1
|
Rojo AI, Buttari B, Cadenas S, Carlos AR, Cuadrado A, Falcão AS, López MG, Georgiev MI, Grochot-Przeczek A, Gumeni S, Jimenez-Villegas J, Horbanczuk JO, Konu O, Lastres-Becker I, Levonen AL, Maksimova V, Michaeloudes C, Mihaylova LV, Mickael ME, Milisav I, Miova B, Rada P, Santos M, Seabra MC, Strac DS, Tenreiro S, Trougakos IP, Dinkova-Kostova AT. Model organisms for investigating the functional involvement of NRF2 in non-communicable diseases. Redox Biol 2025; 79:103464. [PMID: 39709790 PMCID: PMC11733061 DOI: 10.1016/j.redox.2024.103464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 11/26/2024] [Accepted: 12/08/2024] [Indexed: 12/24/2024] Open
Abstract
Non-communicable chronic diseases (NCDs) are most commonly characterized by age-related loss of homeostasis and/or by cumulative exposures to environmental factors, which lead to low-grade sustained generation of reactive oxygen species (ROS), chronic inflammation and metabolic imbalance. Nuclear factor erythroid 2-like 2 (NRF2) is a basic leucine-zipper transcription factor that regulates the cellular redox homeostasis. NRF2 controls the expression of more than 250 human genes that share in their regulatory regions a cis-acting enhancer termed the antioxidant response element (ARE). The products of these genes participate in numerous functions including biotransformation and redox homeostasis, lipid and iron metabolism, inflammation, proteostasis, as well as mitochondrial dynamics and energetics. Thus, it is possible that a single pharmacological NRF2 modulator might mitigate the effect of the main hallmarks of NCDs, including oxidative, proteostatic, inflammatory and/or metabolic stress. Research on model organisms has provided tremendous knowledge of the molecular mechanisms by which NRF2 affects NCDs pathogenesis. This review is a comprehensive summary of the most commonly used model organisms of NCDs in which NRF2 has been genetically or pharmacologically modulated, paving the way for drug development to combat NCDs. We discuss the validity and use of these models and identify future challenges.
Collapse
Affiliation(s)
- Ana I Rojo
- Department of Biochemistry, Medical College, Autonomous University of Madrid (UAM), Madrid, Spain; Instituto de Investigación Sanitaria La Paz (IdiPaz), Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain; Instituto de Investigaciones Biomédicas Sols-Morreale (CSIC-UAM), Madrid, Spain.
| | - Brigitta Buttari
- Department of Cardiovascular, Endocrine-Metabolic Diseases, and Aging, Italian National Institute of Health, 00161, Rome, Italy
| | - Susana Cadenas
- Centro de Biología Molecular Severo Ochoa (CSIC/UAM), Cantoblanco, Madrid, Spain
| | - Ana Rita Carlos
- CE3C-CHANGE, Department of Animal Biology, Faculty of Sciences, University of Lisbon, 1749-016, Lisbon, Portugal
| | - Antonio Cuadrado
- Department of Biochemistry, Medical College, Autonomous University of Madrid (UAM), Madrid, Spain; Instituto de Investigación Sanitaria La Paz (IdiPaz), Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain; Instituto de Investigaciones Biomédicas Sols-Morreale (CSIC-UAM), Madrid, Spain
| | - Ana Sofia Falcão
- iNOVA4Health, NOVA Medical School|Faculdade de Ciências Médicas, NMS|FCM, Universidade NOVA de Lisboa, Lisboa, Portugal
| | - Manuela G López
- Departamento de Farmacología y Terapéutica, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain; Instituto de Investigación Sanitaria La Princesa, Hospital Universitario de la Princesa, Madrid, Spain
| | - Milen I Georgiev
- Department of Plant Cell Biotechnology, Center of Plant Systems Biology and Biotechnology, 4000, Plovdiv, Bulgaria; Laboratory of Metabolomics, Institute of Microbiology, Bulgarian Academy of Sciences, 139 Ruski Blvd., 4000, Plovdiv, Bulgaria
| | - Anna Grochot-Przeczek
- Department of Medical Biotechnology, Faculty of Biochemistry Biophysics and Biotechnology, Jagiellonian University, 30-387, Krakow, Poland
| | - Sentiljana Gumeni
- Department of Cell Biology and Biophysics, Faculty of Biology, National and Kapodistrian University of Athens, Athens, 15784, Greece
| | - José Jimenez-Villegas
- Department of Biochemistry, Medical College, Autonomous University of Madrid (UAM), Madrid, Spain; Instituto de Investigación Sanitaria La Paz (IdiPaz), Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain; Instituto de Investigaciones Biomédicas Sols-Morreale (CSIC-UAM), Madrid, Spain
| | - Jarosław Olav Horbanczuk
- Department of Experimental Genomics, Institute of Genetics and Animal Biotechnology, 36A Postępu, Jastrzębiec, 05-552, Poland
| | - Ozlen Konu
- Department of Molecular Biology and Genetics, Bilkent University, Ankara, Turkey; Department of Neuroscience, Bilkent University, Ankara, Turkey; UNAM-Institute of Materials Science and Nanotechnology, Bilkent University, Ankara, Turkey
| | - Isabel Lastres-Becker
- Department of Biochemistry, Medical College, Autonomous University of Madrid (UAM), Madrid, Spain; Instituto de Investigación Sanitaria La Paz (IdiPaz), Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain; Institute Teófilo Hernando for Drug Discovery, Universidad Autónoma de Madrid, 28029, Madrid, Spain; Instituto de Investigaciones Biomédicas Sols-Morreale (CSIC-UAM), Madrid, Spain
| | - Anna-Liisa Levonen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, P.O. Box 1627, FI-70210, Kuopio, Finland
| | - Viktorija Maksimova
- Department of Applied Pharmacy, Division of Pharmacy, Faculty of Medical Sciences, Goce Delcev University, Stip, Krste Misirkov Str., No. 10-A, P.O. Box 201, 2000, Stip, Macedonia
| | | | - Liliya V Mihaylova
- Department of Plant Cell Biotechnology, Center of Plant Systems Biology and Biotechnology, 4000, Plovdiv, Bulgaria; Laboratory of Metabolomics, Institute of Microbiology, Bulgarian Academy of Sciences, 139 Ruski Blvd., 4000, Plovdiv, Bulgaria
| | - Michel Edwar Mickael
- Department of Experimental Genomics, Institute of Genetics and Animal Biotechnology, 36A Postępu, Jastrzębiec, 05-552, Poland
| | - Irina Milisav
- Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Zaloska 4, 1000, Ljubljana, Slovenia; Laboratory of oxidative stress research, Faculty of Health Sciences, University of Ljubljana, Zdravstvena pot 5, 1000, Ljubljana, Slovenia
| | - Biljana Miova
- Department of Experimental Physiology and Biochemistry, Institute of Biology, Faculty of Natural Sciences and Mathematics, University "St Cyril and Methodius", Skopje, Macedonia
| | - Patricia Rada
- Instituto de Investigaciones Biomédicas Sols-Morreale (IIBM), Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Madrid, Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
| | - Marlene Santos
- REQUIMTE/LAQV, Escola Superior de Saúde (E2S), Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida 400, 4200-072, Porto, Portugal; Molecular Oncology & Viral Pathology, IPO-Porto Research Center (CI-IPOP), Portuguese Institute of Oncology, 4200-072, Porto, Portugal
| | - Miguel C Seabra
- iNOVA4Health, NOVA Medical School|Faculdade de Ciências Médicas, NMS|FCM, Universidade NOVA de Lisboa, Lisboa, Portugal
| | - Dubravka Svob Strac
- Laboratory for Molecular Neuropsychiatry, Division of Molecular Medicine, Ruder Boskovic Institute, 10 000, Zagreb, Croatia
| | - Sandra Tenreiro
- iNOVA4Health, NOVA Medical School|Faculdade de Ciências Médicas, NMS|FCM, Universidade NOVA de Lisboa, Lisboa, Portugal
| | - Ioannis P Trougakos
- Department of Cell Biology and Biophysics, Faculty of Biology, National and Kapodistrian University of Athens, Athens, 15784, Greece
| | - Albena T Dinkova-Kostova
- Jacqui Wood Cancer Centre, Division of Cancer Research, School of Medicine, University of Dundee, Dundee, UK; Department of Pharmacology and Molecular Sciences and Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
2
|
Lin W, Hu F, Zou W, Wang S, Shi P, Li L, Yang J, Yang P. Rice Straw-Derived Biochar Mitigates Microcystin-LR-Induced Hepatic Histopathological Injury and Oxidative Damage in Male Zebrafish via the Nrf2 Signaling Pathway. Toxins (Basel) 2024; 16:549. [PMID: 39728807 PMCID: PMC11679041 DOI: 10.3390/toxins16120549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 12/15/2024] [Accepted: 12/17/2024] [Indexed: 12/28/2024] Open
Abstract
Microcystin-leucine arginine (MC-LR) poses a serious threat to aquatic animals during cyanobacterial blooms. Recently, biochar (BC), derived from rice straw, has emerged as a potent adsorbent for eliminating hazardous contaminants from water. To assess the joint hepatotoxic effects of environmentally relevant concentrations of MC-LR and BC on fish, male adult zebrafish (Danio rerio) were sub-chronically co-exposed to varying concentrations of MC-LR (0, 1, 5, and 25 μg/L) and BC (0 and 100 μg/L) in a fully factorial experiment. After 30 days exposure, our findings suggested that the existence of BC significantly decreased MC-LR bioavailability in liver. Furthermore, histopathological analysis revealed that BC mitigated MC-LR-induced hepatic lesions, which were characterized by mild damage, such as vacuolization, pyknotic nuclei, and swollen mitochondria. Compared to the groups exposed solely to MC-LR, decreased malondialdehyde (MDA) and increased catalase (CAT) and superoxide dismutase (SOD) were noticed in the mixture groups. Concurrently, significant changes in the mRNA expression levels of Nrf2 pathway genes (cat, sod1, gstr, keap1a, nrf2a, and gclc) further proved that BC reduces the oxidative damage induced by MC-LR. These findings demonstrate that BC decreases MC-LR bioavailability in the liver, thereby alleviating MC-LR-induced hepatotoxicity through the Nrf2 signaling pathway in zebrafish. Our results also imply that BC could serve as a potentially environmentally friendly material for mitigating the detrimental effects of MC-LR on fish.
Collapse
Affiliation(s)
- Wang Lin
- College of Life and Environmental Sciences, Hunan University of Arts and Science, Changde 415000, China; (W.L.); (F.H.); (W.Z.); (S.W.); (P.S.)
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming 650500, China
- Hunan Provincial Key Laboratory for Molecular Immunity Technology of Aquatic Animal Diseases, Changde 415000, China
| | - Fen Hu
- College of Life and Environmental Sciences, Hunan University of Arts and Science, Changde 415000, China; (W.L.); (F.H.); (W.Z.); (S.W.); (P.S.)
| | - Wansheng Zou
- College of Life and Environmental Sciences, Hunan University of Arts and Science, Changde 415000, China; (W.L.); (F.H.); (W.Z.); (S.W.); (P.S.)
- Hunan Provincial Key Laboratory for Molecular Immunity Technology of Aquatic Animal Diseases, Changde 415000, China
| | - Suqin Wang
- College of Life and Environmental Sciences, Hunan University of Arts and Science, Changde 415000, China; (W.L.); (F.H.); (W.Z.); (S.W.); (P.S.)
- Hunan Provincial Key Laboratory for Molecular Immunity Technology of Aquatic Animal Diseases, Changde 415000, China
| | - Pengling Shi
- College of Life and Environmental Sciences, Hunan University of Arts and Science, Changde 415000, China; (W.L.); (F.H.); (W.Z.); (S.W.); (P.S.)
- Hunan Provincial Key Laboratory for Molecular Immunity Technology of Aquatic Animal Diseases, Changde 415000, China
| | - Li Li
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China;
| | - Jifeng Yang
- College of Chemistry and Materials Engineering, Hunan University of Arts and Science, Changde 415000, China
| | - Pinhong Yang
- College of Life and Environmental Sciences, Hunan University of Arts and Science, Changde 415000, China; (W.L.); (F.H.); (W.Z.); (S.W.); (P.S.)
- Hunan Provincial Key Laboratory for Molecular Immunity Technology of Aquatic Animal Diseases, Changde 415000, China
| |
Collapse
|
3
|
Zhang Y, Li Y, Ren T, Duan JA, Xiao P. Promising tools into oxidative stress: A review of non-rodent model organisms. Redox Biol 2024; 77:103402. [PMID: 39437623 PMCID: PMC11532775 DOI: 10.1016/j.redox.2024.103402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 10/07/2024] [Accepted: 10/16/2024] [Indexed: 10/25/2024] Open
Abstract
Oxidative stress is a crucial concept in redox biology, and significant progress has been made in recent years. Excessive levels of reactive oxygen species (ROS) can lead to oxidative damage, heightening vulnerability to various diseases. By contrast, ROS maintained within a moderate range plays a role in regulating normal physiological metabolism. Choosing suitable animal models in a complex research context is critical for enhancing research efficacy. While rodents are frequently utilized in medical experiments, they pose challenges such as high costs and ethical considerations. Alternatively, non-rodent model organisms like zebrafish, Drosophila, and C. elegans offer promising avenues into oxidative stress research. These organisms boast advantages such as their small size, high reproduction rate, availability for live imaging, and ease of gene manipulation. This review highlights advancements in the detection of oxidative stress using non-rodent models. The oxidative homeostasis regulatory pathway, Kelch-like ECH-associated protein 1-Nuclear factor erythroid 2-related factor 2 (Keap1-Nrf2), is systematically reviewed alongside multiple regulation of Nrf2-centered pathways in different organisms. Ultimately, this review conducts a comprehensive comparative analysis of different model organisms and further explores the combination of novel techniques with non-rodents. This review aims to summarize state-of-the-art findings in oxidative stress research using non-rodents and to delineate future directions.
Collapse
Affiliation(s)
- Yuhao Zhang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yun Li
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Tianyi Ren
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Jin-Ao Duan
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Ping Xiao
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| |
Collapse
|
4
|
Nguyen VT, Thao VTM, Hanh LLP, Rol TH, Thao NHP, Nguyen TX, Luu PT, Thuy DT. Exploring the Phytochemical Diversity and Antioxidant Potential of the Vietnamese Smilax glabra Roxb: Insights from UPLC-QTOF-MS/MS and Zebrafish Model Studies. Appl Biochem Biotechnol 2024; 196:7307-7324. [PMID: 38519750 DOI: 10.1007/s12010-024-04930-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/18/2024] [Indexed: 03/25/2024]
Abstract
Research on natural products is growing due to their potential health benefits and medicinal properties. Despite regional variations in phytochemical composition and bioactivity, Smilax glabra Roxb (SGB) has attracted the interest of researchers. Scientists are particularly interested in the Vietnamese SGB variant, which is influenced by biological and environmental factors. Despite geographical differences in phytochemical makeup and bioactivities, SGB remains a fascinating subject in traditional herbal medicine. Using ultra-performance liquid chromatography and quadrupole time-of-flight mass spectrometry (UPLC-QTOF-MS/MS), the phytochemicals in Vietnamese SGB extracts were investigated. This study revealed a wide range of phytochemical compounds, including flavonoids, terpenoids, glycosides, alkaloids, organic acids, phenolics, and steroids. Furthermore, utilizing zebrafish as a model organism, we discovered that these extracts have the surprising ability to greatly improve the survival rate of zebrafish larvae exposed to oxidative stress caused by arsenite (NaAsO2) and hydrogen peroxide (H2O2). Notably, our discoveries suggest the occurrence of new antioxidative pathways in addition to the kelch-like ECH-associated protein 1 (Keap1)/nuclear factor erythroid 2-related factor 2 (Nrf2) pathway, expanding the understanding of the antioxidant properties and potential therapeutic uses of these plants. To summarize, our research findings shed light on the phytochemical composition of Vietnamese SGB, revealing its potential as a natural antioxidant and encouraging further exploration of its underlying mechanisms for future innovative antioxidant therapies.
Collapse
Affiliation(s)
- Vu Thanh Nguyen
- Biotechnology Center of Ho Chi Minh City, Ho Chi Minh City, Vietnam.
- Department of Biotechnology, HUTECH Institute of Applied Sciences, HUTECH University, Ho Chi Minh City, Vietnam.
| | - Vo Thi Minh Thao
- Biotechnology Center of Ho Chi Minh City, Ho Chi Minh City, Vietnam
| | | | - Thi Hoa Rol
- Biotechnology Center of Ho Chi Minh City, Ho Chi Minh City, Vietnam
| | | | - Tong Xuan Nguyen
- Institute of Environmental Science, Industrial University of Ho Chi Minh City, Engineering, and Management, Ho Chi Minh City, Vietnam
| | - Pham Thanh Luu
- Institute of Tropical Biology, Vietnam Academy of Science and Technology, Ho Chi Minh City, Vietnam
| | - Dinh Thi Thuy
- Department of Engineering and Technology, Van Hien University, 665-667-669 Dien Bien Phu Street, Ho Chi Minh City, Vietnam
| |
Collapse
|
5
|
Hu M, Yuan L, Zhu J. The Dual Role of NRF2 in Colorectal Cancer: Targeting NRF2 as a Potential Therapeutic Approach. J Inflamm Res 2024; 17:5985-6004. [PMID: 39247839 PMCID: PMC11380863 DOI: 10.2147/jir.s479794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 08/22/2024] [Indexed: 09/10/2024] Open
Abstract
Colorectal cancer (CRC), as the third most common bisexual cancer worldwide, requires urgent research on its underlying mechanisms and intervention methods. NRF2 is an important transcription factor involved in the regulation of redox homeostasis, protein degradation, DNA repair, and other cancer processes, playing an important role in cancer. In recent years, the complex role of NRF2 in CRC has been continuously revealed: on the one hand, it exhibits a chemopreventive effect on cancer by protecting normal cells from oxidative stress, and on the other hand, it also exhibits a protective effect on malignant cells. Therefore, this article explores the dual role of NRF2 and its related signaling pathways in CRC, including their chemical protective properties and promoting effects in the occurrence, development, metastasis, and chemotherapy resistance of CRC. In addition, this article focuses on exploring the regulation of NRF2 in CRC ferroptosis, as well as NRF2 drug modulators (activators and inhibitors) targeting CRC, including natural products, compounds, and traditional Chinese medicine formulations.
Collapse
Affiliation(s)
- Mengyun Hu
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, People's Republic of China
| | - Lingling Yuan
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, People's Republic of China
| | - Jie Zhu
- Hospital of Chengdu University of Traditional Chinese Medicine, Oncology Department II, Chengdu, People's Republic of China
| |
Collapse
|
6
|
Nguyen V, Taine EG, Meng D, Cui T, Tan W. Pharmacological Activities, Therapeutic Effects, and Mechanistic Actions of Trigonelline. Int J Mol Sci 2024; 25:3385. [PMID: 38542359 PMCID: PMC10970276 DOI: 10.3390/ijms25063385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 03/08/2024] [Accepted: 03/14/2024] [Indexed: 04/17/2024] Open
Abstract
Trigonelline (TRG) is a natural polar hydrophilic alkaloid that is found in many plants such as green coffee beans and fenugreek seeds. TRG potentially acts on multiple molecular targets, including nuclear factor erythroid 2-related factor 2 (Nrf2), peroxisome proliferator-activated receptor γ, glycogen synthase kinase, tyrosinase, nerve growth factor, estrogen receptor, amyloid-β peptide, and several neurotransmitter receptors. In this review, we systematically summarize the pharmacological activities, medicinal properties, and mechanistic actions of TRG as a potential therapeutic agent. Mechanistically, TRG can facilitate the maintenance and restoration of the metabolic homeostasis of glucose and lipids. It can counteract inflammatory constituents at multiple levels by hampering pro-inflammatory factor release, alleviating inflammatory propagation, and attenuating tissue injury. It concurrently modulates oxidative stress by the blockage of the detrimental Nrf2 pathway when autophagy is impaired. Therefore, it exerts diverse therapeutic effects on a variety of pathological conditions associated with chronic metabolic diseases and age-related disorders. It shows multidimensional effects, including neuroprotection from neurodegenerative disorders and diabetic peripheral neuropathy, neuromodulation, mitigation of cardiovascular disorders, skin diseases, diabetic mellitus, liver and kidney injuries, and anti-pathogen and anti-tumor activities. Further validations are required to define its specific targeting molecules, dissect the underlying mechanistic networks, and corroborate its efficacy in clinical trials.
Collapse
Affiliation(s)
- Vi Nguyen
- Department of Cell Biology and Anatomy, School of Medicine, University of South Carolina, Columbia, SC 29209, USA;
| | | | - Dehao Meng
- Applied Physics Program, California State University San Marcos, San Marcos, CA 92096, USA
| | - Taixing Cui
- Dalton Cardiovascular Research Center, Department of Medical Pharmacology and Physiology, School of Medicine, University of Missouri, Columbia, MO 65211, USA;
| | - Wenbin Tan
- Department of Cell Biology and Anatomy, School of Medicine, University of South Carolina, Columbia, SC 29209, USA;
- Department of Biomedical Engineering, College of Engineering and Computing, University of South Carolina, Columbia, SC 29208, USA
| |
Collapse
|