1
|
Troger J, Theurl M, Kirchmair R, Pasqua T, Tota B, Angelone T, Cerra MC, Nowosielski Y, Mätzler R, Troger J, Gayen JR, Trudeau V, Corti A, Helle KB. Granin-derived peptides. Prog Neurobiol 2017; 154:37-61. [PMID: 28442394 DOI: 10.1016/j.pneurobio.2017.04.003] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 04/10/2017] [Accepted: 04/16/2017] [Indexed: 12/14/2022]
Abstract
The granin family comprises altogether 7 different proteins originating from the diffuse neuroendocrine system and elements of the central and peripheral nervous systems. The family is dominated by three uniquely acidic members, namely chromogranin A (CgA), chromogranin B (CgB) and secretogranin II (SgII). Since the late 1980s it has become evident that these proteins are proteolytically processed, intragranularly and/or extracellularly into a range of biologically active peptides; a number of them with regulatory properties of physiological and/or pathophysiological significance. The aim of this comprehensive overview is to provide an up-to-date insight into the distribution and properties of the well established granin-derived peptides and their putative roles in homeostatic regulations. Hence, focus is directed to peptides derived from the three main granins, e.g. to the chromogranin A derived vasostatins, betagranins, pancreastatin and catestatins, the chromogranin B-derived secretolytin and the secretogranin II-derived secretoneurin (SN). In addition, the distribution and properties of the chromogranin A-derived peptides prochromacin, chromofungin, WE14, parastatin, GE-25 and serpinins, the CgB-peptide PE-11 and the SgII-peptides EM66 and manserin will also be commented on. Finally, the opposing effects of the CgA-derived vasostatin-I and catestatin and the SgII-derived peptide SN on the integrity of the vasculature, myocardial contractility, angiogenesis in wound healing, inflammatory conditions and tumors will be discussed.
Collapse
Affiliation(s)
- Josef Troger
- Department of Ophthalmology, Medical University of Innsbruck, Innsbruck, Austria.
| | - Markus Theurl
- Department of Internal Medicine, Medical University of Innsbruck, Innsbruck, Austria
| | - Rudolf Kirchmair
- Department of Internal Medicine, Medical University of Innsbruck, Innsbruck, Austria
| | - Teresa Pasqua
- Department of Biology, Ecology and Earth Sciences, University of Calabria, Arcavacata di Rende, Italy
| | - Bruno Tota
- Department of Biology, Ecology and Earth Sciences, University of Calabria, Arcavacata di Rende, Italy
| | - Tommaso Angelone
- Department of Biology, Ecology and Earth Sciences, University of Calabria, Arcavacata di Rende, Italy
| | - Maria C Cerra
- Department of Biology, Ecology and Earth Sciences, University of Calabria, Arcavacata di Rende, Italy
| | - Yvonne Nowosielski
- Department of Ophthalmology, Medical University of Innsbruck, Innsbruck, Austria
| | - Raphaela Mätzler
- Department of Ophthalmology, Medical University of Innsbruck, Innsbruck, Austria
| | - Jasmin Troger
- Department of Ophthalmology, Medical University of Innsbruck, Innsbruck, Austria
| | | | - Vance Trudeau
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
| | - Angelo Corti
- Vita-Salute San Raffaele University and Division of Experimental Oncology, San Raffaele Scientific Institute, Milan, Italy
| | - Karen B Helle
- Department of Biomedicine, University of Bergen, Norway
| |
Collapse
|
2
|
Monocular enucleation profoundly reduces secretogranin II expression in adult mouse visual cortex. Neurochem Int 2011; 59:1082-94. [DOI: 10.1016/j.neuint.2011.09.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2011] [Accepted: 09/12/2011] [Indexed: 11/21/2022]
|
3
|
Lorenz K, Troger J, Gramlich O, Grus F, Hattmannstorfer R, Fischer-Colbrie R, Joachim S, Schmid E, Teuchner B, Haas G, Bechrakis N. PE-11, a peptide derived from chromogranin B, in the rat eye. Peptides 2011; 32:1201-6. [PMID: 21439336 DOI: 10.1016/j.peptides.2011.03.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2010] [Revised: 03/14/2011] [Accepted: 03/14/2011] [Indexed: 10/18/2022]
Abstract
The aim of the study was to investigate the presence and distribution of PE-11, a peptide derived from chromogranin B, in the rat eye. For this purpose, newborn rats were injected with a single dosage of 50mg/kg capsaicin subcutaneously under the neck fold and after three months, particular eye tissues were dissected and the concentration of PE-11-like immunoreactivity was determined by radioimmunoassay. Furthermore, PE-11-like immunoreactivities were characterized in an extract of the rat eye by reversed phase HPLC. Then, the distribution pattern of PE-11 was investigated in the rat eye and rat trigeminal ganglion by immunofluorescence. As a result, PE-11 was present in each tissue of the rat eye and capsaicin pretreatment led to a 88.05% (±7.07) and a 64.26% (±14.17) decrease of the levels of PE-11 in the cornea and choroid/sclera, respectively, and to a complete loss in the iris/ciliary body complex. Approximately 70% of immunoreactivities detected by the PE-11 antiserum have been found to represent authentic PE-11. Sparse nerve fibers were visualized in the corneal and uveal stroma, surrounding blood vessels at the limbus, ciliary body and choroid and in association with the dilator and sphincter muscle. Furthermore, immunoreactivity was present in the corneal endothelium. In the retina and optic nerve, glia was labeled. In the rat trigeminal ganglion, PE-11-immunoreactivity was visualized in small and medium sized ganglion cells with a diameter of up to 30μm. In conclusion, there is unequivocal evidence that PE-11 is a constituent of capsaicin-sensitive sensory neurons innervating the rat eye and the distribution pattern is typically peptidergic in the peripheral innervation but in the retina completely atypical for neuropeptides and unique.
Collapse
Affiliation(s)
- Katrin Lorenz
- Experimental Ophthalmology, Department of Ophthalmology, University Medical Center, Johannes Gutenberg-University Mainz, Langenbeckstraße 1, 55131 Mainz, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Zhao E, Hu H, Trudeau VL. Secretoneurin as a hormone regulator in the pituitary. ACTA ACUST UNITED AC 2009; 165:117-22. [PMID: 20006654 DOI: 10.1016/j.regpep.2009.11.019] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2009] [Revised: 11/25/2009] [Accepted: 11/26/2009] [Indexed: 11/30/2022]
Abstract
Secretoneurin (SN) is a 33-34 amino acid peptide derived from the most conserved sequence of the secretogranin (SgII) precursor. SgII is a granin protein found in the secretory granules of neuroendocrine tissues. There are two paralogs of teleost SgII that we name here SgIIa and SgIIb. Processing of these proteins would yield SNa and SNb in fish. Secretoneurin immunoreactivity is found within all the major pituitary cell types in mammals. In goldfish, it appears to be mainly expressed in the prolactin cells of the rostral pars distalis. We have investigated the paracrine role of goldfish SN (SNa) to stimulate luteinizing hormone from gonadotrophs in the neighboring proximal pars distalis. Another source of SN is the hypophysiotropic neurons that may deliver SN to target cells by direct pituitary innervation. Little else is known about the neuroendocrine role of SN. We also discuss the evolution, distribution and production of SN in the pituitary.
Collapse
Affiliation(s)
- E Zhao
- Centre for Advanced Research in Environmental Genomics, Department of Biology, University of Ottawa, 30 Marie Curie, Ottawa, ON, Canada
| | | | | |
Collapse
|
5
|
Chromogranin peptides in amyotrophic lateral sclerosis. ACTA ACUST UNITED AC 2008; 152:13-21. [PMID: 18721831 DOI: 10.1016/j.regpep.2008.07.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2008] [Revised: 07/03/2008] [Accepted: 07/21/2008] [Indexed: 01/28/2023]
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disorder which primarily affects motor neurons. Eight cases of ALS and seven control cases were studied with semiquantitative immunocytochemistry for chromogranin A, chromogranin B and secretogranin II that are soluble constituents of large dense core vesicles, synaptophysin as a membrane protein of small synaptic vesicles and superoxide dismutase 1. Among the chromogranin peptides, the number and staining intensity of motor neurons was highest for chromogranin A. In ALS, the staining intensity for chromogranin peptides and synaptophysin was significantly lower in the ventral horn of ALS patients due to a loss in immunoreactive motor neurons, varicose fibers and varicosities. For all chromogranins, the remaining motor neurons displayed a characteristic staining pattern consisting of an intracellular accumulation of immunoreactivity with a high staining intensity. Confocal microscopy of motor neurons revealed that superoxide dismutase 1-immunopositive intracellular aggregates also contained chromogranin A, chromogranin B and secretogranin II. These findings indicate that there is a loss of small and large dense core vesicles in presynaptic terminals. The intracellular co-occurrence of superoxide dismutase 1 and chromogranins may suggest a functional interaction between these proteins. This study should prompt further experiments to elucidate the role of chromogranins in ALS patients.
Collapse
|
6
|
Montero-Hadjadje M, Vaingankar S, Elias S, Tostivint H, Mahata SK, Anouar Y. Chromogranins A and B and secretogranin II: evolutionary and functional aspects. Acta Physiol (Oxf) 2008; 192:309-24. [PMID: 18005393 DOI: 10.1111/j.1748-1716.2007.01806.x] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Chromogranins/secretogranins or granins are a class of acidic, secretory proteins that occur in endocrine, neuroendocrine, and neuronal cells. Granins are the precursors of several bioactive peptides and may be involved in secretory granule formation and neurotransmitter/hormone release. Characterization and analysis of chromogranin A (CgA), chromogranin B (CgB), and secretogranin II (SgII) in distant vertebrate species confirmed that CgA and CgB belong to related monophyletic groups, probably evolving from a common ancestral precursor, while SgII sequences constitute a distinct monophyletic group. In particular, selective sequences within these proteins, bounded by potential processing sites, have been remarkably conserved during evolution. Peptides named vasostatin, secretolytin and secretoneurin, which occur in these regions, have been shown to exert various biological activities. These conserved domains may also be involved in the formation of secretory granules in different vertebrates. Other peptides such as catestatin and pancreastatin may have appeared late during evolution. The function of granins as propeptide precursors and granulogenic factors is discussed in the light of recent data obtained in various model species and using knockout mice strains.
Collapse
Affiliation(s)
- M Montero-Hadjadje
- INSERM U413, Laboratory of Cellular and Molecular Neuroendocrinology, European Institute for Peptide Research (IFRMP 23), UA CNRS, University of Rouen, Mont-Saint-Aignan, France
| | | | | | | | | | | |
Collapse
|