1
|
Christopher CJ, Morgan KH, Tolleson CM, Trudell R, Fernandez-Romero R, Rice L, Abiodun BA, Vickery Z, Jones KA, Woodall BM, Nagy C, Mieczkowski PA, Bowen G, Campagna SR, Ellis JC. Specific Bacterial Taxa and Their Metabolite, DHPS, May Be Linked to Gut Dyshomeostasis in Patients with Alzheimer's Disease, Parkinson's Disease, and Amyotrophic Lateral Sclerosis. Nutrients 2025; 17:1597. [PMID: 40362907 PMCID: PMC12073124 DOI: 10.3390/nu17091597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2025] [Revised: 04/30/2025] [Accepted: 05/05/2025] [Indexed: 05/15/2025] Open
Abstract
Background: Neurodegenerative diseases (NDDs) are multifactorial disorders frequently associated with gut dysbiosis, oxidative stress, and inflammation; however, the pathophysiological mechanisms remain poorly understood. Methods: Using untargeted mass spectrometry-based metabolomics and 16S sequencing of human stool, we investigated bacterial and metabolic dyshomeostasis in the gut microbiome associated with early disease stages across three NDDs-amyotrophic lateral sclerosis (ALS), Alzheimer's disease (AD), Parkinson's disease (PD)-and healthy controls (HC). Results: We discovered a previously unrecognized link between a microbial-derived metabolite with an unknown role in human physiology, 2,3-dihydroxypropane-1-sulfonate (DHPS), and gut dysbiosis in NDDs. DHPS was downregulated in AD, ALS, and PD, while bacteria involved in DHPS metabolism, Eubacterium and Desulfovibrio, were increased in all disease cohorts. Additionally, select taxa within the Clostridia class had strong negative correlations to DHPS, suggesting a potential role in DHPS metabolism. A catabolic product of DHPS is hydrogen sulfide, and when in excess, it is known to promote inflammation, oxidative stress, mitochondrial damage, and gut dysbiosis, known hallmarks of NDDs. Conclusions: These findings suggest that cryptic sulfur metabolism via DHPS is a potential missing link in our current understanding of gut dysbiosis associated with NDD onset and progression. As this was a hypothesis generating study, more work is needed to elucidate the role of DHPS in gut dysbiosis and neurodegenerative diseases.
Collapse
Affiliation(s)
- Courtney Jayde Christopher
- Department of Chemistry, University of Tennessee, Knoxville, TN 37996, USA; (C.J.C.); (B.A.A.); (Z.V.); (B.M.W.); (S.R.C.)
| | | | - Christopher Mahone Tolleson
- The Cole Center for Parkinson’s and Movement Disorders, The University of Tennessee Medical Center, Knoxville, TN 37922, USA (R.T.)
| | - Randall Trudell
- The Cole Center for Parkinson’s and Movement Disorders, The University of Tennessee Medical Center, Knoxville, TN 37922, USA (R.T.)
| | | | - Lexis Rice
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA;
| | - Blessing A. Abiodun
- Department of Chemistry, University of Tennessee, Knoxville, TN 37996, USA; (C.J.C.); (B.A.A.); (Z.V.); (B.M.W.); (S.R.C.)
| | - Zane Vickery
- Department of Chemistry, University of Tennessee, Knoxville, TN 37996, USA; (C.J.C.); (B.A.A.); (Z.V.); (B.M.W.); (S.R.C.)
| | - Katarina A. Jones
- Biological and Small Molecule Mass Spectrometry Core, University of Tennessee, Knoxville, TN 37996, USA;
| | - Brittni Morgan Woodall
- Department of Chemistry, University of Tennessee, Knoxville, TN 37996, USA; (C.J.C.); (B.A.A.); (Z.V.); (B.M.W.); (S.R.C.)
| | - Christopher Nagy
- High Throughput Sequencing Facility, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA;
| | - Piotr Andrzej Mieczkowski
- Department of Genetics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA;
| | - Gregory Bowen
- Integrated Genomics Cores, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA;
| | - Shawn R. Campagna
- Department of Chemistry, University of Tennessee, Knoxville, TN 37996, USA; (C.J.C.); (B.A.A.); (Z.V.); (B.M.W.); (S.R.C.)
- Biological and Small Molecule Mass Spectrometry Core, University of Tennessee, Knoxville, TN 37996, USA;
| | - Joseph Christopher Ellis
- NetEllis, LLC, Knoxville, TN 37934, USA
- Department of Medicine, School of Medicine, University of Tennessee Graduate, Knoxville, TN 37996, USA
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA
| |
Collapse
|
2
|
Al Tahan MA, Marwah MK, Dhaliwal M, Diaz Sanchez L, Shokr H, Kaur M, Ahmad S, Badhan RKS, Dias IHK, Sanchez-Aranguren L. Novel AP39-Loaded Liposomes Sustain the Release of Hydrogen Sulphide, Enhance Blood-Brain Barrier Permeation, and Abrogate Oxidative Stress-Induced Mitochondrial Dysfunction in Brain Cells. Drug Des Devel Ther 2025; 19:2067-2079. [PMID: 40124553 PMCID: PMC11930254 DOI: 10.2147/dddt.s507697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Accepted: 03/08/2025] [Indexed: 03/25/2025] Open
Abstract
Background Neurodegenerative diseases are often linked to oxidative stress (OS), which worsen neuroinflammation and cause neuronal damage. Managing OS with gasotransmitters such as hydrogen sulphide (H2S) is a promising therapeutic approach to protecting brain cells from oxidative damage. AP39, a mitochondria-targeted H2S donor, has shown neuroprotective potential by reducing OS and improving mitochondrial function. However, its clinical application is limited due to poor stability and rapid release, necessitating a drug delivery system to enhance therapeutic efficacy. Purpose This study aimed to develop a novel AP39-loaded liposomal formulation to provide controlled H2S release, facilitate AP39 permeation across the blood-brain barrier (BBB), and assess functional effects in mitigating oxidative stress and preserving mitochondrial function. Methods AP39-loaded unilamellar liposomes were prepared via ethanol injection and characterised for size, polydispersity, and zeta potential. Entrapment efficiency was determined using HPLC, while cytotoxicity was assessed in human vein endothelial (HUVEC) and neuroblastoma (SHSY5Y) cells. Liposomal permeability, AP39 release kinetics, and cellular uptake were evaluated using a microvasculature BBB model. Mitochondrial function under oxidative stress was assessed using a Seahorse XFe24 Analyzer. Results AP39-loaded liposomes had an average size of 135.92 ± 10.05 nm, a zeta potential of 17.35 ± 3.40 mV, and an entrapment efficiency of 84.48% ± 4.7. Cytotoxicity studies showed no adverse effects after 4 h. Cellular uptake of encapsulated AP39 was significantly higher (7.13 ± 0.28 µg) than the free form (5.8 ± 0.31 µg). The BBB model demonstrated sustained AP39 release (7.28 µg/mL vs 6.44 µg/mL for free AP39). Mitochondrial assays confirmed liposomal AP39 preserved H2S antioxidant properties and enhanced oxygen consumption. Conclusion Our novel liposomal formulation encapsulating AP39 improves stability, promotes sustained release, and enhances BBB permeability while preserving antioxidant effects. These findings indicate that liposomal AP39 is a suitable therapeutic approach to further investigate in the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
| | | | | | | | - Hala Shokr
- Pharmacy Division, University of Manchester, Manchester, UK
| | - Manjit Kaur
- School of Health and Care, Coventry University, Coventry, UK
| | - Shakil Ahmad
- Aston Medical School, Aston University, Birmingham, UK
| | | | | | | |
Collapse
|
3
|
Kanemaru E, Ichinose F. Essential role of sulfide oxidation in brain health and neurological disorders. Pharmacol Ther 2025; 266:108787. [PMID: 39719173 PMCID: PMC11806942 DOI: 10.1016/j.pharmthera.2024.108787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 11/21/2024] [Accepted: 12/19/2024] [Indexed: 12/26/2024]
Abstract
Hydrogen sulfide (H2S) is an environmental hazard well known for its neurotoxicity. In mammalian cells, H2S is predominantly generated by transsulfuration pathway enzymes. In addition, H2S produced by gut microbiome significantly contributes to the total sulfide burden in the body. Although low levels of H2S is believed to exert various physiological functions such as neurotransmission and vasomotor control, elevated levels of H2S inhibit the activity of cytochrome c oxidase (i.e., mitochondrial complex IV), thereby impairing oxidative phosphorylation. To protect the electron transport chain from respiratory poisoning by H2S, the compound is actively oxidized to form persulfides and polysulfides by a mitochondrial resident sulfide oxidation pathway. The reaction, catalyzed by sulfide:quinone oxidoreductase (SQOR), is the initial and critical step in sulfide oxidation. The persulfide species are subsequently oxidized to sulfite, thiosulfate, and sulfate by persulfide dioxygenase (ETHE1 or SDO), thiosulfate sulfurtransferase (TST), and sulfite oxidase (SUOX). While SQOR is abundantly expressed in the colon, liver, lung, and skeletal muscle, its expression is notably low in the brains of most mammals. Consequently, the brain's limited capacity to oxidize H2S renders it particularly sensitive to the deleterious effects of H2S accumulation. Impaired sulfide oxidation can lead to fatal encephalopathy, and the overproduction of H2S has been implicated in the developmental delays observed in Down syndrome. Our recent findings indicate that the brain's limited capacity to oxidize sulfide exacerbates its sensitivity to oxygen deprivation. The beneficial effects of sulfide oxidation are likely to be mediated not only by the detoxification of H2S but also by the formation of persulfide, which exerts cytoprotective effects through multiple mechanisms. Therefore, pharmacological agents designed to scavenge H2S and/or enhance persulfide levels may offer therapeutic potential against neurological disorders characterized by impaired or insufficient sulfide oxidation or excessive H2S production.
Collapse
Affiliation(s)
- Eiki Kanemaru
- Anesthesia Center for Critical Care Research, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA.
| | - Fumito Ichinose
- Anesthesia Center for Critical Care Research, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA.
| |
Collapse
|
4
|
Tang SM, Lu GZ, Lei XY, Yang XY, Tang GT, Yu J, Xie ZZ. Sodium thiosulfate: A donor or carrier signaling molecule for hydrogen sulfide? Nitric Oxide 2024; 149:67-74. [PMID: 38897561 DOI: 10.1016/j.niox.2024.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 06/11/2024] [Accepted: 06/15/2024] [Indexed: 06/21/2024]
Abstract
Sodium thiosulfate has been used for decades in the treatment of calciphylaxis and cyanide detoxification, and has recently shown initial therapeutic promise in critical diseases such as neuronal ischemia, diabetes mellitus, heart failure and acute lung injury. However, the precise mechanism of sodium thiosulfate remains incompletely defined and sometimes contradictory. Although sodium thiosulfate has been widely accepted as a donor of hydrogen sulfide (H2S), emerging findings suggest that it is the executive signaling molecule for H2S and that its effects may not be dependent on H2S. This article presents an overview of the current understanding of sodium thiosulfate, including its synthesis, biological characteristics, and clinical applications of sodium thiosulfate, as well as the underlying mechanisms in vivo. We also discussed the interplay of sodium thiosulfate and H2S. Our review highlights sodium thiosulfate as a key player in sulfide signaling with the broad clinical potential for the future.
Collapse
Affiliation(s)
- Si-Miao Tang
- The Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Institute of Pharmacy & Pharmacology, University of South China, Hengyang, Hunan, 421001, China
| | - Guo-Zhong Lu
- 922th Hospital of Hengyang, Hunan, 421001, China
| | - Xiao-Yong Lei
- The Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Institute of Pharmacy & Pharmacology, University of South China, Hengyang, Hunan, 421001, China
| | - Xiao-Yan Yang
- The Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Institute of Pharmacy & Pharmacology, University of South China, Hengyang, Hunan, 421001, China
| | - Guo-Tao Tang
- The Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Institute of Pharmacy & Pharmacology, University of South China, Hengyang, Hunan, 421001, China
| | - Jia Yu
- The Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Institute of Pharmacy & Pharmacology, University of South China, Hengyang, Hunan, 421001, China.
| | - Zhi-Zhong Xie
- The Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Institute of Pharmacy & Pharmacology, University of South China, Hengyang, Hunan, 421001, China.
| |
Collapse
|
5
|
Banydeen R, Lacavalerie MR, Florentin J, Boullanger C, Medhaoui H, Resiere D, Neviere R. Central sleep apnea and exposure to ambient hydrogen sulfide emissions from massive strandings of decomposing sargassum in the Caribbean. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168886. [PMID: 38016560 DOI: 10.1016/j.scitotenv.2023.168886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 11/08/2023] [Accepted: 11/23/2023] [Indexed: 11/30/2023]
Abstract
BACKGROUND Sargassum invasion of Caribbean and American shorelines is a recurring environmental hazard. Potential health effects of long-term chronic exposure to sargassum gaseous emissions, notably hydrogen sulfide (H2S), are overlooked. H2S plays an important role in neurotransmission and is involved in generating and transmitting respiratory rhythm. Central sleep apnea (CSA) has been attributed to the depression of respiratory centers. OBJECTIVE Evaluate the effects of exposure to sargassum-H2S on CSA. METHODS This study, set in the Caribbean, describes the clinical and polysomnographic characteristics of individuals living and/or working in areas impacted by sargassum strandings, in comparison with non-exposed subjects. Environmental exposure was estimated by the closest ground H2S sensor. Multivariate linear regression was applied to analyze CSA changes according to cumulative H2S exposure over time. Effects of air pollution and other sargassum toxic compounds (NH3) on CSA were also controlled. RESULTS Among the 685 study patients, 27 % were living and/or working in sargassum impacted areas. Compared with non-exposed patients, exposed ones had similar sleep apnea syndrome risk factors, but had increased levels of CSA events (expressed as absolute number or % of total sleep apnea). Multivariate regression retained only male gender and mean H2S concentration over a 6-month exposure period as independent predictors of an increase in CSA events. A minimal exposure length of 1 month generated a significant rise in CSA events, with the latter increasing proportionally with a cumulative increase in H2S concentration over time. CONCLUSION This pioneer work highlights a potential effect of sargassum-H2S on the central nervous system, notably on the modulation of the activity of the brain's respiratory control center. These observations, jointly with previous studies from our group, constitute a body of evidence strongly supporting a deleterious effect of sargassum-H2S on the health of individuals chronically exposed to low to moderate concentration levels over time.
Collapse
Affiliation(s)
- Rishika Banydeen
- Department of Toxicology and Critical Care Medicine, University Hospital of Martinique (CHU Martinique), 97261 Fort-de-France, France; Cardiovascular Research Team (UR5_3 PC2E), University of the French West Indies (Université des Antilles), 97200 Fort de France, France
| | - Mickael Rejaudry Lacavalerie
- Cardiovascular Research Team (UR5_3 PC2E), University of the French West Indies (Université des Antilles), 97200 Fort de France, France; Department of Neurophysiology, University Hospital of Martinique (CHU Martinique), 97261 Fort-de-France, France
| | - Jonathan Florentin
- Department of Toxicology and Critical Care Medicine, University Hospital of Martinique (CHU Martinique), 97261 Fort-de-France, France; Cardiovascular Research Team (UR5_3 PC2E), University of the French West Indies (Université des Antilles), 97200 Fort de France, France
| | - Carole Boullanger
- Martinique Observatory of Air Quality (Madininair), 97200 Fort-de-France, France
| | - Hossein Medhaoui
- Department of Toxicology and Critical Care Medicine, University Hospital of Martinique (CHU Martinique), 97261 Fort-de-France, France; Cardiovascular Research Team (UR5_3 PC2E), University of the French West Indies (Université des Antilles), 97200 Fort de France, France
| | - Dabor Resiere
- Department of Toxicology and Critical Care Medicine, University Hospital of Martinique (CHU Martinique), 97261 Fort-de-France, France; Cardiovascular Research Team (UR5_3 PC2E), University of the French West Indies (Université des Antilles), 97200 Fort de France, France
| | - Remi Neviere
- Cardiovascular Research Team (UR5_3 PC2E), University of the French West Indies (Université des Antilles), 97200 Fort de France, France; Department of Neurophysiology, University Hospital of Martinique (CHU Martinique), 97261 Fort-de-France, France.
| |
Collapse
|
6
|
Dey A, Pramanik PK, Dwivedi SKD, Neizer-Ashun F, Kiss T, Ganguly A, Rice H, Mukherjee P, Xu C, Ahmad M, Csiszar A, Bhattacharya R. A role for the cystathionine-β-synthase /H 2S axis in astrocyte dysfunction in the aging brain. Redox Biol 2023; 68:102958. [PMID: 37948927 PMCID: PMC10663824 DOI: 10.1016/j.redox.2023.102958] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 11/03/2023] [Accepted: 11/03/2023] [Indexed: 11/12/2023] Open
Abstract
Astrocytic dysfunction is central to age-related neurodegenerative diseases. However, the mechanisms leading to astrocytic dysfunction are not well understood. We identify that among the diverse cellular constituents of the brain, murine and human astrocytes are enriched in the expression of CBS. Depleting CBS in astrocytes causes mitochondrial dysfunction, increases the production of reactive oxygen species (ROS) and decreases cellular bioenergetics that can be partially rescued by exogenous H2S supplementation or by re-expressing CBS. Conversely, the CBS/H2S axis, associated protein persulfidation and proliferation are decreased in astrocytes upon oxidative stress which can be rescued by exogenous H2S supplementation. Here we reveal that in the aging brain, the CBS/H2S axis is downregulated leading to decreased protein persulfidation, together augmenting oxidative stress. Our findings uncover an important protective role of the CBS/H2S axis in astrocytes that may be disrupted in the aged brain.
Collapse
Affiliation(s)
- Anindya Dey
- Department of Obstetrics and Gynecology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Pijush Kanti Pramanik
- Department of Obstetrics and Gynecology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Shailendra Kumar Dhar Dwivedi
- Department of Obstetrics and Gynecology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA; Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Fiifi Neizer-Ashun
- Department of Cell Biology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Tamas Kiss
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Pediatric Center, Semmelweis University, Budapest, Hungary
| | - Abhrajit Ganguly
- Section of Neonatal-Perinatal Medicine, Department of Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Heather Rice
- Department of Biochemistry & Molecular Biology, Oklahoma Center for Geroscience & Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Priyabrata Mukherjee
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA; Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Chao Xu
- Department of Biostatistics and Epidemiology, Hudson College of Public Health, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Mohiuddin Ahmad
- Department of Cell Biology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Anna Csiszar
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Resham Bhattacharya
- Department of Obstetrics and Gynecology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA; Department of Cell Biology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA.
| |
Collapse
|
7
|
Munteanu C, Iordan DA, Hoteteu M, Popescu C, Postoiu R, Onu I, Onose G. Mechanistic Intimate Insights into the Role of Hydrogen Sulfide in Alzheimer's Disease: A Recent Systematic Review. Int J Mol Sci 2023; 24:15481. [PMID: 37895161 PMCID: PMC10607039 DOI: 10.3390/ijms242015481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 10/15/2023] [Accepted: 10/21/2023] [Indexed: 10/29/2023] Open
Abstract
In the rapidly evolving field of Alzheimer's Disease (AD) research, the intricate role of Hydrogen Sulfide (H2S) has garnered critical attention for its diverse involvement in both pathological substrates and prospective therapeutic paradigms. While conventional pathophysiological models of AD have primarily emphasized the significance of amyloid-beta (Aβ) deposition and tau protein hyperphosphorylation, this targeted systematic review meticulously aggregates and rigorously appraises seminal contributions from the past year elucidating the complex mechanisms of H2S in AD pathogenesis. Current scholarly literature accentuates H2S's dual role, delineating its regulatory functions in critical cellular processes-such as neurotransmission, inflammation, and oxidative stress homeostasis-while concurrently highlighting its disruptive impact on quintessential AD biomarkers. Moreover, this review illuminates the nuanced mechanistic intimate interactions of H2S in cerebrovascular and cardiovascular pathology associated with AD, thereby exploring avant-garde therapeutic modalities, including sulfurous mineral water inhalations and mud therapy. By emphasizing the potential for therapeutic modulation of H2S via both donors and inhibitors, this review accentuates the imperative for future research endeavors to deepen our understanding, thereby potentially advancing novel diagnostic and therapeutic strategies in AD.
Collapse
Affiliation(s)
- Constantin Munteanu
- Faculty of Medical Bioengineering, University of Medicine and Pharmacy “Grigore T. Popa”, 700454 Iași, Romania;
- Teaching Emergency Hospital “Bagdasar-Arseni” (TEHBA), 041915 Bucharest, Romania; (M.H.); (R.P.); (G.O.)
| | - Daniel Andrei Iordan
- Department of Individual Sports and Kinetotherapy, Faculty of Physical Education and Sport, ‘Dunarea de Jos’ University of Galati, 800008 Galati, Romania;
| | - Mihail Hoteteu
- Teaching Emergency Hospital “Bagdasar-Arseni” (TEHBA), 041915 Bucharest, Romania; (M.H.); (R.P.); (G.O.)
| | - Cristina Popescu
- Teaching Emergency Hospital “Bagdasar-Arseni” (TEHBA), 041915 Bucharest, Romania; (M.H.); (R.P.); (G.O.)
- Faculty of Medicine, University of Medicine and Pharmacy “Carol Davila” (UMPCD), 020022 Bucharest, Romania
| | - Ruxandra Postoiu
- Teaching Emergency Hospital “Bagdasar-Arseni” (TEHBA), 041915 Bucharest, Romania; (M.H.); (R.P.); (G.O.)
- Faculty of Medicine, University of Medicine and Pharmacy “Carol Davila” (UMPCD), 020022 Bucharest, Romania
| | - Ilie Onu
- Faculty of Medical Bioengineering, University of Medicine and Pharmacy “Grigore T. Popa”, 700454 Iași, Romania;
| | - Gelu Onose
- Teaching Emergency Hospital “Bagdasar-Arseni” (TEHBA), 041915 Bucharest, Romania; (M.H.); (R.P.); (G.O.)
- Faculty of Medicine, University of Medicine and Pharmacy “Carol Davila” (UMPCD), 020022 Bucharest, Romania
| |
Collapse
|
8
|
Khan F, Qiu H. Amyloid-β: A potential mediator of aging-related vascular pathologies. Vascul Pharmacol 2023; 152:107213. [PMID: 37625763 PMCID: PMC11793904 DOI: 10.1016/j.vph.2023.107213] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/09/2023] [Accepted: 08/21/2023] [Indexed: 08/27/2023]
Abstract
Aging is one of the most promising risk factors for vascular diseases, however, the precise mechanisms mediating aging-related pathologies are not fully understood. Amyloid beta (Aβ), a peptide produced by the proteolytic processing of amyloid precursor protein (APP), is known as a key mediator of brain damage involved in the pathogenesis of Alzheimer's disease (AD). Recently, it was found that the accumulation of Aβ in the vascular wall is linked to a range of aging-related vascular pathologies, indicating a potential role of Aβ in the pathogenesis of aging-associated vascular diseases. In the present review, we have updated the molecular regulation of Aβ in vascular cells and tissues, summarized the relevance of the Aβ deposition with vascular aging and diseases, and the role of Aβ dysregulation in aging-associated vascular pathologies, including the impaired vascular response, endothelial dysfunction, oxidative stress, and inflammation. This review will provide advanced information in understanding aging-related vascular pathologies and a new avenue to explore therapeutic targets.
Collapse
Affiliation(s)
- Fazlullah Khan
- Translational Cardiovascular Research Center, College of Medicine-Phoenix, The University of Arizona, Phoenix 85004, AZ, USA
| | - Hongyu Qiu
- Translational Cardiovascular Research Center, Department of Internal Medicine, College of Medicine-Phoenix, The University of Arizona, Phoenix 85004, AZ, USA.
| |
Collapse
|
9
|
Spalloni A, de Stefano S, Gimenez J, Greco V, Mercuri NB, Chiurchiù V, Longone P. The Ying and Yang of Hydrogen Sulfide as a Paracrine/Autocrine Agent in Neurodegeneration: Focus on Amyotrophic Lateral Sclerosis. Cells 2023; 12:1691. [PMID: 37443723 PMCID: PMC10341301 DOI: 10.3390/cells12131691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/14/2023] [Accepted: 06/20/2023] [Indexed: 07/15/2023] Open
Abstract
Ever since its presence was reported in the brain, the nature and role of hydrogen sulfide (H2S) in the Central Nervous System (CNS) have changed. Consequently, H2S has been elected as the third gas transmitter, along with carbon monoxide and nitric oxide, and a number of studies have focused on its neuromodulatory and protectant functions in physiological conditions. The research on H2S has highlighted its many facets in the periphery and in the CNS, and its role as a double-faced compound, switching from protective to toxic depending on its concentration. In this review, we will focus on the bell-shaped nature of H2S as an angiogenic factor and as a molecule released by glial cells (mainly astrocytes) and non-neuronal cells acting on the surrounding environment (paracrine) or on the releasing cells themselves (autocrine). Finally, we will discuss its role in Amyotrophic Lateral Sclerosis, a paradigm of a neurodegenerative disease.
Collapse
Affiliation(s)
- Alida Spalloni
- Laboratory of Molecular Neurobiology, Experimental Neurosciences, IRCCS Fondazione Santa Lucia, 00179 Rome, Italy; (S.d.S.); (J.G.); (P.L.)
| | - Susanna de Stefano
- Laboratory of Molecular Neurobiology, Experimental Neurosciences, IRCCS Fondazione Santa Lucia, 00179 Rome, Italy; (S.d.S.); (J.G.); (P.L.)
- Department of Systems Medicine, Università di Roma Tor Vergata, 00133 Rome, Italy;
| | - Juliette Gimenez
- Laboratory of Molecular Neurobiology, Experimental Neurosciences, IRCCS Fondazione Santa Lucia, 00179 Rome, Italy; (S.d.S.); (J.G.); (P.L.)
| | - Viviana Greco
- Department of Basic Biotechnological Sciences, Intensivological and Perioperative Clinics, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
- Unity of Chemistry, Biochemistry and Clinical Molecular Biology, Department of Diagnostic and Laboratory Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Nicola B. Mercuri
- Department of Systems Medicine, Università di Roma Tor Vergata, 00133 Rome, Italy;
- Laboratory of Experimental Neurology, Experimental Neurosciences, IRCCS Fondazione Santa Lucia, 00179 Rome, Italy
| | - Valerio Chiurchiù
- Institute of Translational Pharmacology, National Research Council (CNR), 00185 Rome, Italy;
- Laboratory of Resolution of Neuroinflammation, Experimental Neurosciences, IRCCS Fondazione Santa Lucia, 00179 Rome, Italy
| | - Patrizia Longone
- Laboratory of Molecular Neurobiology, Experimental Neurosciences, IRCCS Fondazione Santa Lucia, 00179 Rome, Italy; (S.d.S.); (J.G.); (P.L.)
| |
Collapse
|