1
|
Druso JE, MacPherson MB, Chia SB, Elko E, Aboushousha R, Seward DJ, Abdelhamid H, Erickson C, Corteselli E, Tarte M, Peng Z, Bernier D, Zito E, Shoulders MD, Thannickal VJ, Huang S, van der Vliet A, Anathy V, Janssen-Heininger YM. Endoplasmic Reticulum Oxidative Stress Promotes Glutathione-Dependent Oxidation of Collagen-1A1 and Promotes Lung Fibroblast Activation. Am J Respir Cell Mol Biol 2024; 71:589-602. [PMID: 39042020 PMCID: PMC11568475 DOI: 10.1165/rcmb.2023-0379oc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 07/23/2024] [Indexed: 07/24/2024] Open
Abstract
Changes in the oxidative (redox) environment accompany idiopathic pulmonary fibrosis (IPF). S-glutathionylation of reactive protein cysteines is a post-translational event that transduces oxidant signals into biological responses. We recently demonstrated that increases in S-glutathionylation promote pulmonary fibrosis, which was mitigated by the deglutathionylating enzyme glutaredoxin (GLRX). However, the protein targets of S-glutathionylation that promote fibrogenesis remain unknown. In the present study we addressed whether the extracellular matrix is a target for S-glutathionylation. We discovered increases in COL1A1 (collagen 1A1) S-glutathionylation (COL1A1-SSG) in lung tissues from subjects with IPF compared with control subjects in association with increases in ERO1A (endoplasmic reticulum [ER] oxidoreductin 1) and enhanced oxidation of ER-localized PRDX4 (peroxiredoxin 4), reflecting an increased oxidative environment of the ER. Human lung fibroblasts exposed to TGFB1 (transforming growth factor-β1) show increased secretion of COL1A1-SSG. Pharmacologic inhibition of ERO1A diminished the oxidation of PRDX4, attenuated COL1A1-SSG and total COL1A1 concentrations, and dampened fibroblast activation. Absence of Glrx enhanced COL1A1-SSG and overall COL1A1 secretion and promoted the activation of mechanosensing pathways. Remarkably, COL1A1-SSG resulted in marked resistance to collagenase degradation. Compared with COL1, lung fibroblasts plated on COL1-SSG proliferated more rapidly and increased the expression of genes encoding extracellular matrix crosslinking enzymes and genes linked to mechanosensing pathways. Overall, these findings suggest that glutathione-dependent oxidation of COL1A1 occurs in settings of IPF in association with enhanced ER oxidative stress and may promote fibrotic remodeling because of increased resistance to collagenase-mediated degradation and fibroblast activation.
Collapse
Affiliation(s)
- Joseph E. Druso
- Departments of Pathology and Laboratory Medicine, College of Medicine, University of Vermont, Burlington, Vermont
| | - Maximilian B. MacPherson
- Departments of Pathology and Laboratory Medicine, College of Medicine, University of Vermont, Burlington, Vermont
| | - Shi B. Chia
- Departments of Pathology and Laboratory Medicine, College of Medicine, University of Vermont, Burlington, Vermont
| | - Evan Elko
- Departments of Pathology and Laboratory Medicine, College of Medicine, University of Vermont, Burlington, Vermont
| | - Reem Aboushousha
- Departments of Pathology and Laboratory Medicine, College of Medicine, University of Vermont, Burlington, Vermont
| | - David J. Seward
- Departments of Pathology and Laboratory Medicine, College of Medicine, University of Vermont, Burlington, Vermont
| | - Hend Abdelhamid
- Departments of Pathology and Laboratory Medicine, College of Medicine, University of Vermont, Burlington, Vermont
| | - Cuixia Erickson
- Departments of Pathology and Laboratory Medicine, College of Medicine, University of Vermont, Burlington, Vermont
| | - Elizabeth Corteselli
- Departments of Pathology and Laboratory Medicine, College of Medicine, University of Vermont, Burlington, Vermont
| | - Megan Tarte
- Departments of Pathology and Laboratory Medicine, College of Medicine, University of Vermont, Burlington, Vermont
| | - Zhihua Peng
- Departments of Pathology and Laboratory Medicine, College of Medicine, University of Vermont, Burlington, Vermont
| | - Daniel Bernier
- Departments of Pathology and Laboratory Medicine, College of Medicine, University of Vermont, Burlington, Vermont
| | - Ester Zito
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - Matthew D. Shoulders
- Department of Chemistry, Massachusetts Institute of Technology, Boston, Massachusetts
| | | | - Steven Huang
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| | - Albert van der Vliet
- Departments of Pathology and Laboratory Medicine, College of Medicine, University of Vermont, Burlington, Vermont
| | - Vikas Anathy
- Departments of Pathology and Laboratory Medicine, College of Medicine, University of Vermont, Burlington, Vermont
| | | |
Collapse
|
2
|
Xiang Y, Lin D, Zhou Q, Luo H, Zhou Z, Wu S, Xu K, Tang X, Ma P, Cai C, Shen X. Elucidating the Mechanism of Large-Diameter Titanium Dioxide Nanotubes in Protecting Osteoblasts Under Oxidative Stress Environment: The Role of Fibronectin and Albumin Adsorption. Int J Nanomedicine 2024; 19:10639-10659. [PMID: 39464678 PMCID: PMC11512530 DOI: 10.2147/ijn.s488154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 10/17/2024] [Indexed: 10/29/2024] Open
Abstract
Background Large-diameter titanium dioxide nanotubes (TNTs) have shown promise in preserving osteoblast function under oxidative stress (OS) in vitro. However, their ability to enhance osteogenesis in vivo under OS conditions and the underlying mechanisms remain unclear. Purpose This study aimed to evaluate the osteogenic potential of 110 nm TNTs (TNT110) compared to 30 nm TNTs (TNT30) in an aging rat model exhibiting OS, and to investigate the mechanisms involved. Methods Surface properties of TNTs were characterized, and in vitro and in vivo experiments were conducted to assess their osteoinductive effects under OS. Transcriptomic, proteomic analyses, and Western blotting were performed to investigate the protective mechanisms of TNT110 on osteoblasts. Protein adsorption studies focused on the roles of fibronectin (FN) and albumin (BSA) in modulating osteoblast behavior on TNT110. Results In both in vitro and in vivo experiments, TNT110 significantly improved new bone formation and supported osteoblast survival under OS conditions. Subsequent ribonucleic acid sequencing results indicated that TNT110 tended to attenuate inflammatory responses and reactive oxygen species (ROS) expression while promoting endoplasmic reticulum (ER) stress and extracellular matrix receptor interactions, all of which are crucial for osteoblast survival and functionality. Further confirmation indicated that the cellular behavior changes of osteoblasts in the TNT110 group could only occur in the presence of serum. Moreover, proteomic analysis under OS conditions revealed the pivotal roles of FN and BSA in augmenting TNT110's resistance to OS. Surface pretreatment of TNT110 with FN/BSA alone could beneficially influence the early adhesion, spreading, ER activity, and ROS expression of osteoblasts, a trend not observed with TNT30. Conclusion TNT110 effectively protects osteoblast function in the OS microenvironment by modulating protein adsorption, with FN and BSA synergistically enhancing osteogenesis. These findings suggest TNT110's potential for use in implants for elderly patients.
Collapse
Affiliation(s)
- Yun Xiang
- Wenzhou Key Laboratory for the Diagnosis and Prevention of Diabetic Complications, The Third Affiliated Hospital of Wenzhou Medical University (Ruian People’s Hospital), Wenzhou, 325016, People’s Republic of China
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, 325027, People’s Republic of China
| | - Dini Lin
- Wenzhou Key Laboratory for the Diagnosis and Prevention of Diabetic Complications, The Third Affiliated Hospital of Wenzhou Medical University (Ruian People’s Hospital), Wenzhou, 325016, People’s Republic of China
| | - Qiang Zhou
- Wenzhou Key Laboratory for the Diagnosis and Prevention of Diabetic Complications, The Third Affiliated Hospital of Wenzhou Medical University (Ruian People’s Hospital), Wenzhou, 325016, People’s Republic of China
| | - Hongyu Luo
- Wenzhou Key Laboratory for the Diagnosis and Prevention of Diabetic Complications, The Third Affiliated Hospital of Wenzhou Medical University (Ruian People’s Hospital), Wenzhou, 325016, People’s Republic of China
| | - Zixin Zhou
- Wenzhou Key Laboratory for the Diagnosis and Prevention of Diabetic Complications, The Third Affiliated Hospital of Wenzhou Medical University (Ruian People’s Hospital), Wenzhou, 325016, People’s Republic of China
| | - Shuyi Wu
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, 325027, People’s Republic of China
| | - Keyuan Xu
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, 325027, People’s Republic of China
| | - Xiaoting Tang
- Wenzhou Key Laboratory for the Diagnosis and Prevention of Diabetic Complications, The Third Affiliated Hospital of Wenzhou Medical University (Ruian People’s Hospital), Wenzhou, 325016, People’s Republic of China
| | - Pingping Ma
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, 325027, People’s Republic of China
| | - Chunyuan Cai
- Wenzhou Key Laboratory for the Diagnosis and Prevention of Diabetic Complications, The Third Affiliated Hospital of Wenzhou Medical University (Ruian People’s Hospital), Wenzhou, 325016, People’s Republic of China
| | - Xinkun Shen
- Wenzhou Key Laboratory for the Diagnosis and Prevention of Diabetic Complications, The Third Affiliated Hospital of Wenzhou Medical University (Ruian People’s Hospital), Wenzhou, 325016, People’s Republic of China
| |
Collapse
|
3
|
Jokumsen KV, Huhle VH, Hägglund PM, Davies MJ, Gamon LF. Elevated levels of iodide promote peroxidase-mediated protein iodination and inhibit protein chlorination. Free Radic Biol Med 2024; 220:207-221. [PMID: 38663830 DOI: 10.1016/j.freeradbiomed.2024.04.230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 04/18/2024] [Indexed: 05/15/2024]
Abstract
At inflammatory sites, immune cells generate oxidants including H₂O₂. Myeloperoxidase (MPO), released by activated leukocytes employs H₂O₂ and halide/pseudohalides to form hypohalous acids that mediate pathogen killing. Hypochlorous acid (HOCl) is a major species formed. Excessive or misplaced HOCl formation damages host tissues with this linked to multiple inflammatory diseases. Previously (Redox Biology, 2020, 28, 101331) we reported that iodide (I⁻) modulates MPO-mediated protein damage by decreasing HOCl generation with concomitant hypoiodous acid (HOI) formation. HOI may however impact on protein structure, so in this study we examined whether and how HOI, from peroxidase/H₂O₂/I⁻ systems ± Cl⁻, modifies proteins. Experiments employed MPO and lactoperoxidase (LPO) and multiple proteins (serum albumins, anastellin), with both chemical (intact protein and peptide mass mapping, LC-MS) and structural (SDS-PAGE) changes assessed. LC-MS analyses revealed dose-dependent iodination of anastellin and albumins by LPO/H2O2 with increasing I⁻. Incubation of BSA with MPO/H2O2/Cl⁻ revealed modest chlorination (Tyr286, Tyr475, ∼4 %) and Met modification. Lower levels of these species, and extensive iodination at specific Tyr and His residues (>20 % modification with ≥10 μM I⁻) were detected with increasing I⁻. Anastellin dimerization was inhibited by increasing I⁻, but less marked changes were observed with albumins. These data confirm that I⁻ competes with Cl⁻ for MPO and is an efficient HOCl scavenger. These processes decrease protein chlorination and oxidation, but result in extensive iodination. This is consistent with published data on the presence of iodinated Tyr on neutrophil proteins. The biological implications of protein iodination relative to chlorination require further clarification.
Collapse
Affiliation(s)
| | - Valerie H Huhle
- Dept. of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark; Department of Neuropathology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
| | - Per M Hägglund
- Dept. of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Michael J Davies
- Dept. of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Luke F Gamon
- Dept. of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
4
|
He J, Chuang CY, Hawkins CL, Davies MJ, Hägglund P. Exposure to peroxynitrite impacts the ability of anastellin to modulate the structure of extracellular matrix. Free Radic Biol Med 2023; 206:83-93. [PMID: 37385567 DOI: 10.1016/j.freeradbiomed.2023.06.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 06/14/2023] [Accepted: 06/26/2023] [Indexed: 07/01/2023]
Abstract
The extracellular matrix (ECM) of tissues consists of multiple proteins, proteoglycans and glycosaminoglycans that form a 3-dimensional meshwork structure. This ECM is exposed to oxidants including peroxynitrite (ONOO-/ONOOH) generated by activated leukocytes at sites of inflammation. Fibronectin, a major ECM protein targeted by peroxynitrite, self-assembles into fibrils in a cell-dependent process. Fibrillation of fibronectin can also be initiated in a cell-independent process in vitro by anastellin, a recombinant fragment of the first type-III module in fibronectin. Previous studies demonstrated that modification of anastellin by peroxynitrite impairs its fibronectin polymerization activity. We hypothesized that exposure of anastellin to peroxynitrite would also impact on the structure of ECM from cells co-incubated with anastellin, and influence interactions with cell surface receptors. Fibronectin fibrils in the ECM of primary human coronary artery smooth muscle cells exposed to native anastellin are diminished, an effect which is reversed to a significant extent by pre-incubation of anastellin with high (200-fold molar excess) concentrations of peroxynitrite. Treatment with low or moderate levels of peroxynitrite (2-20 fold molar excess) influences interactions between anastellin and heparin polysaccharides, as a model of cell-surface proteoglycan receptors, and modulates anastellin-mediated alterations in fibronectin cell adhesiveness. Based on these observations it is concluded that peroxynitrite has a dose-dependent influence on the ability of anastellin to modulate ECM structure via interactions with fibronectin and other cellular components. These observations may have pathological implications since alterations in fibronectin processing and deposition have been associated with several pathologies, including atherosclerosis.
Collapse
Affiliation(s)
- Jianfei He
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Christine Y Chuang
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Clare L Hawkins
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Michael J Davies
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark.
| | - Per Hägglund
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
5
|
He J, Steffen JH, Thulstrup PW, Pedersen JN, Sauerland MB, Otzen DE, Hawkins CL, Gourdon P, Davies MJ, Hägglund P. Anastellin impacts on the processing of extracellular matrix fibronectin and stimulates release of cytokines from coronary artery smooth muscle cells. Sci Rep 2022; 12:22051. [PMID: 36543832 PMCID: PMC9772232 DOI: 10.1038/s41598-022-26359-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 12/13/2022] [Indexed: 12/24/2022] Open
Abstract
Anastellin, a recombinant protein fragment from the first type III module of fibronectin, mimics a partially unfolded intermediate implicated in the assembly of fibronectin fibrils. Anastellin influences the structure of fibronectin and initiates in vitro fibrillation, yielding "superfibronectin", a polymer with enhanced cell-adhesive properties. This ability is absent in an anastellin double mutant, L37AY40A. Here we demonstrate that both wild-type and L37AY40A anastellin affect fibronectin processing within the extracellular matrix (ECM) of smooth muscle cells. Fibronectin fibrils are diminished in the ECM from cells treated with anastellin, but are partially rescued by supplementation with plasma fibronectin in cell media. Proteomic analyses reveal that anastellin also impacts on the processing of other ECM proteins, with increased collagen and decreased laminin detected in media from cells exposed to wild-type anastellin. Moreover, both anastellin forms stimulate release of inflammatory cytokines, including interleukin 6. At the molecular level, L37AY40A does not exhibit major perturbations of structural features relative to wild-type anastellin, though the mutant showed differences in heparin binding characteristics. These findings indicate that wild-type and L37AY40A anastellin share similar molecular features but elicit slightly different, but partially overlapping, responses in smooth muscle cells resulting in altered secretion of cytokines and proteins involved in ECM processing.
Collapse
Affiliation(s)
- Jianfei He
- grid.5254.60000 0001 0674 042XDepartment of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jonas Hyld Steffen
- grid.5254.60000 0001 0674 042XDepartment of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Peter Waaben Thulstrup
- grid.5254.60000 0001 0674 042XDepartment of Chemistry, University of Copenhagen, Copenhagen, Denmark
| | - Jannik Nedergaard Pedersen
- grid.7048.b0000 0001 1956 2722Interdisciplinary Nanoscience Center (iNANO), Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark ,grid.432104.0Present Address: Arla Foods Ingredients Group P/S, Sønderupvej 26, 6920 Videbæk, Denmark
| | - Max B. Sauerland
- grid.5254.60000 0001 0674 042XDepartment of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Daniel E. Otzen
- grid.7048.b0000 0001 1956 2722Interdisciplinary Nanoscience Center (iNANO), Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Clare L. Hawkins
- grid.5254.60000 0001 0674 042XDepartment of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Pontus Gourdon
- grid.5254.60000 0001 0674 042XDepartment of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Michael J. Davies
- grid.5254.60000 0001 0674 042XDepartment of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Per Hägglund
- grid.5254.60000 0001 0674 042XDepartment of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
6
|
Jiang M, Zhao XM, Jiang ZS, Wang GX, Zhang DW. Protein tyrosine nitration in atherosclerotic endothelial dysfunction. Clin Chim Acta 2022; 529:34-41. [PMID: 35149004 DOI: 10.1016/j.cca.2022.02.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 02/02/2022] [Accepted: 02/07/2022] [Indexed: 11/29/2022]
Abstract
Accumulation of reactive oxygen species (ROS) can induce both protein tyrosine nitration and endothelial dysfunction in atherosclerosis. Endothelial dysfunction refers to impaired endothelium-dependent vasorelaxation that can be triggered by an imbalance in nitric oxide (NO) production and consumption. ROS reacts with NO to generate peroxynitrite, decreasing NO bioavailability. Peroxynitrite also promotes protein tyrosine nitration in vivo that can affect protein structure and function and further damage endothelial function. In this review, we discuss the process of protein tyrosine nitration, increased expression of nitrated proteins in cardiovascular disease and their association with endothelial dysfunction, and the interference of tyrosine nitration with antioxidants and the protective role in endothelial dysfunction. These may lead us to the conception that protein tyrosine nitration may be one of the causes of endothelial dysfunction, and help us gain information about the mechanism of endothelial dysfunction underlying atherosclerosis.
Collapse
Affiliation(s)
- Miao Jiang
- Institute of Cardiovascular Disease, Department of Pathophysiology, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic disease, Postdoctoral Research Station of Basic Medicine, University of South China, Hengyang, 421001, China; Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, Bioengineering Collage of Chongqing University, Chongqing, 400030, China
| | - Xiao-Mei Zhao
- College of Public Health, University of South China, Hengyang, 421001, Hunan, China
| | - Zhi-Sheng Jiang
- Institute of Cardiovascular Disease, Department of Pathophysiology, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic disease, Postdoctoral Research Station of Basic Medicine, University of South China, Hengyang, 421001, China.
| | - Gui-Xue Wang
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, Bioengineering Collage of Chongqing University, Chongqing, 400030, China.
| | - Da-Wei Zhang
- Group on the Molecular and Cell Biology of Lipids, Department of Pediatrics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
7
|
Oxidative distress in aging and age-related diseases: Spatiotemporal dysregulation of protein oxidation and degradation. Biochimie 2021; 195:114-134. [PMID: 34890732 DOI: 10.1016/j.biochi.2021.12.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 12/03/2021] [Accepted: 12/04/2021] [Indexed: 12/31/2022]
Abstract
The concept of oxidative distress had arisen from the assessment of cellular response to high concentrations of reactive species that result from an imbalance between oxidants and antioxidants and cause biomolecular damage. The intracellular distribution and flux of reactive species dramatically change in time and space contributing to the remodeling of the redox landscape and sensitivity of protein residues to oxidants. Here, we hypothesize that compromised spatiotemporal control of generation, conversions, and removal of reactive species underlies protein damage and dysfunction of protein degradation machineries. This leads to the accumulation of oxidatively damaged proteins resulted in an age-dependent decline in the organismal adaptability to oxidative stress. We highlight recent data obtained with the use of various cell cultures, animal models, and patients on irreversible and non-repairable oxidation of key redox-sensitive residues. Multiple reaction products include peptidyl hydroperoxides, alcohols, carbonyls, and carbamoyl moieties as well as Tyr-Tyr, Trp-Tyr, Trp-Trp, Tyr-Cys, His-Lys, His-Arg, and Tyr-Lys cross-links. These lead to protein fragmentation, misfolding, covalent cross-linking, oligomerization, aggregation, and ultimately, causing impaired protein function and turnover. 20S proteasome and autophagy-lysosome pathways are two major types of machinery for the degradation and elimination of oxidatively damaged proteins. Spatiotemporal dysregulation of these pathways under oxidative distress conditions is implicated in aging and age-related disorders such as neurodegenerative and cardiovascular diseases and diabetes. Future investigations in this field allow the discovery of new drugs to target components of dysregulated cell signaling and protein degradation machinery to combat aging and age-related chronic diseases.
Collapse
|