1
|
Chen M, Zhu Z, Wu S, Huang A, Xie Z, Cai J, Huang R, Yu S, Liu M, Zhang J, Tse Y, Wu Q, Wang J, Ding Y. SKN-1 is indispensable for protection against Aβ-induced proteotoxicity by a selenopeptide derived from Cordyceps militaris. Redox Biol 2024; 70:103065. [PMID: 38340636 PMCID: PMC10869277 DOI: 10.1016/j.redox.2024.103065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 01/26/2024] [Accepted: 01/28/2024] [Indexed: 02/12/2024] Open
Abstract
Oxidative stress (OS) and disruption of proteostasis caused by aggregated proteins are the primary causes of cell death in various diseases. Selenopeptides have shown the potential to control OS and alleviate inflammatory damage, suggesting promising therapeutic applications. However, their potential function in inhibiting proteotoxicity is not yet fully understood. To address this gap in knowledge, this study aimed to investigate the effects and underlying mechanisms of the selenopeptide VPRKL(Se)M on amyloid β protein (Aβ) toxicity in transgenic Caenorhabditis elegans. The results revealed that supplementation with VPRKL(Se)M can alleviate Aβ-induced toxic effects in the transgenic C. elegans model. Moreover, the addition of VPRKL(Se)M inhibited the Aβ aggregates formation, reduced the reactive oxygen species (ROS) levels, and ameliorated the overall proteostasis. Importantly, we found that the inhibitory effects of VPRKL(Se)M on Aβ toxicity and activation of the unfolded protein are dependent on skinhead-1 (SKN-1). These findings suggested that VPRKL(Se)M is a potential bioactive agent for modulating SKN-1, which subsequently improves proteostasis and reduces OS. Collectively, the findings from the current study suggests VPRKL(Se)M may play a critical role in preventing protein disorder and related diseases.
Collapse
Affiliation(s)
- Mengfei Chen
- Department of Food Science and Engineering, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China; Institute of Microbiology, Guangdong Academy of Sciences, State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Safety and Health, National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangzhou, 510070, China
| | - Zhenjun Zhu
- Department of Food Science and Engineering, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Shujian Wu
- Department of Food Science and Engineering, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Aohuan Huang
- Department of Food Science and Engineering, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China; Institute of Microbiology, Guangdong Academy of Sciences, State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Safety and Health, National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangzhou, 510070, China
| | - Zhiqing Xie
- Department of Food Science and Engineering, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Jie Cai
- Department of Food Science and Engineering, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China; Institute of Microbiology, Guangdong Academy of Sciences, State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Safety and Health, National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangzhou, 510070, China
| | - Rong Huang
- Department of Food Science and Engineering, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China; Institute of Microbiology, Guangdong Academy of Sciences, State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Safety and Health, National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangzhou, 510070, China
| | - Shubo Yu
- Institute of Microbiology, Guangdong Academy of Sciences, State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Safety and Health, National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangzhou, 510070, China
| | - Ming Liu
- Institute of Microbiology, Guangdong Academy of Sciences, State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Safety and Health, National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangzhou, 510070, China
| | - Jumei Zhang
- Institute of Microbiology, Guangdong Academy of Sciences, State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Safety and Health, National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangzhou, 510070, China
| | - Yuchung Tse
- Core Research Facilities, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Qingping Wu
- Institute of Microbiology, Guangdong Academy of Sciences, State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Safety and Health, National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangzhou, 510070, China
| | - Juan Wang
- College of Food Science, South China Agricultural University, Guangzhou, 510642, China
| | - Yu Ding
- Department of Food Science and Engineering, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|