1
|
Steinert RE, Feinle-Bisset C, Asarian L, Horowitz M, Beglinger C, Geary N. Ghrelin, CCK, GLP-1, and PYY(3-36): Secretory Controls and Physiological Roles in Eating and Glycemia in Health, Obesity, and After RYGB. Physiol Rev 2017; 97:411-463. [PMID: 28003328 PMCID: PMC6151490 DOI: 10.1152/physrev.00031.2014] [Citation(s) in RCA: 402] [Impact Index Per Article: 50.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The efficacy of Roux-en-Y gastric-bypass (RYGB) and other bariatric surgeries in the management of obesity and type 2 diabetes mellitus and novel developments in gastrointestinal (GI) endocrinology have renewed interest in the roles of GI hormones in the control of eating, meal-related glycemia, and obesity. Here we review the nutrient-sensing mechanisms that control the secretion of four of these hormones, ghrelin, cholecystokinin (CCK), glucagon-like peptide-1 (GLP-1), and peptide tyrosine tyrosine [PYY(3-36)], and their contributions to the controls of GI motor function, food intake, and meal-related increases in glycemia in healthy-weight and obese persons, as well as in RYGB patients. Their physiological roles as classical endocrine and as locally acting signals are discussed. Gastric emptying, the detection of specific digestive products by small intestinal enteroendocrine cells, and synergistic interactions among different GI loci all contribute to the secretion of ghrelin, CCK, GLP-1, and PYY(3-36). While CCK has been fully established as an endogenous endocrine control of eating in healthy-weight persons, the roles of all four hormones in eating in obese persons and following RYGB are uncertain. Similarly, only GLP-1 clearly contributes to the endocrine control of meal-related glycemia. It is likely that local signaling is involved in these hormones' actions, but methods to determine the physiological status of local signaling effects are lacking. Further research and fresh approaches are required to better understand ghrelin, CCK, GLP-1, and PYY(3-36) physiology; their roles in obesity and bariatric surgery; and their therapeutic potentials.
Collapse
Affiliation(s)
- Robert E Steinert
- University of Adelaide Discipline of Medicine and National Health and Medical Research Council of Australia Centre of Research Excellence in Translating Nutritional Science to Good Health, Adelaide, Australia; DSM Nutritional Products, R&D Human Nutrition and Health, Basel, Switzerland; Institute of Veterinary Physiology, University of Zurich, Zurich, Switzerland; Department of Biomedicine and Division of Gastroenterology, University Hospital Basel, Basel, Switzerland; and Department of Psychiatry, Weill Medical College of Cornell University, New York, New York
| | - Christine Feinle-Bisset
- University of Adelaide Discipline of Medicine and National Health and Medical Research Council of Australia Centre of Research Excellence in Translating Nutritional Science to Good Health, Adelaide, Australia; DSM Nutritional Products, R&D Human Nutrition and Health, Basel, Switzerland; Institute of Veterinary Physiology, University of Zurich, Zurich, Switzerland; Department of Biomedicine and Division of Gastroenterology, University Hospital Basel, Basel, Switzerland; and Department of Psychiatry, Weill Medical College of Cornell University, New York, New York
| | - Lori Asarian
- University of Adelaide Discipline of Medicine and National Health and Medical Research Council of Australia Centre of Research Excellence in Translating Nutritional Science to Good Health, Adelaide, Australia; DSM Nutritional Products, R&D Human Nutrition and Health, Basel, Switzerland; Institute of Veterinary Physiology, University of Zurich, Zurich, Switzerland; Department of Biomedicine and Division of Gastroenterology, University Hospital Basel, Basel, Switzerland; and Department of Psychiatry, Weill Medical College of Cornell University, New York, New York
| | - Michael Horowitz
- University of Adelaide Discipline of Medicine and National Health and Medical Research Council of Australia Centre of Research Excellence in Translating Nutritional Science to Good Health, Adelaide, Australia; DSM Nutritional Products, R&D Human Nutrition and Health, Basel, Switzerland; Institute of Veterinary Physiology, University of Zurich, Zurich, Switzerland; Department of Biomedicine and Division of Gastroenterology, University Hospital Basel, Basel, Switzerland; and Department of Psychiatry, Weill Medical College of Cornell University, New York, New York
| | - Christoph Beglinger
- University of Adelaide Discipline of Medicine and National Health and Medical Research Council of Australia Centre of Research Excellence in Translating Nutritional Science to Good Health, Adelaide, Australia; DSM Nutritional Products, R&D Human Nutrition and Health, Basel, Switzerland; Institute of Veterinary Physiology, University of Zurich, Zurich, Switzerland; Department of Biomedicine and Division of Gastroenterology, University Hospital Basel, Basel, Switzerland; and Department of Psychiatry, Weill Medical College of Cornell University, New York, New York
| | - Nori Geary
- University of Adelaide Discipline of Medicine and National Health and Medical Research Council of Australia Centre of Research Excellence in Translating Nutritional Science to Good Health, Adelaide, Australia; DSM Nutritional Products, R&D Human Nutrition and Health, Basel, Switzerland; Institute of Veterinary Physiology, University of Zurich, Zurich, Switzerland; Department of Biomedicine and Division of Gastroenterology, University Hospital Basel, Basel, Switzerland; and Department of Psychiatry, Weill Medical College of Cornell University, New York, New York
| |
Collapse
|
2
|
Lin Y, Krogh-Andersen K, Pelletier J, Marcotte H, Östenson CG, Hammarström L. Oral Delivery of Pentameric Glucagon-Like Peptide-1 by Recombinant Lactobacillus in Diabetic Rats. PLoS One 2016; 11:e0162733. [PMID: 27610615 PMCID: PMC5017604 DOI: 10.1371/journal.pone.0162733] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 08/26/2016] [Indexed: 12/21/2022] Open
Abstract
Glucagon-like peptide-1 (GLP-1) is an incretin hormone produced by intestinal cells and stimulates insulin secretion from the pancreas in a glucose-dependent manner. Exogenously supplied GLP-1 analogues are used in the treatment of type 2 diabetes. An anti-diabetic effect of Lactobacillus in lowering plasma glucose levels and its use as a vehicle for delivery of protein and antibody fragments has been shown previously. The aim of this study was to employ lactobacilli as a vehicle for in situ production and delivery of GLP-1 analogue to normalize blood glucose level in diabetic GK (Goto-Kakizaki) rats. In this study, we designed pentameric GLP-1 (5×GLP-1) analogues which were both expressed in a secreted form and anchored to the surface of lactobacilli. Intestinal trypsin sites were introduced within 5×GLP-1, leading to digestion of the pentamer into an active monomeric form. The E. coli-produced 5×GLP-1 peptides delivered by intestinal intubation to GK rats resulted in a significant improvement of glycemic control demonstrated by an intraperitoneal glucose tolerance test. Meanwhile, the purified 5×GLP-1 (trypsin-digested) from the Lactobacillus cultures stimulated insulin secretion from HIT-T15 cells, similar to the E. coli-produced 5×GLP-1 peptides. When delivered by gavage to GK rats, non-expressor L. paracasei significantly lowered the blood glucose level but 5×GLP-1 expression did not provide an additional anti-diabetic effect, possibly due to the low levels produced. Our results indicate that lactobacilli themselves might be used as an alternative treatment method for type 2 diabetes, but further work is needed to increase the expression level of GLP-1 by lactobacilli in order to obtain a significant insulinotropic effect in vivo.
Collapse
Affiliation(s)
- Yin Lin
- Department of Laboratory Medicine, Division of Clinical Immunology and Transfusion Medicine, Karolinska Institutet at Karolinska University Hospital Huddinge, SE-141 86 Stockholm, Sweden
| | - Kasper Krogh-Andersen
- Department of Laboratory Medicine, Division of Clinical Immunology and Transfusion Medicine, Karolinska Institutet at Karolinska University Hospital Huddinge, SE-141 86 Stockholm, Sweden
| | - Julien Pelletier
- Department of Molecular Medicine and Surgery, Rolf Luft Research Center for Diabetes and Endocrinology, M1:03 Karolinska University Hospital, Karolinska Institutet, Stockholm SE-17176, Sweden
| | - Harold Marcotte
- Department of Laboratory Medicine, Division of Clinical Immunology and Transfusion Medicine, Karolinska Institutet at Karolinska University Hospital Huddinge, SE-141 86 Stockholm, Sweden
| | - Claes-Göran Östenson
- Department of Molecular Medicine and Surgery, Rolf Luft Research Center for Diabetes and Endocrinology, M1:03 Karolinska University Hospital, Karolinska Institutet, Stockholm SE-17176, Sweden
| | - Lennart Hammarström
- Department of Laboratory Medicine, Division of Clinical Immunology and Transfusion Medicine, Karolinska Institutet at Karolinska University Hospital Huddinge, SE-141 86 Stockholm, Sweden
- * E-mail:
| |
Collapse
|
3
|
Abstract
Glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide-1 (GLP-1) are the known incretin hormones in humans, released predominantly from the enteroendocrine K and L cells within the gut. Their secretion is regulated by a complex of integrated mechanisms involving direct contact for the activation of different chemo-sensors on the brush boarder of K and L cells and several indirect neuro-immuno-hormonal loops. The biological actions of GIP and GLP-1 are fundamental determinants of islet function and blood glucose homeostasis in health and type 2 diabetes. Moreover, there is increasing recognition that GIP and GLP-1 also exert pleiotropic extra-glycaemic actions, which may represent therapeutic targets for human diseases. In this review, we summarise current knowledge of the biology of incretin hormones in health and metabolic disorders and highlight the therapeutic potential of incretin hormones in metabolic regulation.
Collapse
Affiliation(s)
- Tongzhi Wu
- Discipline of Medicine, The University of Adelaide, Royal Adelaide Hospital, North Terrace, Adelaide, South Australia, 5000, Australia
| | - Christopher K Rayner
- Discipline of Medicine, The University of Adelaide, Royal Adelaide Hospital, North Terrace, Adelaide, South Australia, 5000, Australia.
- Centre of Research Excellence in Translating Nutritional Science into Good Health, The University of Adelaide, Adelaide, Australia.
| | - Michael Horowitz
- Discipline of Medicine, The University of Adelaide, Royal Adelaide Hospital, North Terrace, Adelaide, South Australia, 5000, Australia
- Centre of Research Excellence in Translating Nutritional Science into Good Health, The University of Adelaide, Adelaide, Australia
| |
Collapse
|
4
|
Mace OJ, Tehan B, Marshall F. Pharmacology and physiology of gastrointestinal enteroendocrine cells. Pharmacol Res Perspect 2015. [PMID: 26213627 PMCID: PMC4506687 DOI: 10.1002/prp2.155] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Gastrointestinal (GI) polypeptides are secreted from enteroendocrine cells (EECs). Recent technical advances and the identification of endogenous and synthetic ligands have enabled exploration of the pharmacology and physiology of EECs. Enteroendocrine signaling pathways stimulating hormone secretion involve multiple nutrient transporters and G protein-coupled receptors (GPCRs), which are activated simultaneously under prevailing nutrient conditions in the intestine following a meal. The majority of studies investigate hormone secretion from EECs in response to single ligands and although the mechanisms behind how individual signaling pathways generate a hormonal output have been well characterized, our understanding of how these signaling pathways converge to generate a single hormone secretory response is still in its infancy. However, a picture is beginning to emerge of how nutrients and full, partial, or allosteric GPCR ligands differentially regulate the enteroendocrine system and its interaction with the enteric and central nervous system. So far, activation of multiple pathways underlies drug discovery efforts to harness the therapeutic potential of the enteroendocrine system to mimic the phenotypic changes observed in patients who have undergone Roux-en-Y gastric surgery. Typically obese patients exhibit ∼30% weight loss and greater than 80% of obese diabetics show remission of diabetes. Targeting combinations of enteroendocrine signaling pathways that work synergistically may manifest with significant, differentiated EEC secretory efficacy. Furthermore, allosteric modulators with their increased selectivity, self-limiting activity, and structural novelty may translate into more promising enteroendocrine drugs. Together with the potential to bias enteroendocrine GPCR signaling and/or to activate multiple divergent signaling pathways highlights the considerable range of therapeutic possibilities available. Here, we review the pharmacology and physiology of the EEC system.
Collapse
Affiliation(s)
- O J Mace
- Heptares Therapeutics Ltd BioPark, Broadwater Road, Welwyn Garden City, AL7 3AX, United Kingdom
| | - B Tehan
- Heptares Therapeutics Ltd BioPark, Broadwater Road, Welwyn Garden City, AL7 3AX, United Kingdom
| | - F Marshall
- Heptares Therapeutics Ltd BioPark, Broadwater Road, Welwyn Garden City, AL7 3AX, United Kingdom
| |
Collapse
|
5
|
Park SH, Park JH, Shim HM, Na AY, Bae KC, Lim JG, Song DK. Protection of pancreatic β-cells against glucotoxicity by short-term treatment with GLP-1. Biochem Biophys Res Commun 2015; 459:561-7. [PMID: 25757909 DOI: 10.1016/j.bbrc.2015.02.139] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Accepted: 02/24/2015] [Indexed: 12/15/2022]
Abstract
Glucagon-like peptide-1 (GLP-1) reduces pancreatic β-cell apoptosis in type 2 diabetes. Glucotoxiciy is a main cause of β-cell apoptosis in type 2 diabetes. The aims of this study were to investigate the anti-apoptotic mechanisms of GLP-1 against glucotoxicity and whether physiological short-term treatment with GLP-1 can protect β-cells from glucotoxicity-induced apoptosis. GLP-1 treatment for only 30 min alleviated high glucose-induced β-cell apoptosis. The effect of GLP-1 was related with phosphoinositide 3-kinase (PI3K)/AKT-S473 phosphorylation. The increase in pAKT-S473 led to suppression of FoxO-1. GLP-1-induced AKT-S473 activation and FoxO-1 suppression were abolished by the selective inactivation of mTOR complex (mTORC) 2 using small interfering RNA directed towards the rapamycin-insensitive companion of mTOR. The protective effect of GLP-1 on β-cell apoptosis was also abolished by the selective inactivation of mTORC2. Hence, the protective effect of GLP-1 against glucotoxicity may be mediated by FoxO-1 suppression through the PI3K/mTORC2/AKT-S473 phosphorylation. This report provides evidence that short-term treatment with GLP-1 is beneficial to protect against glucotoxicity-induced β-cell apoptosis.
Collapse
Affiliation(s)
- Sun-Hyun Park
- Department of Physiology & Obesity-mediated Disease Research Center, Keimyung University School of Medicine, Daegu, Republic of Korea
| | - Jae-Hyung Park
- Department of Physiology & Obesity-mediated Disease Research Center, Keimyung University School of Medicine, Daegu, Republic of Korea
| | - Hye-Min Shim
- Department of Physiology & Obesity-mediated Disease Research Center, Keimyung University School of Medicine, Daegu, Republic of Korea
| | - Ann-Yae Na
- Department of Physiology & Obesity-mediated Disease Research Center, Keimyung University School of Medicine, Daegu, Republic of Korea
| | - Ki-Churl Bae
- Department of Physiology & Obesity-mediated Disease Research Center, Keimyung University School of Medicine, Daegu, Republic of Korea
| | - Jeung-Geun Lim
- Department of Physiology & Obesity-mediated Disease Research Center, Keimyung University School of Medicine, Daegu, Republic of Korea
| | - Dae-Kyu Song
- Department of Physiology & Obesity-mediated Disease Research Center, Keimyung University School of Medicine, Daegu, Republic of Korea.
| |
Collapse
|
6
|
Wu T, Rayner CK, Young RL, Horowitz M. Gut motility and enteroendocrine secretion. Curr Opin Pharmacol 2013; 13:928-934. [PMID: 24060702 DOI: 10.1016/j.coph.2013.09.002] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Revised: 08/16/2013] [Accepted: 09/04/2013] [Indexed: 02/07/2023]
Abstract
The motility of the gastrointestinal (GI) tract is modulated by complex neural and hormonal networks; the latter include gut peptides released from enteroendocrine cells during both the interdigestive and postprandial periods. Conversely, it is increasingly recognised that GI motility is an important determinant of gut hormone secretion, in that the transit of luminal contents influences the degree of nutrient stimulation of enteroendocrine cells in different gut regions, as well as the overall length of gut exposed to nutrient. Of particular interest is the relationship between gallbladder emptying and enteroendocrine secretion. The inter-relationships between GI motility and enteroendocrine secretion are central to blood glucose homeostasis, where an understanding is fundamental to the development of novel strategies for the management of diabetes mellitus.
Collapse
Affiliation(s)
- Tongzhi Wu
- Discipline of Medicine, University of Adelaide, Royal Adelaide Hospital, Adelaide, South Australia, Australia; Centre of Research Excellence in Translating Nutritional Science to Good Health, University of Adelaide, Australia
| | | | | | | |
Collapse
|
7
|
Wu T, Rayner CK, Jones K, Horowitz M. Dietary effects on incretin hormone secretion. VITAMINS AND HORMONES 2011; 84:81-110. [PMID: 21094897 DOI: 10.1016/b978-0-12-381517-0.00003-5] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The delivery of nutrients from the stomach into the duodenum and their subsequent interaction with the small intestine to stimulate incretin hormone release are central determinants of the glycemic response. The incretin effect has hitherto been attributed to the secretion of glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide-1 (GLP-1) from enteroendocrine cells in the intestinal epithelium. A number of recent studies have yielded fundamental insights into the influence of individual nutrients on incretin release and the mechanisms involved in the detection of carbohydrates, fats, and proteins by enteroendocrine cells, including the K(ATP) channel, sodium-glucose cotransporter 1 (SGLT1), sweet taste receptors, G-protein-coupled receptors (GPRs), and oligopeptide transporter 1 (PepT1). Dietary modification, including modifying macronutrient composition or the consumption of "preloads" in advance of a meal, represents a novel approach to manipulate the incretin response and thereby regulate glucose homeostasis in patients with type 2 diabetes. This review focuses on the effects of individual nutrients on incretin hormone secretion, our current understanding of the signaling mechanisms that trigger secretion by enteroendocrine cells, and the therapeutic implications of these observations.
Collapse
Affiliation(s)
- Tongzhi Wu
- University of Adelaide Discipline of Medicine, Royal Adelaide Hospital, North Terrace, Adelaide, South Australia, Australia
| | | | | | | |
Collapse
|
8
|
Ma J, Rayner CK, Jones KL, Horowitz M. Insulin secretion in healthy subjects and patients with Type 2 diabetes--role of the gastrointestinal tract. Best Pract Res Clin Endocrinol Metab 2009; 23:413-424. [PMID: 19748059 DOI: 10.1016/j.beem.2009.03.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Postprandial glycaemia is now recognised as the major determinant of average glycaemic control in type 2 diabetes, as assessed by glycated haemoglobin. Therefore, an understanding of the factors influencing both the rise in blood glucose and insulin secretion after a meal is fundamental to the development of dietary and pharmacological approaches to optimise glycaemic control. The gastrointestinal tract regulates the rate at which carbohydrate and other nutrients are absorbed and is the source of regulatory peptides that stimulate pancreatic insulin secretion in the setting of elevated blood glucose levels. This article highlights the importance of the gastrointestinal tract in insulin secretion and glucose homeostasis and discusses potential strategies directed at modification of gastrointestinal function in order to improve glycaemic control in the management of diabetes.
Collapse
Affiliation(s)
- Jing Ma
- University of Adelaide Discipline of Medicine, Royal Adelaide Hospital, Adelaide, SA, Australia
| | | | | | | |
Collapse
|
9
|
Niu L, Xu YC, Xie HY, Dai Z, Tang HQ. Expression of human insulin gene wrapped with chitosan nanoparticles in NIH3T3 cells and diabetic rats. Acta Pharmacol Sin 2008; 29:1342-9. [PMID: 18954529 DOI: 10.1111/j.1745-7254.2008.00888.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
AIM To study the expression of human insulin gene wrapped with chitosan nanoparticles in NIH3T3 cells and diabetic rats. METHODS pCMV.Ins, an expression plasmid of the human insulin gene, was constructed. In total, 100 microg pCMV.Ins wrapped with chitosan nanoparticles (chitosan-pCMV.Ins) was transfected to NIH3T3 cells and diabetes rats through lavage and coloclysis, respectively. The transfected cells were grown in Dulbecco's modified Eagle's medium, containing G418, for 72 h after transfection. The clones were selected and continued to grow in G418 medium for 24 d. The expression of human insulin was detected by immunohistochemistry. Human insulin in the culture medium of transfected cells was measured. Fasting blood glucose and plasma human insulin of diabetic rats were measured for 5 d after transfection. RT-PCR and Western blotting were performed to confirm the expression of the human insulin gene in diabetic rats. RESULTS Approximately 10% of NIH3T3 cells transfected by chitosan-pCMV.Ins expressed human insulin. Human insulin in the culture medium of NIH3T3 cells transfected by chitosan-pCMV.Ins significantly increased compared with that of the control group (P<0.01). Fasting blood glucose levels of the lavage group and the coloclysis group decreased significantly in 5 d (P<0.01) in comparison, while plasma insulin levels were much higher (P<0.01). The human insulin gene mRNA and human insulin were only detected in the lavage and the coloclysis groups. CONCLUSION The human insulin gene can be transfected and expressed successfully by chitosan- pCMV.Ins in NIH3T3 cells and diabetes rats, which indicates that chitosan is a promising, non-viral vector for gene expression.
Collapse
Affiliation(s)
- Li Niu
- Department of Endocrinology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | | | | | | | | |
Collapse
|
10
|
Niu L, Xu YC, Dai Z, Tang HQ. Gene therapy for type 1 diabetes mellitus in rats by gastrointestinal administration of chitosan nanoparticles containing human insulin gene. World J Gastroenterol 2008; 14:4209-15. [PMID: 18636668 PMCID: PMC2725384 DOI: 10.3748/wjg.14.4209] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To study the expression of human insulin gene in gastrointestinal tracts of diabetic rats.
METHODS: pCMV.Ins, an expression plasmid of the human insulin gene, wrapped with chitosan nanoparticles, was transfected to the diabetic rats through lavage and coloclysis, respectively. Fasting blood glucose and plasma insulin levels were measured for 7 d. Reverse transcription polymerase chain reaction (RT-PCR) analysis and Western blot analysis were performed to confirm the expression of human insulin gene.
RESULTS: Compared with the control group, the fasting blood glucose levels in the lavage and coloclysis groups were decreased significantly in 4 d (5.63 ± 0.48 mmol/L and 5.07 ± 0.37 mmol/L vs 22.12 ± 1.31 mmol/L, respectively, P < 0.01), while the plasma insulin levels were much higher (32.26 ± 1.81 &mgr;IU/mL and 32.79 ± 1.84 &mgr;IU/mL vs 14.23 ± 1.38 &mgr;IU/mL, respectively, P < 0.01). The human insulin gene mRNA and human insulin were only detected in the lavage and coloclysis groups.
CONCLUSION: Human insulin gene wrapped with chitosan nanoparticles can be successfully transfected to rats through gastrointestinal tract, indicating that chitosan is a promising non-viral vector.
Collapse
|