, Liu ZP, Wang LZ, Shu MA. Effects of heat stress on the liver of the Chinese giant salamander Andrias davidianus: Histopathological changes and expression characterization of Nrf2-mediated antioxidant pathway genes. J Therm Biol 2018; 76:115-125. [DOI: 10.1016/j.jtherbio.2018.07.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 06/08/2018] [Accepted: 07/22/2018] [Indexed: 02/06/2023]
|
9
|
Yeh A, Marcinek DJ, Meador JP, Gallagher EP. Effect of contaminants of emerging concern on liver mitochondrial function in Chinook salmon. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2017; 190:21-31. [PMID: 28668760 PMCID: PMC5590637 DOI: 10.1016/j.aquatox.2017.06.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 06/09/2017] [Accepted: 06/14/2017] [Indexed: 05/05/2023]
Abstract
We previously reported the bioaccumulation of contaminants of emerging concern (CECs), including pharmaceuticals and personal care products (PPCPs) and perfluorinated compounds, in field-collected juvenile Chinook salmon from urban estuaries of Puget Sound, WA (Meador et al., 2016). Although the toxicological impacts of CECs on salmon are poorly understood, several of the detected contaminants disrupt mitochondrial function in other species. Here, we sought to determine whether environmental exposures to CECs are associated with hepatic mitochondrial dysfunction in juvenile Chinook. Fish were exposed in the laboratory to a dietary mixture of 16 analytes representative of the predominant CECs detected in our field study. Liver mitochondrial content was reduced in fish exposed to CECs, which occurred concomitantly with a 24-32% reduction in expression of peroxisome proliferator-activated receptor (PPAR) Y coactivator-1a (pgc-1α), a positive transcriptional regulator of mitochondrial biogenesis. The laboratory exposures also caused a 40-70% elevation of state 4 respiration per unit mitochondria, which drove a 29-38% reduction of efficiency of oxidative phosphorylation relative to controls. The mixture-induced elevation of respiration was associated with increased oxidative injury as evidenced by increased mitochondrial protein carbonyls, elevated expression of glutathione (GSH) peroxidase 4 (gpx4), a mitochondrial-associated GSH peroxidase that protects against lipid peroxidation, and reduction of mitochondrial GSH. Juvenile Chinook sampled in a WWTP effluent-impacted estuary with demonstrated releases of CECs showed similar trends toward reduced liver mitochondrial content and elevated respiratory activity per mitochondria (including state 3 and uncoupled respiration). However, respiratory control ratios were greater in fish from the contaminated site relative to fish from a minimally-polluted reference site, which may have been due to differences in the timing of exposure to CECs under laboratory and field conditions. Our results indicate that exposure to CECs can affect both mitochondrial quality and content, and support the analysis of mitochondrial function as an indicator of the sublethal effects of CECs in wild fish.
Collapse
Affiliation(s)
- Andrew Yeh
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA 98105-6099, United States
| | - David J Marcinek
- Department of Radiology, Pathology, and Bioengineering University of Washington Medical School, Seattle, WA 98195, United States
| | - James P Meador
- Environmental and Fisheries Sciences Division, Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, 2725 Montlake Blvd. East, Seattle, WA 98112, United States
| | - Evan P Gallagher
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA 98105-6099, United States.
| |
Collapse
|
10
|
Zhao C, Zhang Y, Liu H, Li P, Zhang H, Cheng G. Fortunellin protects against high fructose-induced diabetic heart injury in mice by suppressing inflammation and oxidative stress via AMPK/Nrf-2 pathway regulation. Biochem Biophys Res Commun 2017. [PMID: 28624452 DOI: 10.1016/j.bbrc.2017.06.076] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Inflammation and oxidative stress contribute to the progression of diabetic cardiomyopathy (DCM). The study was first designed to calculate the role of an anti-inflammatory and anti-oxidant Fortunellin (For) in high fructose-induced cardiac injury in diabetic mice. Fortunellin was found to be none of toxicity to mice and cells using various assays. High fructose was used to induce mice with diabetes. The heart histopathological changes and cardiac function were measured. Fortunellin significantly attenuated the score of histopathological alterations and alleviated heart function, accompanied with reduced inflammation and oxidative stress. The pro-inflammatory cytokines and the expression of p-IκB kinase α (IKKα), p-IκBα, and p-nuclear factor-κB (NF-κB) were dramatically reduced by Fortunellin, while superoxide dismutase (SOD), catalase (CAT), heme oxygenase-1 (HO-1) and p-AMP-activated protein kinase (AMPK) were significantly enhanced. Moreover, in H9C2 cells with nuclear factor erythroid 2-related factor 2 (Nrf2) knock-down abolished the prevention of Fortunellin against cardiac injury, proved by elevated inflammatory response and oxidative stress. Suppression of p-AMPK reduced the level of Nrf2 and HO-1 induced by Fortunellin, eliminating the protective role of Fortunellin. For the first time, our study suggested that Fortunellin protected against fructose-induced inflammation and oxidative stress by enhancing AMPK/Nrf2 pathway in diabetic mice and cardiomyocytes with fructose treatment.
Collapse
Affiliation(s)
- Cuihua Zhao
- Department of Cardiology, Huaihe Hospital of Henan University, Kaifeng 475000, China
| | - Yuan Zhang
- Department of Cardiology, Huaihe Hospital of Henan University, Kaifeng 475000, China
| | - Hongyang Liu
- Department of Cardiology, Huaihe Hospital of Henan University, Kaifeng 475000, China
| | - Peng Li
- Department of Cardiology, Huaihe Hospital of Henan University, Kaifeng 475000, China
| | - Han Zhang
- Department of Cardiology, Huaihe Hospital of Henan University, Kaifeng 475000, China
| | - Guanchang Cheng
- Department of Cardiology, Huaihe Hospital of Henan University, Kaifeng 475000, China.
| |
Collapse
|
11
|
Ge T, Han J, Qi Y, Gu X, Ma L, Zhang C, Naeem S, Huang D. The toxic effects of chlorophenols and associated mechanisms in fish. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2017; 184:78-93. [PMID: 28119128 DOI: 10.1016/j.aquatox.2017.01.005] [Citation(s) in RCA: 101] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2016] [Revised: 01/11/2017] [Accepted: 01/16/2017] [Indexed: 05/15/2023]
Abstract
Chlorophenols (CPs) are ubiquitous contaminants in the environment primarily released from agricultural and industrial wastewater. These compounds are not readily degraded naturally, and easily accumulate in organs, tissues and cells via food chains, further leading to acute and chronic toxic effects on aquatic organisms. Herein, we review the available literature regarding CP toxicity in fish, with special emphasis on the potential toxic mechanisms. CPs cause oxidative stress via generation of reactive oxygen species, induction of lipid peroxidation and/or oxidative DNA damage along with inhibition of antioxidant systems. CPs affect immune system by altering the number of mature B cells and macrophages, while suppressing phagocytosis and down-regulating the expression of immune factors. CPs also disrupt endocrine function by affecting hormone levels, or inducing abnormal gene expression and interference with hormone receptors. CPs at relatively higher concentrations induce apoptosis via mitochondria-mediated pathway, cell death receptor-mediated pathway, and/or DNA damage-mediated pathway. CPs at relatively lower concentrations promote cell proliferation, and foster cancers-prone environment by increasing the rate of point mutations and oxidative DNA lesions. These toxic effects in fish are induced directly by CPs per se or indirectly by their metabolic products. In addition, recent studies on the alteration of DNA methylation by CPs through high-throughput DNA sequencing analysis provide new insights into our understanding of the epigenetic mechanisms underlying CPs toxicity.
Collapse
Affiliation(s)
- Tingting Ge
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Jiangyuan Han
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Yongmei Qi
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Xueyan Gu
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Lin Ma
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Chen Zhang
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Sajid Naeem
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Dejun Huang
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou 730000, China.
| |
Collapse
|
12
|
Mills MG, Gallagher EP. A targeted gene expression platform allows for rapid analysis of chemical-induced antioxidant mRNA expression in zebrafish larvae. PLoS One 2017; 12:e0171025. [PMID: 28212397 PMCID: PMC5315391 DOI: 10.1371/journal.pone.0171025] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2016] [Accepted: 01/13/2017] [Indexed: 12/11/2022] Open
Abstract
Chemical-induced oxidative stress and the biochemical pathways that protect against oxidative damage are of particular interest in the field of toxicology. To rapidly identify oxidative stress-responsive gene expression changes in zebrafish, we developed a targeted panel of antioxidant genes using the Affymetrix QuantiGene Plex (QGP) platform. The genes contained in our panel include eight putative Nrf2 (Nfe2l2a)-dependent antioxidant genes (hmox1a, gstp1, gclc, nqo1, prdx1, gpx1a, sod1, sod2), a stress response gene (hsp70), an inducible DNA damage repair gene (gadd45bb), and three reference genes (actb1, gapdh, hprt1). We tested this platform on larval zebrafish exposed to tert-butyl hydroperoxide (tBHP) and cadmium (Cd), two model oxidative stressors with different modes of action, and compared our results with those obtained using the more common quantitative PCR (qPCR) method. Both methods showed that exposure to tBHP and Cd induced expression of prdx1, gstp1, and hmox1a (2- to 12-fold increase via QGP), indicative of an activated Nrf2 response in larval zebrafish. Both compounds also elicited a general stress response as reflected by elevation of hsp70 and gadd45bb, with Cd being the more potent inducer. Transient changes were observed in sod2 and gpx1a expression, whereas nqo1, an Nrf2-responsive gene in mammalian cells, was minimally affected by either tBHP or Cd chemical exposures. Developmental expression analysis of the target genes by QGP revealed marked upregulation of sod2 between 0-96hpf, and to a lesser extent, of sod1 and gstp1. Once optimized, QGP analysis of these experiments was accomplished more rapidly, using far less tissue, and at lower total costs than qPCR analysis. In summary, the QGP platform as applied to higher-throughput zebrafish studies provides a reasonable cost-effective alternative to qPCR or more comprehensive transcriptomics approaches to rapidly assess the potential for chemicals to elicit oxidative stress as a mechanism of chemical toxicity.
Collapse
Affiliation(s)
- Margaret G. Mills
- Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, Seattle, Washington, United States of America
| | - Evan P. Gallagher
- Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, Seattle, Washington, United States of America
| |
Collapse
|