1
|
Hilliard BA, Amin M, Popoff SN, Barbe MF. Potentiation of Collagen Deposition by the Combination of Substance P with Transforming Growth Factor Beta in Rat Skin Fibroblasts. Int J Mol Sci 2024; 25:1862. [PMID: 38339140 PMCID: PMC10855312 DOI: 10.3390/ijms25031862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 01/30/2024] [Accepted: 01/31/2024] [Indexed: 02/12/2024] Open
Abstract
A role for substance P has been proposed in musculoskeletal fibrosis, with effects mediated through transforming growth factor beta (TGFβ). We examined the in vitro effects of substance P on proliferation, collagen secretion, and collagen deposition in rat primary dermal fibroblasts cultured in medium containing 10% fetal bovine serum, with or without TGFβ. In six-day cultures, substance P increased cell proliferation at concentrations from 0.0002 to 100 nM. TGFβ increased proliferation at concentrations from 0.0002 to 2 pg/mL, although higher concentrations inhibited proliferation. Substance P treatment alone at concentrations of 100, 0.2, and 0.00002 nM did not increase collagen deposition per cell, yet when combined with TGFβ (5 ng/mL), increased collagen deposition compared to TGFβ treatment alone. Substance P treatment (100 nM) also increased smooth muscle actin (SMA) expression at 72 h of culture at a level similar to 5 ng/mL of TGFβ; only TGFβ increased SMA at 48 h of culture. Thus, substance P may play a role in potentiating matrix deposition in vivo when combined with TGFβ, although this potentiation may be dependent on the concentration of each factor. Treatments targeting substance P may be a viable strategy for treating fibrosis where both substance P and TGFβ play roles.
Collapse
Affiliation(s)
- Brendan A. Hilliard
- Aging and Cardiovascular Discovery Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA; (M.A.); (M.F.B.)
| | - Mamta Amin
- Aging and Cardiovascular Discovery Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA; (M.A.); (M.F.B.)
| | - Steven N. Popoff
- Department of Biomedical Education, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA;
| | - Mary F. Barbe
- Aging and Cardiovascular Discovery Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA; (M.A.); (M.F.B.)
| |
Collapse
|
2
|
Wasker SVZ, Challoumas D, Weng W, Murrell GAC, Millar NL. Is neurogenic inflammation involved in tendinopathy? A systematic review. BMJ Open Sport Exerc Med 2023; 9:e001494. [PMID: 36793930 PMCID: PMC9923261 DOI: 10.1136/bmjsem-2022-001494] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/12/2023] [Indexed: 02/11/2023] Open
Abstract
Neurogenic pain and inflammation have been hypothesised to play an important role in tendinopathy. This systematic review aimed to present and assess the evidence on neurogenic inflammation in tendinopathy. A systematic search was conducted through multiple databases to identify human case-control studies assessing neurogenic inflammation through the upregulation of relevant cells, receptors, markers and mediators. A newly devised tool was used for the methodological quality assessment of studies. Results were pooled based on the cell/receptor/marker/mediator assessed. A total of 31 case-control studies were eligible for inclusion. The tendinopathic tissue was obtained from Achilles (n=11), patellar (n=8), extensor carpi radialis brevis (n=4), rotator cuff (n=4), distal biceps (n=3) and gluteal (n=1) tendons. Through pooling the results of included studies based on the marker of neurogenic inflammation assessed, we identified possible upregulation of protein gene product 9.5 (PGP 9.5), N-methyl-D-aspartate Receptors, glutamate, glutamate receptors (mGLUT), neuropeptide Y (NPY) and adrenoreceptors in tendinopathic tissue versus control. Calcitonin gene-related peptide (CGRP) was not found to be upregulated, and the evidence was conflicting for several other markers. These findings show the involvement of the glutaminergic and sympathetic nervous systems and the upregulation of nerve ingrowth markers supporting the concept that neurogenic inflammation plays a role in tendinopathy.
Collapse
Affiliation(s)
- Shimon Vinay Zedeck Wasker
- Orthopaedic Research Institute, St George Hospital Sydney, University of New South Wales, Sydney, New South Wales, Australia
| | - Dimitris Challoumas
- School of Infection and Immunity, College of Medicine, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Wai Weng
- Orthopaedic Research Institute, St George Hospital Sydney, University of New South Wales, Sydney, New South Wales, Australia
| | - George A C Murrell
- Orthopaedic Research Institute, St George Hospital Sydney, University of New South Wales, Sydney, New South Wales, Australia
| | - Neal L Millar
- School of Infection and Immunity, College of Medicine, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| |
Collapse
|
3
|
Ko KR, Han SH, Choi S, An HJ, Kwak EB, Jeong Y, Baek M, Lee J, Choi J, Kim IS, Lee S. Substance P Inhibitor Promotes Tendon Healing in a Collagenase-Induced Rat Model of Tendinopathy. Am J Sports Med 2022; 50:3681-3689. [PMID: 36197354 DOI: 10.1177/03635465221126175] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND The substance P-neurokinin 1 receptor pathway has been proposed as a therapeutic target for tendinopathy. However, there is a lack of evidence regarding its practical applications. PURPOSE To investigate the therapeutic effects of substance P inhibitor (SPI) on inflamed tenocytes in vitro and in a collagenase-induced rat model of tendinopathy in vivo. STUDY DESIGN Controlled laboratory study. METHODS We analyzed the mRNA levels of inflammatory (cyclooxygenase [COX]-2 and interleukin [IL]-6) and tenogenic (Mohawk and scleraxis [SCX]) markers using reverse transcription quantitative polymerase chain reaction to demonstrate the effects of SPI on lipopolysaccharide-treated (inflamed) tenocytes. A collagenase-induced rat model of tendinopathy was created by injecting 20 µL of collagenase into the Achilles tendon. A behavior test using an incapacitance apparatus was performed to detect changes in postural equilibrium. The tendon specimens were obtained, and their gross findings were examined. The tensile strength was measured, and histopathological evaluation was performed (hematoxylin and eosin, alcian blue, and immunohistochemical staining). RESULTS The mRNA levels of COX-2, IL-6, Mohawk, and SCX differed significantly between inflamed tenocytes and those treated with SPI. SPI improved the weight burden in a rat model of tendinopathy in a behavioral test. The specimens of the SPI group showed a normal tendon-like appearance. In the biomechanical test, the tensile strength of the SPI group was significantly greater than that of the tendinopathy group. In the histopathological evaluation, the degree of collagen matrix breakdown was mild in the SPI group. In alcian blue staining, only small focal depositions of proteoglycans and glycosaminoglycans were observed in the SPI group. The SPI group showed decreased expression of IL-6 and neurokinin 1 receptor. CONCLUSION This study suggests that SPI has therapeutic effects on tendon healing and restoration in a collagenase-induced rat model of tendinopathy. CLINICAL RELEVANCE SPI is a promising agent for tendinopathy in humans.
Collapse
Affiliation(s)
- Kyung Rae Ko
- Department of Orthopaedic Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Soo-Hong Han
- Department of Orthopaedic Surgery, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam-si, Republic of Korea
| | - Sujin Choi
- Department of Orthopaedic Surgery, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam-si, Republic of Korea
| | - Hyun-Ju An
- Department of Orthopaedic Surgery, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam-si, Republic of Korea
| | - Eun-Bee Kwak
- Department of Orthopaedic Surgery, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam-si, Republic of Korea
| | - Yunhui Jeong
- Department of Orthopaedic Surgery, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam-si, Republic of Korea
| | - Minjung Baek
- Department of Orthopaedic Surgery, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam-si, Republic of Korea
| | - Jusung Lee
- Department of Orthopaedic Surgery, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam-si, Republic of Korea
| | - Junwon Choi
- Department of Molecular Science and Technology, Ajou University, Suwon-si, Republic of Korea
| | - Il-Su Kim
- Department of Orthopaedic Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Soonchul Lee
- Department of Orthopaedic Surgery, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam-si, Republic of Korea
| |
Collapse
|
4
|
Ko KR, Lee H, Han SH, Ahn W, Kim DK, Kim IS, Jung BS, Lee S. Substance P, A Promising Therapeutic Target in Musculoskeletal Disorders. Int J Mol Sci 2022; 23:ijms23052583. [PMID: 35269726 PMCID: PMC8910130 DOI: 10.3390/ijms23052583] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/20/2022] [Accepted: 02/23/2022] [Indexed: 02/04/2023] Open
Abstract
A large number of studies have focused on the role of substance P (SP) and the neurokinin-1 receptor (NK1R) in the pathogenesis of a variety of medical conditions. This review provides an overview of the role of the SP-NK1R pathway in the pathogenesis of musculoskeletal disorders and the evidence for its role as a therapeutic target for these disorders, which are major public health problems in most countries. To summarize, the brief involvement of SP may affect tendon healing in an acute injury setting. SP combined with an adequate conjugate can be a regenerative therapeutic option in osteoarthritis. The NK1R antagonist is a promising agent for tendinopathy, rheumatoid arthritis, and osteoarthritis. Research on the SP-NK1R pathway will be helpful for developing novel drugs for osteoporosis.
Collapse
Affiliation(s)
- Kyung Rae Ko
- Department of Orthopedic Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul 06351, Korea; (K.R.K.); (I.-S.K.)
| | - Hyunil Lee
- Department of Orthopedic Surgery, Ilsan Paik Hospital, Inje University, 170 Juhwa-ro, Ilsanseo-gu, Goyang-si 10380, Gyeonggi-do, Korea;
| | - Soo-Hong Han
- Department of Orthopedic Surgery, CHA Bundang Medical Center, CHA University School of Medicine, 335 Pangyo-ro, Bundang-gu, Seongnam-si 13488, Gyeonggi-do, Korea; (S.-H.H.); (W.A.); (D.K.K.)
| | - Wooyeol Ahn
- Department of Orthopedic Surgery, CHA Bundang Medical Center, CHA University School of Medicine, 335 Pangyo-ro, Bundang-gu, Seongnam-si 13488, Gyeonggi-do, Korea; (S.-H.H.); (W.A.); (D.K.K.)
| | - Do Kyung Kim
- Department of Orthopedic Surgery, CHA Bundang Medical Center, CHA University School of Medicine, 335 Pangyo-ro, Bundang-gu, Seongnam-si 13488, Gyeonggi-do, Korea; (S.-H.H.); (W.A.); (D.K.K.)
| | - Il-Su Kim
- Department of Orthopedic Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul 06351, Korea; (K.R.K.); (I.-S.K.)
| | - Bo Sung Jung
- Department of Orthopedic Surgery, CHA Bundang Medical Center, CHA University School of Medicine, 335 Pangyo-ro, Bundang-gu, Seongnam-si 13488, Gyeonggi-do, Korea; (S.-H.H.); (W.A.); (D.K.K.)
- Correspondence: (B.S.J.); (S.L.); Tel.: +82-31-780-5289 (B.S.J. & S.L.); Fax: +82-31-881-7114 (B.S.J. & S.L.)
| | - Soonchul Lee
- Department of Orthopedic Surgery, CHA Bundang Medical Center, CHA University School of Medicine, 335 Pangyo-ro, Bundang-gu, Seongnam-si 13488, Gyeonggi-do, Korea; (S.-H.H.); (W.A.); (D.K.K.)
- Correspondence: (B.S.J.); (S.L.); Tel.: +82-31-780-5289 (B.S.J. & S.L.); Fax: +82-31-881-7114 (B.S.J. & S.L.)
| |
Collapse
|
5
|
The Effect of Age and Intrinsic Aerobic Exercise Capacity on the Expression of Inflammation and Remodeling Markers in Rat Achilles Tendons. Int J Mol Sci 2021; 23:ijms23010079. [PMID: 35008516 PMCID: PMC8744822 DOI: 10.3390/ijms23010079] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 12/16/2021] [Accepted: 12/17/2021] [Indexed: 12/19/2022] Open
Abstract
Old age, adiposity, and metabolic disorders are known as risk factors for chronic tendinopathy, which is a common problem in both athletes and the general population. However, the importance of these influencing factors has not yet been well understood. This study investigated alterations in gene expression and histology of Achilles tendons of young (10 weeks) and old (100 weeks) rats bred for low (low capacity runners, LCR) and high (high capacity runners, HCR) intrinsic aerobic exercise capacity. In this rat model, LCR displayed a phenotype of reduced exercise capacity, higher body weight, and metabolic dysfunctions compared to HCR. We hypothesized that the risk factors for tendinopathy in old LCR could lead to more pronounced impairments in Achilles tendon tissue. In quantitative real-time PCR (qPCR), age-related downregulation of tenocyte markers e.g., tenomodulin, genes related to matrix modeling and remodeling (e.g., collagens, elastin, biglycan, fibronectin, tenascin C) as well as transforming growth factor beta 3 (Tgfb3) have been detected. Inflammation marker cyclooxygenase 2 (Cox2) was downregulated in old rats, while microsomal prostaglandin E synthase 2 (Ptges2) was upregulated in old HCR and old LCR. In all groups, interleukin 6 (Il6), interleukin 1 beta (Il1b), and tumor necrosis factor alpha (Tnfa) showed no significant alteration. In histological evaluation, tendons of old rats had fewer and more elongated tenocyte nuclei than young rats. Even though a higher content of glycosaminoglycans, a sign of degeneration, was found in old HCR and LCR, no further signs of tendinopathy were detectable in tendons of old rats by histological evaluation. Low intrinsic aerobic exercise capacity and the associated phenotype did not show significant effects on gene expression and tendon histology. These findings indicate that aging seems to play a prominent role in molecular and structural alterations of Achilles tendon tissue and suggests that other risk factors associated with intrinsic aerobic exercise capacity are less influential in this rat model.
Collapse
|
6
|
Cavalcante JDS, Nogueira Júnior FA, Bezerra Jorge RJ, Almeida C. Pain modulated by Bothrops snake venoms: Mechanisms of nociceptive signaling and therapeutic perspectives. Toxicon 2021; 201:105-114. [PMID: 34425141 DOI: 10.1016/j.toxicon.2021.08.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 08/11/2021] [Accepted: 08/16/2021] [Indexed: 12/17/2022]
Abstract
Snake venoms are substances mostly composed by proteins and peptides with high biological activity. Local and systemic effects culminate in clinical manifestations induced by these substances. Pain is the most uncomfortable condition, but it has not been well investigated. This review discusses Bothrops snakebite-induced nociception, highlighting molecules involved in the mediation of this process and perspectives in treatment of pain induced by Bothrops snake venoms (B. alternatus, B. asper, B. atrox, B. insularis, B. jararaca, B. pirajai, B. jararacussu, B. lanceolatus, B. leucurus, B. mattogrossensis, B. moojeni). We highlight, the understanding of the nociceptive signaling, especially in snakebite, enables more efficient treatment approaches. Finally, future perspectives for pain treatment concerning snakebite patients are discussed.
Collapse
Affiliation(s)
- Joeliton Dos Santos Cavalcante
- Graduate Program in Tropical Diseases, Botucatu Medical School (FMB), São Paulo State University, Botucatu, São Paulo, Brazil.
| | - Francisco Assis Nogueira Júnior
- Department of Physiology and Pharmacology and Drug Research and Development Center Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Roberta Jeane Bezerra Jorge
- Department of Physiology and Pharmacology and Drug Research and Development Center Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Cayo Almeida
- Center of Mathematics, Computing Sciences and Cognition, Federal University of ABC, São Paulo, Brazil.
| |
Collapse
|
7
|
Martínez F, Abián P, Jiménez F, Abián-Vicén J. Effects of Cross-Education After 6 Weeks of Eccentric Single-Leg Decline Squats Performed With Different Execution Times: A Randomized Controlled Trial. Sports Health 2021; 13:594-605. [PMID: 34075821 DOI: 10.1177/19417381211016353] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND Cross-education of strength refers to the strength gain that is transferred to the contralateral limb after a unilateral training program. HYPOTHESIS Unilateral eccentric training using different muscle contraction times would improve the structural and functional properties of the untrained contralateral limb. STUDY DESIGN Randomized controlled trial. LEVEL OF EVIDENCE Level 2. METHODS Thirty-six participants were randomized into a control group, experimental group 1 (EG6s; eccentric contraction runtime = 6 seconds) and experimental group 2 (EG3s; eccentric contraction runtime = 3 seconds). The thickness and elastographic index of the patellar tendon (PT), lean mass and fat percentage of the thigh, contractile properties of the vastus lateralis (VL), as well as isometric, concentric, and eccentric knee extensor peak torques, and eccentric single-leg decline squat (SLDSe) 1 repetition maximum (1-RM) were measured after 6 weeks of SLDSe training (3 times per week, 80% of 1-RM) and after 6 weeks of detraining in the untrained contralateral limb. RESULTS After training, there was an increase in lean thigh mass of the untrained limb in both groups: EG6s (0.17 ± 0.29 kg;P = 0.03; effect size [ES] = 0.15) and EG3s (0.15 ± 0.23 kg; P = 0.04; ES = 0.19). Likewise, both EG6s (62.30 ± 19.09 kg; P < 0.001; ES = 4.23) and EG3s (68.09 ± 27.49 kg; P < 0.001; ES = 3.40) increased their 1-RM, isometric (EG6s: 48.64 ± 44.82 N·m, P < 0.001, ES = 0.63; EG3s: 34.81 ± 47.30 N·m, P = 0.004, ES = 0.38), concentric at 60 deg/s and 180 deg/s and eccentric at 60 deg/s and 180 deg/s knee extensor peak torques (P < 0.05) in the untrained limb. However, no differences were found in the contractile properties of the VL or in the thickness of the PT after eccentric training in either of the 2 experimental groups. CONCLUSION Regardless of the runtime of the contraction, 6 weeks of SLSDe was effective for inducing structural and strength adaptations in the contralateral untrained limb. However, most of these adaptations were lost after 6 weeks of detraining. CLINICAL RELEVANCE Our study suggests that cross-education training can be of great importance for clinical application and musculoskeletal and neuromuscular rehabilitative processes after unilateral injury.
Collapse
Affiliation(s)
- Fernando Martínez
- Performance and Sport Rehabilitation Laboratory, Faculty of Sport Sciences, University of Castilla-La Mancha, Toledo, Spain
| | - Pablo Abián
- Faculty of Humanities and Social Sciences, Comillas Pontifical University, Madrid, Spain
| | - Fernando Jiménez
- Performance and Sport Rehabilitation Laboratory, Faculty of Sport Sciences, University of Castilla-La Mancha, Toledo, Spain
| | - Javier Abián-Vicén
- Performance and Sport Rehabilitation Laboratory, Faculty of Sport Sciences, University of Castilla-La Mancha, Toledo, Spain
| |
Collapse
|
8
|
Characterization of the structure, vascularity, and stem/progenitor cell populations in porcine Achilles tendon (PAT). Cell Tissue Res 2021; 384:367-387. [PMID: 33496880 DOI: 10.1007/s00441-020-03379-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 12/03/2020] [Indexed: 01/26/2023]
Abstract
This study aimed to characterize porcine Achilles tendon (PAT) in terms of its structural components, vascularity, and resident tendon cells. We found that PAT is composed of a paratenon sheath, a core of fascicles, and an endotenon/interfascicular matrix (IFM) that encases the fascicle bundles. We analyzed each of these three tendon components structurally using tissue sections and by isolating cells from each component and analyzing in vitro. Many blood vessel-like tissues were present in the paratenon and IFM but not in fascicles, and the vessels in the paratenon and IFM appeared to be inter-connected. Cells isolated from the paratenon and IFM displayed characteristics of vascular stem/progenitor cells expressing the markers CD105, CD31, with α-smooth muscle actin (α-SMA) localized surrounding blood vessels. The isolated cells from paratenon and IFM also harbored abundant stem/progenitor cells as evidenced by their ability to form colonies and express stem cell markers including CD73 and CD146. Furthermore, we demonstrate that both paratenon and IFM-isolated cells were capable of undergoing multi-differentiation. In addition, both paratenon and IFM cells expressed elastin, osteocalcin, tubulin polymerization promoting protein (TPPP), and collagen IV, whereas fascicle cells expressed none of these markers, except collagen I. The neurotransmitter substance P (SP) was also found in the paratenon and IFM-localized surrounding blood vessels. The findings of this study will help us to better understand the vascular and cellular mechanisms of tendon homeostasis, injury, healing, and regeneration.
Collapse
|
9
|
Campbell A, Taylor SA, O’Dea E, Shorey M, Warren RF, O’Brien SJ. A molecular characterization of inflammation in the bicipital tunnel. TRANSLATIONAL SPORTS MEDICINE 2021. [DOI: 10.1002/tsm2.224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Abigail Campbell
- Columbia University College of Physicians & Surgeons New York NY USA
| | | | | | - Mary Shorey
- Sidney Kimmel Medical College at Thomas Jefferson University Philadelphia PA USA
| | | | | |
Collapse
|
10
|
Barbe MF, Hilliard B, Fisher PW, White AR, Delany SP, Iannarone VJ, Harris MY, Amin M, Cruz GE, Popoff SN. Blocking substance P signaling reduces musculotendinous and dermal fibrosis and sensorimotor declines in a rat model of overuse injury. Connect Tissue Res 2020; 61:604-619. [PMID: 31443618 PMCID: PMC7036028 DOI: 10.1080/03008207.2019.1653289] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Purpose/Aim: Substance P-NK-1R signaling has been implicated in fibrotic tendinopathies and myositis. Blocking this signaling with a neurokinin 1 receptor antagonist (NK1RA) has been proposed as a therapeutic target for their treatment.Materials and Methods: Using a rodent model of overuse injury, we pharmacologically blocked Substance P using a specific NK1RA with the hopes of reducing forelimb tendon, muscle and dermal fibrogenic changes and associated pain-related behaviors. Young adult rats learned to pull at high force levels across a 5-week period, before performing a high repetition high force (HRHF) task for 3 weeks (2 h/day, 3 days/week). HRHF rats were untreated or treated in task weeks 2 and 3 with the NK1RA, i.p. Control rats received vehicle or NK1RA treatments.Results: Grip strength declined in untreated HRHF rats, and mechanical sensitivity and temperature aversion increased compared to controls; these changes were improved by NK1RA treatment (L-732,138). NK1RA treatment also reduced HRHF-induced thickening in flexor digitorum epitendons, and HRHF-induced increases of TGFbeta1, CCN2/CTGF, and collagen type 1 in flexor digitorum muscles. In the forepaw upper dermis, task-induced increases in collagen deposition were reduced by NK1RA treatment.Conclusions: Our findings indicate that Substance P plays a role in the development of fibrogenic responses and subsequent discomfort in forelimb tissues involved in performing a high demand repetitive forceful task.
Collapse
Affiliation(s)
- MF Barbe
- Department of Anatomy and Cell Biology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, United States
| | - B Hilliard
- Department of Anatomy and Cell Biology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, United States
| | - PW Fisher
- Department of Anatomy and Cell Biology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, United States
| | - AR White
- Department of Anatomy and Cell Biology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, United States
| | - SP Delany
- Department of Anatomy and Cell Biology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, United States
| | - VJ Iannarone
- Department of Anatomy and Cell Biology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, United States
| | - MY Harris
- Department of Anatomy and Cell Biology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, United States
| | - M Amin
- Department of Anatomy and Cell Biology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, United States
| | - GE Cruz
- Department of Anatomy and Cell Biology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, United States
| | - SN Popoff
- Department of Anatomy and Cell Biology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, United States
| |
Collapse
|
11
|
Ilaltdinov AW, Gong Y, Leong DJ, Gruson KI, Zheng D, Fung DT, Sun L, Sun HB. Advances in the development of gene therapy, noncoding RNA, and exosome-based treatments for tendinopathy. Ann N Y Acad Sci 2020; 1490:3-12. [PMID: 32501571 DOI: 10.1111/nyas.14382] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 05/08/2020] [Accepted: 05/12/2020] [Indexed: 12/16/2022]
Abstract
Tendinopathy is a common musculoskeletal disorder characterized by chronic low-grade inflammation and tissue degeneration. Tendons have poor innate healing ability and there is currently no cure for tendinopathy. Studies elucidating mechanisms underlying the pathogenesis of tendinopathy and mechanisms mediating the genesis of tendons during development have provided novel targets and strategies to enhance tendon healing and repair. This review summarizes the current understanding and treatments for tendinopathy. The review also highlights recent advances in gene therapy, the potential of noncoding RNAs, such as microRNAs, and exosomes, which are nanometer-sized extracellular vesicles secreted from cells, for the treatment of tendinopathy.
Collapse
Affiliation(s)
- Angela Wang Ilaltdinov
- Department of Orthopaedic Surgery, Albert Einstein College of Medicine, Bronx, New York.,Department of Radiation Oncology, Albert Einstein College of Medicine, Bronx, New York.,Department of Biomedical Engineering, City College of New York, New York, New York.,New York R&D Center for Translational Medicine and Therapeutics, Inc., New Rochelle, New York
| | - Yubao Gong
- Department of Orthopaedic Surgery, Albert Einstein College of Medicine, Bronx, New York.,Department of Orthopaedic Surgery, The First Hospital of Jilin University, Changchun, China
| | - Daniel J Leong
- Department of Orthopaedic Surgery, Albert Einstein College of Medicine, Bronx, New York.,Department of Radiation Oncology, Albert Einstein College of Medicine, Bronx, New York.,New York R&D Center for Translational Medicine and Therapeutics, Inc., New Rochelle, New York
| | - Konrad I Gruson
- Department of Orthopaedic Surgery, Albert Einstein College of Medicine, Bronx, New York
| | - Deyou Zheng
- Department of Genetics, Albert Einstein College of Medicine, Bronx, New York.,Department of Neurology, Albert Einstein College of Medicine, Bronx, New York.,Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York
| | - David T Fung
- New York R&D Center for Translational Medicine and Therapeutics, Inc., New Rochelle, New York
| | - Li Sun
- New York R&D Center for Translational Medicine and Therapeutics, Inc., New Rochelle, New York
| | - Hui B Sun
- Department of Orthopaedic Surgery, Albert Einstein College of Medicine, Bronx, New York.,Department of Radiation Oncology, Albert Einstein College of Medicine, Bronx, New York.,New York R&D Center for Translational Medicine and Therapeutics, Inc., New Rochelle, New York
| |
Collapse
|
12
|
Blumer R, Boesmueller S, Gesslbauer B, Hirtler L, Bormann D, Pastor AM, Streicher J, Mittermayr R. Structural and molecular characteristics of axons in the long head of the biceps tendon. Cell Tissue Res 2019; 380:43-57. [PMID: 31811408 DOI: 10.1007/s00441-019-03141-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 11/07/2019] [Indexed: 11/30/2022]
Abstract
The innervation of the long head of the biceps tendon (LHBT) is not sufficiently documented. This is a drawback since pathologies of the LHBT are a major source of shoulder pain. Thus, the study aimed to characterize structurally and molecularly nervous elements of the LHBT. The proximal part of 11 LHBTs was harvested intraoperatively. There were 8 female and 3 male specimens. Age ranged from 66 to 86 years. For structural analyses, nervous elements were viewed in the transmission electron microscope. For molecular characterization, we used general neuronal markers including antibodies against neurofilament and protein gene product 9.5 (PGP9.5) as well as specific neuronal markers including antibodies against myelin basic protein (MBP), calcitonin gene-related product (CGRP), substance P (SP), tyrosine hydroxylase (TH), and growth-associated protein 43 (GAP43). Anti-neurofilament and anti-PGP9.5 visualized the overall innervation. Anti-MBP visualized myelination, anti-CGRP and anti-SP nociceptive fibers, anti-TH sympathetic nerve fibers, and anti-GAP43 nerve fibers during development and regeneration. Immunolabeled sections were analyzed in the confocal laser scanning microscope. We show that the LHBT contains unmyelinated as well as myelinated nerve fibers which group in nerve fascicles and follow blood vessels. Manny myelinated and unmyelinated axons exhibit molecular features of nociceptive nerve fibers. Another subpopulation of unmyelinated axons exhibits molecular characteristics of sympathetic nerve fibers. Unmyelinated sympathetic fibers and unmyelinated nociceptive fibers express proteins that are found during development and regeneration. Present findings support the hypothesis that ingrowth of nociceptive fibers are the source of chronic tendon pain.
Collapse
Affiliation(s)
- Roland Blumer
- Center of Anatomy and Cell Biology, MIC, Medical University Vienna, A-1090, Vienna, Austria.
| | | | - Bernhard Gesslbauer
- Department of Surgery, Division of Plastic and Reconstruction Surgery, Medical University Vienna, A-1090, Vienna, Austria
| | - Lena Hirtler
- Center of Anatomy and Cell Biology, MIC, Medical University Vienna, A-1090, Vienna, Austria
| | - Daniel Bormann
- Center of Anatomy and Cell Biology, MIC, Medical University Vienna, A-1090, Vienna, Austria
| | - Angel M Pastor
- Departamento de Fisiología, Facultad de Biología, Universidad de Sevilla, 41012, Sevilla, Spain
| | - Johannes Streicher
- Department of Anatomy and Biomechanics, Division of Anatomy and Developmental Biology, Karl Landsteiner University of Health Science, A-3500, Krems an der Donau, Austria
| | | |
Collapse
|
13
|
Słoniecka M, Danielson P. Substance P induces fibrotic changes through activation of the RhoA/ROCK pathway in an in vitro human corneal fibrosis model. J Mol Med (Berl) 2019; 97:1477-1489. [PMID: 31399750 PMCID: PMC6746877 DOI: 10.1007/s00109-019-01827-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 06/24/2019] [Accepted: 07/31/2019] [Indexed: 12/19/2022]
Abstract
Fibrosis is characterized by hardening, overgrowth, and development of scars in various tissues as a result of faulty reparative processes, diseases, or chronic inflammation. During the fibrotic process in the corneal stroma of the eye, the resident cells called keratocytes differentiate into myofibroblasts, specialized contractile fibroblastic cells that produce excessive amounts of disorganized extracellular matrix (ECM) and pro-fibrotic components such as alpha-smooth muscle actin (α-SMA) and fibronectin. This study aimed to elucidate the role of substance P (SP), a neuropeptide that has been shown to be involved in corneal wound healing, in ECM production and fibrotic markers expression in quiescent human keratocytes, and during the onset of fibrosis in corneal fibroblasts, in an in vitro human corneal fibrosis model. We report that SP induces keratocyte contraction and upregulates gene expression of collagens I, III, and V, and fibrotic markers: α-SMA and fibronectin, in keratocytes. Using our in vitro human corneal fibrosis model, we show that SP enhances gene expression and secretion of collagens I, III, and V, and lumican. Moreover, SP upregulates gene expression and secretion of α-SMA and fibronectin, and increases contractility of corneal fibroblasts during the onset of fibrosis. Activation of the preferred SP receptor, the neurokinin-1 receptor (NK-1R), is necessary for the SP-induced pro-fibrotic changes. In addition, SP induces the pro-fibrotic changes through activation of the RhoA/ROCK pathway. Taken together, we show that SP has a pro-fibrotic effect in both quiescent human keratocytes and during the onset of fibrosis in an in vitro human corneal fibrosis model.
Collapse
Affiliation(s)
- Marta Słoniecka
- Department of Integrative Medical Biology, Umeå University, SE-901 87, Umeå, Sweden
| | - Patrik Danielson
- Department of Integrative Medical Biology, Umeå University, SE-901 87, Umeå, Sweden.
- Department of Clinical Sciences, Ophthalmology, Umeå University, SE-901 87, Umeå, Sweden.
| |
Collapse
|
14
|
More tendon degeneration in patients with shoulder osteoarthritis. Knee Surg Sports Traumatol Arthrosc 2019; 27:267-275. [PMID: 30284007 DOI: 10.1007/s00167-018-5186-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Accepted: 09/27/2018] [Indexed: 12/27/2022]
Abstract
PURPOSE Tendon disorders are a major problem in the general population. It is known that rotator cuff tendinopathy contributes to osteoarthritis (OA) of the shoulder. The aim of the study was to analyse the presence of tendinopathy in patients with shoulder OA and an intact rotator cuff, using a multimodal approach. METHODS Thirteen consecutive patients median age 67 (52-84) years, with OA of the shoulder, and 13 consecutive control patients, with a fracture of the proximal humerus, median age 70 (51-84) years, underwent an open biopsy procedure from the biceps and subscapularis tendon in conjunction with shoulder arthroplasty. In addition to a macroscopic evaluation, the samples underwent histologic, morphologic and ultrastructural analyses in light and transmission electron microscopy. RESULTS Macroscopic degeneration was found in 15 of 26 specimen in the OA group but in seven of 25 in the control group (p = 0.048). The histologic analysis revealed a non-significant difference for the total degeneration score (TDS) between the study groups. The morphologic evaluation of the samples revealed that the OA group had significantly more samples with non-homogeneous extracellular matrix (ECM), (p = 0.048). Ultrastructurally, the OA group revealed a significantly larger fibril diameter in the biceps tendon (p < 0.0001) but not in the subscapularis tendon compared with the control group. CONCLUSION A significantly worse macroscopic appearance and significantly more morphologically inhomogeneous ECM, indicating more tendon degeneration, were found in the OA group compared with the control group. This indicates that it could be beneficial to treat the tendinosis in an early stage to decrease symptoms from the OA. STUDY DESIGN Level of evidence, III.
Collapse
|
15
|
|
16
|
Abat F, Alfredson H, Cucchiarini M, Madry H, Marmotti A, Mouton C, Oliveira JM, Pereira H, Peretti GM, Spang C, Stephen J, van Bergen CJA, de Girolamo L. Current trends in tendinopathy: consensus of the ESSKA basic science committee. Part II: treatment options. J Exp Orthop 2018; 5:38. [PMID: 30251203 PMCID: PMC6153202 DOI: 10.1186/s40634-018-0145-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 07/26/2018] [Indexed: 01/01/2023] Open
Abstract
The treatment of painful chronic tendinopathy is challenging. Multiple non-invasive and tendon-invasive methods are used. When traditional non-invasive treatments fail, the injections of platelet-rich plasma autologous blood or cortisone have become increasingly favored. However, there is little scientific evidence from human studies supporting injection treatment. As the last resort, intra- or peritendinous open or endoscopic surgery are employed even though these also show varying results. This ESSKA basic science committee current concepts review follows the first part on the biology, biomechanics and anatomy of tendinopathies, to provide a comprehensive overview of the latest treatment options for tendinopathy as reported in the literature.
Collapse
Affiliation(s)
- F. Abat
- Department of Sports Orthopaedics, ReSport Clinic, Passeig Fabra i Puig 47, 08030 Barcelona, Spain
| | - H. Alfredson
- Sports Medicine Unit, University of Umeå, Umeå, Sweden
- Alfredson Tendon Clinic Inc, Umeå, Sweden
- Pure Sports Medicine Clinic, ISEH, UCLH, London, UK
| | - M. Cucchiarini
- Molecular Biology, Center of Experimental Orthopaedics, Saarland University Medical Center, Kirrbergerstr. Bldg 37, D-66421 Homburg, Saar Germany
| | - H. Madry
- Lehrstuhl für Experimentelle Orthopädie und Arthroseforschung, Universität des Saarlandes, Gebäude 37, Kirrbergerstr. 1, D-66421 Homburg, Germany
| | - A. Marmotti
- Department of Orthopaedics and Traumatology, San Luigi Gonzaga Hospital, Orbassano,University of Turin, Turin, Italy
| | - C. Mouton
- Department of Orthopedic Surgery, Clinique d’Eich-Centre Hospitalier de Luxembourg, 76, rue d’Eich, L-1460 Luxembourg, Luxembourg
| | - J. M. Oliveira
- 3B’s Research Group – Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Zona Industrial da Gandra, 4805-017 Barco GMR, Portugal
- ICVS/3B’s - PT Government Associate Laboratory, Braga, Guimarães Portugal
- The Discoveries Centre for Regenerative and Precision Medicine, Headquarters at University of Minho, Avepark, 4805-017 Barco, Guimarães Portugal
| | - H. Pereira
- 3B’s Research Group – Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Zona Industrial da Gandra, 4805-017 Barco GMR, Portugal
- Orthopedic Department Centro Hospitalar Póvoa de Varzim, Vila do Conde, Portugal
- Ripoll y De Prado Sports Clinic – FIFA Medical Centre of Excellence, Murcia, Madrid Spain
| | - G. M. Peretti
- IRCCS Istituto Ortopedico Galeazzi, Department of Biomedical Sciences for Health, University of Milan, Milan, Italy
| | - C. Spang
- Department of Integrative Medical Biology, Anatomy Section, Umeå University, Umeå, Sweden
| | - J. Stephen
- Fortius Clinic, 17 Fitzhardinge St, London, W1H 6EQ UK
- The Biomechanics Group, Department of Mechanical Engineering, Imperial College London, London, UK
| | - C. J. A. van Bergen
- Department of Orthopedic Surgery, Amphia Hospital Breda, Breda, The Netherlands
| | - L. de Girolamo
- Orthopaedic Biotechnology Laboratory, Orthopaedic Institute Galeazzi, Milan, Italy
| |
Collapse
|
17
|
Lipman K, Wang C, Ting K, Soo C, Zheng Z. Tendinopathy: injury, repair, and current exploration. DRUG DESIGN DEVELOPMENT AND THERAPY 2018; 12:591-603. [PMID: 29593382 PMCID: PMC5865563 DOI: 10.2147/dddt.s154660] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Both acute and chronic tendinopathy result in high morbidity, requiring management that is often lengthy and expensive. However, limited and conflicting scientific evidence surrounding current management options has presented a challenge when trying to identify the best treatment for tendinopathy. As a result of shortcomings of current treatments, response to available therapies is often poor, resulting in frustration in both patients and physicians. Due to a lack of understanding of basic tendon-cell biology, further scientific investigation is needed in the field for the development of biological solutions. Optimization of new delivery systems and therapies that spatially and temporally mimic normal tendon physiology hold promise for clinical application. This review focuses on the clinical importance of tendinopathy, the structure of healthy tendons, tendon injury, and healing, and a discussion of current approaches for treatment that highlight the need for the development of new nonsurgical interventions.
Collapse
Affiliation(s)
| | - Chenchao Wang
- Division of Growth and Development, Section of Orthodontics, School of Dentistry, University of California, Los Angeles, CA, USA.,First Hospital of China Medical University, Shenyang, China.,Division of Plastic and Reconstructive Surgery, Department of Orthopaedic Surgery, Orthopaedic Hospital Research Center, University of California, Los Angeles, CA, USA
| | - Kang Ting
- Division of Growth and Development, Section of Orthodontics, School of Dentistry, University of California, Los Angeles, CA, USA
| | - Chia Soo
- Division of Plastic and Reconstructive Surgery, Department of Orthopaedic Surgery, Orthopaedic Hospital Research Center, University of California, Los Angeles, CA, USA
| | - Zhong Zheng
- Division of Growth and Development, Section of Orthodontics, School of Dentistry, University of California, Los Angeles, CA, USA
| |
Collapse
|
18
|
Abstract
Tendons connect muscles to bones, ensuring joint movement. With advanced age, tendons become more prone to degeneration followed by injuries. Tendon repair often requires lengthy periods of rehabilitation, especially in elderly patients. Existing medical and surgical treatments often fail to regain full tendon function. The development of novel treatment methods has been hampered due to limited understanding of basic tendon biology. Recently, it was discovered that tendons, similar to other mesenchymal tissues, contain tendon stem/progenitor cells (TSPCs) which possess the common stem cell properties. The current strategies for enhancing tendon repair consist mainly of applying stem cells, growth factors, natural and artificial biomaterials alone or in combination. In this review, we summarise the basic biology of tendon tissues and provide an update on the latest repair proposals for tendon tears.
Cite this article: EFORT Open Rev 2017;2:332-342. DOI: 10.1302/2058-5241.2.160075
Collapse
Affiliation(s)
- Fan Wu
- Experimental Surgery and Regenerative Medicine, Department of Surgery, Ludwig-Maximilians-University (LMU), Munich, Germany
| | - Michael Nerlich
- Department of Trauma Surgery, University Regensburg Medical Center, Regensburg, Germany
| | - Denitsa Docheva
- Experimental Trauma Surgery, Department of Trauma Surgery, University Regensburg Medical Center, Regensburg, Germany and Department of Medical Biology, Medical University-Plovdiv, Plovdiv, Bulgaria
| |
Collapse
|
19
|
Dean BJF. Commentary: Role of VEGF, Nitric Oxide, and Sympathetic Neurotransmitters in the Pathogenesis of Tendinopathy: A Review of the Current Evidences. Front Aging Neurosci 2017; 9:60. [PMID: 28377711 PMCID: PMC5359247 DOI: 10.3389/fnagi.2017.00060] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 02/28/2017] [Indexed: 11/13/2022] Open
Affiliation(s)
- Benjamin J F Dean
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Botnar Research Centre, University of Oxford Oxford, UK
| |
Collapse
|
20
|
Fong G, Backman LJ, Alfredson H, Scott A, Danielson P. The effects of substance P and acetylcholine on human tenocyte proliferation converge mechanistically via TGF-β1. PLoS One 2017; 12:e0174101. [PMID: 28301610 PMCID: PMC5354451 DOI: 10.1371/journal.pone.0174101] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 03/04/2017] [Indexed: 01/10/2023] Open
Abstract
Previous in vitro studies on human tendon cells (tenocytes) have demonstrated that the exogenous administration of substance P (SP) and acetylcholine (ACh) independently result in tenocyte proliferation, which is a prominent feature of tendinosis. Interestingly, the possible link between SP and ACh has not yet been explored in human tenocytes. Recent studies in other cell types demonstrate that both SP and ACh independently upregulate TGF-β1 expression via their respective receptors, the neurokinin 1 receptor (NK-1R) and muscarinic ACh receptors (mAChRs). Furthermore, TGF-β1 has been shown to downregulate NK-1R expression in human keratocytes. The aim of this study was to examine if TGF-β1 is the intermediary player involved in mediating the proliferative pathway shared by SP and ACh in human tenocytes. The results showed that exogenous administration of SP and ACh both caused significant upregulation of TGF-β1 at the mRNA and protein levels. Exposing cells to TGF-β1 resulted in increased cell viability of tenocytes, which was blocked in the presence of the TGFβRI/II kinase inhibitor. In addition, the proliferative effects of SP and ACh on tenocytes were reduced by the TGFβRI/II kinase inhibitor; this supports the hypothesis that the proliferative effects of these signal substances are mediated via the TGF-β axis. Furthermore, exogenous TGF-β1 downregulated NK-1R and mAChRs expression at both the mRNA and protein levels, and these effects were negated by simultaneous exposure to the TGFβRI/II kinase inhibitor, suggesting a negative feedback loop. In conclusion, the results indicate that TGF-β1 is the intermediary player through which the proliferative actions of both SP and ACh converge mechanistically.
Collapse
Affiliation(s)
- Gloria Fong
- Dept. of Integrative Medical Biology, Anatomy, Umeå University, Umeå, Sweden
- Centre for Hip Health and Mobility, Vancouver Coastal Health Research Institute, Vancouver, BC, Canada
| | - Ludvig J. Backman
- Dept. of Integrative Medical Biology, Anatomy, Umeå University, Umeå, Sweden
| | - Håkan Alfredson
- Dept. of Community Medicine and Rehabilitation, Sports Medicine, Umeå University, Umeå, Sweden
| | - Alex Scott
- Centre for Hip Health and Mobility, Vancouver Coastal Health Research Institute, Vancouver, BC, Canada
| | - Patrik Danielson
- Dept. of Integrative Medical Biology, Anatomy, Umeå University, Umeå, Sweden
- Dept. of Clinical Sciences, Ophthalmology, Umeå University, Umeå, Sweden
- * E-mail:
| |
Collapse
|
21
|
Decreased Brain Neurokinin-1 Receptor Availability in Chronic Tennis Elbow. PLoS One 2016; 11:e0161563. [PMID: 27658244 PMCID: PMC5033598 DOI: 10.1371/journal.pone.0161563] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 08/08/2016] [Indexed: 12/28/2022] Open
Abstract
Substance P is released in painful and inflammatory conditions, affecting both peripheral processes and the central nervous system neurokinin 1 (NK1) receptor. There is a paucity of data on human brain alterations in NK1 expression, how this system may be affected by treatment, and interactions between central and peripheral tissue alterations. Ten subjects with chronic tennis elbow (lateral epicondylosis) were selected out of a larger (n = 120) randomized controlled trial evaluating graded exercise as a treatment for chronic tennis elbow (lateral epicondylosis). These ten subjects were examined by positron emission tomography (PET) with the NK1-specific radioligand 11C-GR205171 before, and eight patients were followed up after treatment with graded exercise. Brain binding in the ten patients before treatment, reflecting NK1-receptor availability (NK1-RA), was compared to that of 18 healthy subjects and, longitudinally, to the eight of the original ten patients that agreed to a second PET examination after treatment. Before treatment, patients had significantly lower NK1-RA in the insula, vmPFC, postcentral gyrus, anterior cingulate, caudate, putamen, amygdala and the midbrain but not the thalamus and cerebellum, with the largest difference in the insula contralateral to the injured elbow. No significant correlations between brain NK1-RA and pain, functional severity, or peripheral NK1-RA in the affected limb were observed. In the eight patients examined after treatment, pain ratings decreased in everyone, but there were no significant changes in NK1-RA. These findings indicate a role for the substance P (SP) / NK1 receptor system in musculoskeletal pain and tissue healing. As neither clinical parameters nor successful treatment response was reflected in brain NK1-RA after treatment, this may reflect the diverse function of the SP/NK1 system in CNS and peripheral tissue, or a change too small or slow to capture over the three-month treatment.
Collapse
|
22
|
ALLISON KIM, VICENZINO BILL, WRIGLEY TIMV, GRIMALDI ALISON, HODGES PAULW, BENNELL KIML. Hip Abductor Muscle Weakness in Individuals with Gluteal Tendinopathy. Med Sci Sports Exerc 2016; 48:346-52. [DOI: 10.1249/mss.0000000000000781] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
23
|
Roux SL, Borbely G, Słoniecka M, Backman LJ, Danielson P. Transforming Growth Factor Beta 1 Modulates the Functional Expression of the Neurokinin-1 Receptor in Human Keratocytes. Curr Eye Res 2015; 41:1035-1043. [PMID: 26673553 PMCID: PMC4989870 DOI: 10.3109/02713683.2015.1088954] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Purpose: Transforming growth factor beta 1 (TGF-β1) is a cytokine involved in a variety of processes, such as differentiation of fibroblasts into myofibroblasts. TGF-β1 has also been shown to delay the internalization of the neurokinin-1 receptor (NK-1 R) after its activation by its ligand, the neuropeptide substance P (SP). NK-1 R comprises two naturally occurring variants, a full-length and a truncated form, triggering different cellular responses. SP has been shown to affect important events in the cornea – such as stimulating epithelial cell proliferation – processes that are involved in corneal wound healing and thus in maintaining the transparency of the corneal stroma. An impaired signaling through NK-1 R could thus impact the visual quality. We hypothesize that TGF-β1 modulates the expression pattern of NK-1 R in human corneal stroma cells, keratocytes. The purpose of this study was to test that hypothesis. Methods: Cultures of primary keratocytes were set up with cells derived from healthy human corneas, obtained from donated transplantation graft leftovers, and characterized by immunocytochemistry and Western blot. Immunocytochemistry for TGF-β receptors and NK-1 R was performed. Gene expression was assessed with real-time polymerase chain reaction (qPCR). Results: Expression of TGF-β receptors was confirmed in keratocytes in vitro. Treating the cells with TGF-β1 significantly reduced the gene expression of NK-1 R. Furthermore, immunocytochemistry for NK-1 R demonstrated that it is specifically the expression of the full-length isotype of the receptor that is reduced after treatment with TGF-β1, which was also confirmed with qPCR using a specific probe for the full-length receptor. Conclusions: TGF-β1 down-regulates the gene expression of the full-length variant of NK-1 R in human keratocytes, which might impact its signaling pathway and thus explain the known delay in internalization after activation by SP seen with TGF-β1 treatment.
Collapse
Affiliation(s)
- Sandrine Le Roux
- a Department of Integrative Medical Biology , Umeå University , Umeå , Sweden
| | - Gabor Borbely
- a Department of Integrative Medical Biology , Umeå University , Umeå , Sweden
| | - Marta Słoniecka
- a Department of Integrative Medical Biology , Umeå University , Umeå , Sweden.,b Department of Clinical Sciences, Ophthalmology , Umeå University , Umeå , Sweden
| | - Ludvig J Backman
- a Department of Integrative Medical Biology , Umeå University , Umeå , Sweden
| | - Patrik Danielson
- a Department of Integrative Medical Biology , Umeå University , Umeå , Sweden.,b Department of Clinical Sciences, Ophthalmology , Umeå University , Umeå , Sweden
| |
Collapse
|
24
|
Słoniecka M, Le Roux S, Boman P, Byström B, Zhou Q, Danielson P. Expression Profiles of Neuropeptides, Neurotransmitters, and Their Receptors in Human Keratocytes In Vitro and In Situ. PLoS One 2015. [PMID: 26214847 PMCID: PMC4516240 DOI: 10.1371/journal.pone.0134157] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Keratocytes, the quiescent cells of the corneal stroma, play a crucial role in corneal wound healing. Neuropeptides and neurotransmitters are usually associated with neuronal signaling, but have recently been shown to be produced also by non-neuronal cells and to be involved in many cellular processes. The aim of this study was to assess the endogenous intracellular and secreted levels of the neuropeptides substance P (SP) and neurokinin A (NKA), and of the neurotransmitters acetylcholine (ACh), catecholamines (adrenaline, noradrenaline and dopamine), and glutamate, as well as the expression profiles of their receptors, in human primary keratocytes in vitro and in keratocytes of human corneal tissue sections in situ. Cultured keratocytes expressed genes encoding for SP and NKA, and for catecholamine and glutamate synthesizing enzymes, as well as genes for neuropeptide, adrenergic and ACh (muscarinic) receptors. Keratocytes in culture produced SP, NKA, catecholamines, ACh, and glutamate, and expressed neurokinin-1 and -2 receptors (NK-1R and NK-2R), dopamine receptor D2, muscarinic ACh receptors, and NDMAR1 glutamate receptor. Human corneal sections expressed SP, NKA, NK-1R, NK-2R, receptor D2, choline acetyl transferase (ChAT), M3, M4 and M5 muscarinic ACh receptors, glutamate, and NMDAR1, but not catecholamine synthesizing enzyme or the α1 and β2 adrenoreceptors, nor M1 receptor. In addition, expression profiles assumed significant differences between keratocytes from the peripheral cornea as compared to those from the central cornea, as well as differences between keratocytes cultured under various serum concentrations. In conclusion, human keratocytes express an array of neuropeptides and neurotransmitters. The cells furthermore express receptors for neuropeptides/neurotransmitters, which suggests that they are susceptible to stimulation by these substances in the cornea, whether of neuronal or non-neuronal origin. As it has been shown that neuropeptides/neurotransmitters are involved in cell proliferation, migration, and angiogenesis, it is possible that they play a role in corneal wound healing.
Collapse
Affiliation(s)
- Marta Słoniecka
- Department of Integrative Medical Biology, Umeå University, Umeå, Sweden
- * E-mail:
| | - Sandrine Le Roux
- Department of Integrative Medical Biology, Umeå University, Umeå, Sweden
| | - Peter Boman
- Department of Integrative Medical Biology, Umeå University, Umeå, Sweden
| | - Berit Byström
- Department of Clinical Sciences, Ophthalmology, Umeå University, Umeå, Sweden
| | - Qingjun Zhou
- Department of Integrative Medical Biology, Umeå University, Umeå, Sweden
- Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Qingdao, China
| | - Patrik Danielson
- Department of Integrative Medical Biology, Umeå University, Umeå, Sweden
- Department of Clinical Sciences, Ophthalmology, Umeå University, Umeå, Sweden
| |
Collapse
|
25
|
Zhou Y, Zhou B, Tang K. The effects of substance p on tendinopathy are dose-dependent: an in vitro and in vivo model study. J Nutr Health Aging 2015; 19:555-61. [PMID: 25923486 DOI: 10.1007/s12603-014-0576-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
OBJECTIVES Substance P (SP) is known to be involved in neuropathic pain, chronic inflammation, and tendinopathy. The present study evaluated the effects of different doses of SP on tendon-derived stem cells (TDSCs) in vitro and tendons in vivo. METHODS For the in vitro study, TDSCs cultured in growth medium with different concentrations of SP (negative control, 0.1 nM, and 1.0 nM). The effects of SP on TDSCs were examined with respect to their ability to proliferate and differentiate. For the in vivo study, we injected different doses of SP (saline control, 0.5 nmol, and 5.0 nmol) into rat patella tendons to investigate the effects of SP on tendons. RESULTS Low and high doses SP significantly enhanced the proliferation ability of TDSCs. Low-dose of SP induced the expression of tenocyte-related genes; however, high-dose of SP induced the expression of non-tenocyte genes, which was evident by the high expression of PPARγ and collagen type II. In the in vivo study, only high-doses of SP (5.0 nmol) induced the tendinosis-like changes in the patella tendon injection model. Low doses of SP (0.5 nmol) enhanced the tenogenesis compared with saline injection and the high-dose SP group. CONCLUSIONS SP enhances the proliferation of TDSCs in vitro and the effects of SP on tendinopathy are dose-dependent in vivo.
Collapse
Affiliation(s)
- Y Zhou
- Kanglai Tang, Department of Orthopedic Surgery, Third Military Medical University Affiliated Southwest Hospital, Gaotanyan Str. 30, Chongqing 400038, People's Republic of China, Telephone number: 86-23-68765289; Fax number: 86-23-65656500. E-mail:
| | | | | |
Collapse
|
26
|
Inflammation Is Present in De Quervain Disease—Correlation Study Between Biochemical and Histopathological Evaluation. Ann Plast Surg 2015; 74 Suppl 2:S146-51. [DOI: 10.1097/sap.0000000000000459] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
27
|
Christensen J, Alfredson H, Andersson G. Protease-activated receptors in the Achilles tendon-a potential explanation for the excessive pain signalling in tendinopathy. Mol Pain 2015; 11:13. [PMID: 25880199 PMCID: PMC4369088 DOI: 10.1186/s12990-015-0007-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Accepted: 02/20/2015] [Indexed: 01/07/2023] Open
Abstract
Background/Aim Tendinopathies are pathological conditions of tissue remodelling occurring in the major tendons of the body, accompanied by excessive nociceptive signalling. Tendinopathies have been shown to exhibit an increase in the number of mast cells, which are capable of releasing histamine, tryptase and other substances upon activation, which may play a role in the development of tendinopathies. This study set out to describe the distribution patterns of a family of receptors called protease-activated receptors (PARs) within the Achilles tendon. These four receptors (PAR1, PAR2, PAR3, PAR4) are activated by proteases, including tryptase released from mast cells, and are involved in fibrosis, hyperalgesia and neovascularisation, which are changes seen in tendinopathies. Method In order to study which structures involved in tendinopathy that these proteases can affect, biopsies from patients suffering of mid-portion Achilles tendinosis and healthy controls were collected and examined using immunohistochemistry. Tendon cells were cultured to study in vitro expression patterns. Results The findings showed a distribution of PARs inside the tendon tissue proper, and in the paratendinous tissue, with all four being expressed on nerves and vascular structures. Double staining showed co-localisation of PARs with nociceptive fibres expressing substance P. Concerning tenocytes, PAR2, PAR3, and PAR4, were found in both biopsies of tendon tissue and cultured tendon cells. Conclusions This study describes the expression patterns of PARs in the mid-portion of the Achilles tendon, which can help explain the tissue changes and increased pain signalling seen in tendinopathies. These findings also show that in-vitro studies of the effects of these receptors are plausible and that PARs are a possible therapeutic target in the future treatment strategies of tendinopathy.
Collapse
Affiliation(s)
- Jens Christensen
- Department of Integrative Medical Biology, Section for Anatomy, Umeå University, Umeå, SE-90187, Sweden.
| | - Håkan Alfredson
- Department of Community Medicine and Rehabilitation, Sports Medicine, Umeå University, Umeå, SE-90187, Sweden. .,ISEH, UCLH, London, UK. .,Pure Sports Clinic, London, UK.
| | - Gustav Andersson
- Department of Integrative Medical Biology, Section for Anatomy, Umeå University, Umeå, SE-90187, Sweden. .,Department of Surgical and Perioperative Science, Section for Hand and Plastic Surgery, Umeå University, Umeå, SE-90187, Sweden.
| |
Collapse
|
28
|
Affiliation(s)
- Nicola Maffulli
- Centre for Sports and Exercise Medicine, Barts and The London School of Medicine and Dentistry, Mile End Hospital, 275 Bancroft Road, London E1 4DG, United Kingdom
| | | | | | | |
Collapse
|
29
|
Magnan B, Bondi M, Pierantoni S, Samaila E. The pathogenesis of Achilles tendinopathy: a systematic review. Foot Ankle Surg 2014; 20:154-9. [PMID: 25103700 DOI: 10.1016/j.fas.2014.02.010] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Revised: 02/07/2014] [Accepted: 02/23/2014] [Indexed: 02/04/2023]
Abstract
Achilles tendinopathy is a degenerative, not an inflammatory, condition. It is prevalent in athletes involved in running sports. A systematic literature review on Achilles tendon tendinopathy has been performed according to the intrinsic (age, sex, body weight, tendon temperature, systemic diseases, muscle strength, flexibility, previous injuries and anatomical variants, genetic predisposition and blood supply) and extrinsic risk factors (drugs and overuse), which can cause tendon suffering and degeneration. Different theories have been found: Neurogenic, Angiogenic, Impingement and "Iceberg" Hypotheses. Multiple databases were utilized for articles published between 1964 and 2013. The different hypothesis were analyzed, differently considering those concerning the pathogenesis of tendinopathy and those concerning the etiology of complaints in patients. This review of the literature demonstrates the heterogeneity of Achilles tendinopathy pathogenesis. Various risk factors have been identified and have shown an interaction between them such as genes, age, circulating and local cytokine production, sex, biomechanics and body composition.
Collapse
Affiliation(s)
- Bruno Magnan
- Orthopaedic Department, University of Verona (Italy), Surgical Center "P. Confortini", Piazzale A. Stefani 1, 37126 Verona, Italy.
| | - Manuel Bondi
- Orthopaedic Department, University of Verona (Italy), Surgical Center "P. Confortini", Piazzale A. Stefani 1, 37126 Verona, Italy
| | - Silvia Pierantoni
- Orthopaedic Department, University of Verona (Italy), Surgical Center "P. Confortini", Piazzale A. Stefani 1, 37126 Verona, Italy
| | - Elena Samaila
- Orthopaedic Department, University of Verona (Italy), Surgical Center "P. Confortini", Piazzale A. Stefani 1, 37126 Verona, Italy
| |
Collapse
|
30
|
Frizziero A, Trainito S, Oliva F, Nicoli Aldini N, Masiero S, Maffulli N. The role of eccentric exercise in sport injuries rehabilitation. Br Med Bull 2014; 110:47-75. [PMID: 24736013 DOI: 10.1093/bmb/ldu006] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
INTRODUCTION Sports injuries frequently involve tendons, muscles and ligaments. The variable outcome of surgery and medical treatment support early functional treatments. Eccentric exercise (EE) showed effectiveness in the management of Achilles tendinopathy (AT), patellar tendinopathy (PT) and lateral epicondyle tendinopathy (LET). Preliminary results of EE in other tendinopathies and sports injuries suggest its wide prescription in the sport rehabilitation field. SOURCES OF DATA A comprehensive search of PubMed, Web of Science, the Cochrane Collaboration Database, Physiotherapy Evidence Database (PEDro), Evidence Based Medicine (EBM) Search review, National Guidelines, Scopus and Google Scholar was performed using keywords such as 'eccentric exercise', 'sports injuries rehabilitation', 'tendinopathy', 'hamstrings strain' 'adductor injuries' and 'ACL reconstruction rehabilitation'. AREAS OF AGREEMENT EE, alone or associated with other therapies, represents a feasible, cost-effective and successful tool in the treatment of well-known targets and might be promising in shoulder tendinopathy, adductor-related groin pain, hamstring strains, and ACL rehabilitation. AREA OF CONTROVERSY The lack of standardization of protocols, the variable amount, quality and follow-up of studies, the different anatomy and pathophysiology of the therapeutic targets limit the evidence of applicability of EE to sports injuries. GROWING POINTS The role of pathology and biomechanics in the response to EE should be further investigated. AREAS TIMELY FOR DEVELOPING RESEARCH New randomized controlled trials should test the effectiveness of standardized EE regimens to various sites of sports injuries.
Collapse
Affiliation(s)
- Antonio Frizziero
- Department of Physical and Rehabilitation Medicine, University of Padova, Italy
| | - Sabina Trainito
- Department of Physical and Rehabilitation Medicine, University of Padova, Italy
| | - Francesco Oliva
- Department of Orthopaedics and Traumatology, University of Rome 'Tor Vergata' School of Medicine, Rome, Italy
| | - Nicolò Nicoli Aldini
- Department Rizzoli RIT, Laboratory of Biocompatibility, Technological Innovations and Advanced Therapies, Rizzoli Orthopedic Institute, Bologna, Italy
| | - Stefano Masiero
- Department of Physical and Rehabilitation Medicine, University of Padova, Italy
| | - Nicola Maffulli
- Department of Physical and Rehabilitation Medicine, University of Salerno, Italy Centre for Sports and Exercise Medicine, Queen Mary University of London, Mile End Hospital Mann Ward, 275 Bancroft Road, London E1 4DG, UK Barts and The London School of Medicine and Dentistry, Mile End Hospital, London, UK
| |
Collapse
|
31
|
Blockade of substance P receptor attenuates osteoporotic pain, but not bone loss, in ovariectomized mice. Menopause 2014; 20:1074-83. [PMID: 23549442 DOI: 10.1097/gme.0b013e31828837a6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
OBJECTIVE The aim of this study was to investigate the effect of a substance P (SP) receptor (NK1 receptor [NK1-R]) antagonist on hyperalgesia and bone metabolism in ovariectomized mice. METHODS Thirty-six 9-week-old mice were subjected to either bilateral ovariectomy or sham surgery. Three weeks after the operation, the mice were treated with either a single-dose injection or 2-week repeated daily administration of L-703606, an NK1-R antagonist. Behavioral tests were performed for pain assessment; tibiae and the third lumbar vertebrae were dissected and assessed for microarchitectural or biomechanical properties. The expressions of SP and NK1-R in the dorsal root ganglia and spinal cord were also evaluated. RESULTS Both single-dose injection and 2-week repeated injections of L-703606 led to a significant increase in nociceptive threshold in ovariectomized mice. However, the antihyperalgesic effect faded at 2 hours and almost disappeared at 5 hours after a single-dose injection. With the 14-day repeated treatment of ovariectomized mice, the effect was not detectable at 24 hours after the first injection but was obvious at 24 hours after 1-week and 2-week administrations and still existed at 48 hours after the last injection. Ovariectomized mice at the hyperalgesic state had enhanced SP immunoreactivity in the dorsal root ganglia and up-regulated SP and NK1-R expressions in the spinal cord. However, no significant change in serum SP level was detected. Two-week treatment with L-703606 could down-regulate these expressions but failed to salvage the deteriorated trabecular microstructure and reduced compressive strength in ovariectomized mice. CONCLUSIONS Estrogen deficiency-induced hyperalgesia is achieved through up-regulation of SP and NK1-R expressions. Blockade of SP receptor can alleviate pain but cannot ameliorate bone loss. NK1-R antagonist is not recommended for the treatment of estrogen deficiency osteoporosis.
Collapse
|
32
|
Ellenbecker TS, Nirschl R, Renstrom P. Current concepts in examination and treatment of elbow tendon injury. Sports Health 2014; 5:186-94. [PMID: 24427389 PMCID: PMC3658379 DOI: 10.1177/1941738112464761] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Context: Injuries to the tendons of the elbow occur frequently in the overhead athlete, creating a significant loss of function and dilemma to sports medicine professionals. A detailed review of the anatomy, etiology, and pathophysiology of tendon injury coupled with comprehensive evaluation and treatment information is needed for clinicians to optimally design treatment programs for rehabilitation and prevention. Evidence Acquisitions: The PubMed database was searched in January 2012 for English-language articles pertaining to elbow tendon injury. Results: Detailed information on tendon pathophysiology was found along with incidence of elbow injury in overhead athletes. Several evidence-based reviews were identified, providing a thorough review of the recommended rehabilitation for elbow tendon injury. Conclusions: Humeral epicondylitis is an extra-articular tendon injury that is common in athletes subjected to repetitive upper extremity loading. Research is limited on the identification of treatment modalities that can reduce pain and restore function to the elbow. Eccentric exercise has been studied in several investigations and, when coupled with a complete upper extremity strengthening program, can produce positive results in patients with elbow tendon injury. Further research is needed in high-level study to delineate optimal treatment methods.
Collapse
Affiliation(s)
| | - Robert Nirschl
- Nirschl Orthopaedic Center for Sports Medicine and Joint Reconstruction, Arlington, Virginia
| | - Per Renstrom
- Centre for Sports Trauma Research, Karolinska Institute, Stockholm, Sweden
| |
Collapse
|
33
|
Peterson M, Svärdsudd K, Appel L, Engler H, Aarnio M, Gordh T, Långström B, Sörensen J. PET-scan shows peripherally increased neurokinin 1 receptor availability in chronic tennis elbow: visualizing neurogenic inflammation? PLoS One 2013; 8:e75859. [PMID: 24155873 PMCID: PMC3796513 DOI: 10.1371/journal.pone.0075859] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2012] [Accepted: 08/22/2013] [Indexed: 02/02/2023] Open
Abstract
UNLABELLED In response to pain, neurokinin 1 (NK1) receptor availability is altered in the central nervous system. The NK1 receptor and its primary agonist, substance P, also play a crucial role in peripheral tissue in response to pain, as part of neurogenic inflammation. However, little is known about alterations in NK1 receptor availability in peripheral tissue in chronic pain conditions and very few studies have been performed on human beings. Ten subjects with chronic tennis elbow were therefore examined by positron emission tomography (PET) with the NK1 specific radioligand [(11)C]GR205171 before and after treatment with graded exercise. The radioligand signal intensity was higher in the affected arm as compared with the unaffected arm, measured as differences between the arms in volume of voxels and signal intensity of this volume above a reference threshold set as 2.5 SD above mean signal intensity of the unaffected arm before treatment. In the eight subjects examined after treatment, pain ratings decreased in all subjects but signal intensity decreased in five and increased in three. In conclusion, NK1 receptors may be activated, or up-regulated in the peripheral, painful tissue of a chronic pain condition. This up-regulation does, however, have moderate correlation to pain ratings. The increased NK1 receptor availability is interpreted as part of ongoing neurogenic inflammation and may have correlation to the pathogenesis of chronic tennis elbow. TRIAL REGISTRATION ClinicalTrials.gov NCT00888225 http://clinicaltrials.gov/
Collapse
Affiliation(s)
- Magnus Peterson
- Department of Public Health and Caring Sciences, Family Medicine and Clinical Epidemiology, Uppsala University, Uppsala, Sweden
| | - Kurt Svärdsudd
- Department of Public Health and Caring Sciences, Family Medicine and Clinical Epidemiology, Uppsala University, Uppsala, Sweden
| | - Lieuwe Appel
- Uppsala PET Centre, Department of Radiology, Oncology and Radiation Sciences, Uppsala University, Uppsala, Sweden
| | - Henry Engler
- Uppsala PET Centre, Department of Radiology, Oncology and Radiation Sciences, Uppsala University, Uppsala, Sweden
- Uruguayan Centre of Molecular Imaging (CUDIM), Faculty of Medicine and Faculty of Sciences, University of the Republic, Montevideo, Uruguay
| | - Mikko Aarnio
- Department of Surgical Sciences, Pain Research, Uppsala University, Uppsala, Sweden
| | - Torsten Gordh
- Department of Surgical Sciences, Pain Research, Uppsala University, Uppsala, Sweden
| | - Bengt Långström
- Uppsala PET Centre, Department of Radiology, Oncology and Radiation Sciences, Uppsala University, Uppsala, Sweden
- Department of Biochemistry and Organic Chemistry, Uppsala University, Uppsala, Sweden
- Neuropsychopharmacology Section, Faculty of Medicine, Imperial College, London, United Kingdom
| | - Jens Sörensen
- Uppsala PET Centre, Department of Radiology, Oncology and Radiation Sciences, Uppsala University, Uppsala, Sweden
| |
Collapse
|
34
|
Malliaras P, Barton CJ, Reeves ND, Langberg H. Achilles and patellar tendinopathy loading programmes : a systematic review comparing clinical outcomes and identifying potential mechanisms for effectiveness. Sports Med 2013; 43:267-86. [PMID: 23494258 DOI: 10.1007/s40279-013-0019-z] [Citation(s) in RCA: 250] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2023]
Abstract
INTRODUCTION Achilles and patellar tendinopathy are overuse injuries that are common among athletes. Isolated eccentric muscle training has become the dominant conservative management strategy for Achilles and patellar tendinopathy but, in some cases, up to 45 % of patients may not respond. Eccentric-concentric progressing to eccentric (Silbernagel combined) and eccentric-concentric isotonic (heavy-slow resistance; HSR) loading have also been investigated. In order for clinicians to make informed decisions, they need to be aware of the loading options and comparative evidence. The mechanisms of loading also need to be elucidated in order to focus treatment to patient deficits and refine loading programmes in future studies. OBJECTIVES The objectives of this review are to evaluate the evidence in studies that compare two or more loading programmes in Achilles and patellar tendinopathy, and to review the non-clinical outcomes (potential mechanisms), such as improved imaging outcomes, associated with clinical outcomes. METHODS Comprehensive searching (MEDLINE, EMBASE, CINAHL, Current Contents and SPORTDiscus(™)) identified 403 studies. Two authors independently reviewed studies for inclusion and quality. The final yield included 32 studies; ten compared loading programmes and 28 investigated at least one potential mechanism (six studies compared loading programmes and investigated potential mechanisms). RESULTS This review has identified limited (Achilles) and conflicting (patellar) evidence that clinical outcomes are superior with eccentric loading compared with other loading programmes, questioning the currently entrenched clinical approach to these injuries. There is equivalent evidence for Silbernagel combined (Achilles) and greater evidence for HSR loading (patellar). The only potential mechanism that was consistently associated with improved clinical outcomes in both Achilles and patellar tendon rehabilitation was improved neuromuscular performance (e.g. torque, work, endurance), and Silbernagel-combined (Achilles) HSR loading (patellar) had an equivalent or higher level of evidence than isolated eccentric loading. In the Achilles tendon, a majority of studies did not find an association between improved imaging (e.g. reduced anteroposterior diameter, proportion of tendons with Doppler signal) and clinical outcomes, including all high-quality studies. In contrast, HSR loading in the patellar tendon was associated with reduced Doppler area and anteroposterior diameter, as well as greater evidence of collagen turnover, and this was not seen following eccentric loading. HSR seems more likely to lead to tendon adaptation and warrants further investigation. Improved jump performance was associated with Achilles but not patellar tendon clinical outcomes. The mechanisms associated with clinical benefit may vary between loading interventions and tendons. CONCLUSION There is little clinical or mechanistic evidence for isolating the eccentric component, although it should be made clear that there is a paucity of good quality evidence and several potential mechanisms have not been investigated, such as neural adaptation and central nervous system changes (e.g. cortical reorganization). Clinicians should consider eccentric-concentric loading alongside or instead of eccentric loading in Achilles and patellar tendinopathy. Good-quality studies comparing loading programmes and evaluating clinical and mechanistic outcomes are needed in both Achilles and patellar tendinopathy rehabilitation.
Collapse
Affiliation(s)
- Peter Malliaras
- Centre for Sports and Exercise Medicine, Mile End Hospital, Queen Mary, University of London, London, UK.
| | | | | | | |
Collapse
|
35
|
Rio E, Moseley L, Purdam C, Samiric T, Kidgell D, Pearce AJ, Jaberzadeh S, Cook J. The Pain of Tendinopathy: Physiological or Pathophysiological? Sports Med 2013; 44:9-23. [DOI: 10.1007/s40279-013-0096-z] [Citation(s) in RCA: 172] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
36
|
Dean BJF, Franklin SL, Carr AJ. The peripheral neuronal phenotype is important in the pathogenesis of painful human tendinopathy: a systematic review. Clin Orthop Relat Res 2013; 471:3036-46. [PMID: 23609815 PMCID: PMC3734433 DOI: 10.1007/s11999-013-3010-y] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Accepted: 04/16/2013] [Indexed: 01/31/2023]
Abstract
BACKGROUND The pathogenesis of tendinopathy is complex and incompletely understood. Although significant advances have been made in terms of understanding the pathological changes in both the extracellular matrix and the cells involved, relatively little is known about the role of neuronal regulation in tendinopathy. The frequent mismatch between tendon pathology and pain may be explained, in part, by differences in the peripheral neuronal phenotype of patients. QUESTIONS/PURPOSES The primary purpose of this review was to determine whether evidence exists of changes in the peripheral neuronal phenotype in painful human tendinopathy and, if so, to identify the associated histological and molecular changes. The secondary purpose was to determine if any changes in the peripheral neuronal phenotype reported correlate with pain symptoms. METHODS We conducted a systematic review of the scientific literature using the PRISMA and Cochrane guidelines. The Medline and Embase databases were searched using specific search criteria. Only studies analyzing the peripheral tissue of patients with the clinical diagnosis of tendinopathy were included. Inclusion was agreed on by two independent researchers on review of abstracts or full text. RESULTS Overall in the 27 included studies, there was clear evidence of changes in the peripheral neuronal phenotype in painful human tendinopathy. The excitatory glutaminergic system was significantly upregulated in seven studies, there was a significant increase in sensory neuropeptide expression in four studies, and there were significant changes in the molecular morphology of tenocytes, blood vessels, and nerves. In rotator cuff tendinopathy, substance P has been shown to correlate with pain and the neural density in the subacromial bursa has been shown to correlate with rest pain. CONCLUSIONS The peripheral neuronal phenotype is an important factor in the pathogenesis of painful human tendinopathy. Further research in this area specifically correlating tissue changes to clinical scores has great potential in further developing our understanding of the disease process.
Collapse
Affiliation(s)
- Benjamin John Floyd Dean
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Botnar Research Centre, Institute of Musculoskeletal Sciences, Nuffield Orthopaedic Centre, Windmill Road, Oxford, OX3 7LD UK
| | - Sarah L. Franklin
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Botnar Research Centre, Institute of Musculoskeletal Sciences, Nuffield Orthopaedic Centre, Windmill Road, Oxford, OX3 7LD UK
| | - Andrew Jonathan Carr
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Botnar Research Centre, Institute of Musculoskeletal Sciences, Nuffield Orthopaedic Centre, Windmill Road, Oxford, OX3 7LD UK
| |
Collapse
|
37
|
Backman LJ, Eriksson DE, Danielson P. Substance P reduces TNF-α-induced apoptosis in human tenocytes through NK-1 receptor stimulation. Br J Sports Med 2013; 48:1414-20. [PMID: 23996004 PMCID: PMC4173875 DOI: 10.1136/bjsports-2013-092438] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Background It has been hypothesised that an upregulation of the neuropeptide substance P (SP) and its preferred receptor, the neurokinin-1 receptor (NK-1 R), is a causative factor in inducing tenocyte hypercellularity, a characteristic of tendinosis, through both proliferative and antiapoptotic stimuli. We have demonstrated earlier that SP stimulates proliferation of human tenocytes in culture. Aim The aim of this study was to investigate whether SP can mediate an antiapoptotic effect in tumour necrosis factor-α (TNF-α)-induced apoptosis of human tenocytes in vitro. Results A majority (approximately 75%) of tenocytes in culture were immunopositive for TNF Receptor-1 and TNF Receptor-2. Exposure of the cells to TNF-α significantly decreased cell viability, as shown with crystal violet staining. TNF-α furthermore significantly increased the amount of caspase-10 and caspase-3 mRNA, as well as both BID and cleaved-poly ADP ribosome polymerase (c-PARP) protein. Incubation of SP together with TNF-α resulted in a decreased amount of BID and c-PARP, and in a reduced lactate dehydrogenase release, as compared to incubation with TNF-α alone. The SP effect was blocked with a NK-1 R inhibitor. Discussion This study shows that SP, through stimulation of the NK-1 R, has the ability to reduce TNF-α-induced apoptosis of human tenocytes. Considering that SP has previously been shown to stimulate tenocyte proliferation, the study confirms SP as a potent regulator of cell-turnover in tendon tissue, capable of stimulating hypercellularity through different mechanisms. This gives further support for the theory that the upregulated amount of SP seen in tendinosis could contribute to hypercellularity.
Collapse
Affiliation(s)
- Ludvig J Backman
- Department of Integrative Medical Biology, Anatomy, Umeå University, Umeå, Sweden Department of Surgical and Perioperative Sciences, Sports Medicine, Umeå University, Umeå, Sweden
| | - Daniella E Eriksson
- Department of Integrative Medical Biology, Anatomy, Umeå University, Umeå, Sweden
| | - Patrik Danielson
- Department of Integrative Medical Biology, Anatomy, Umeå University, Umeå, Sweden
| |
Collapse
|
38
|
Peterson M, Breivik H. Even a "simple" pain condition such as "Tennis Elbow" is not only a somatic experience: body and mind are inseparable entities. Scand J Pain 2013; 4:153-154. [PMID: 29913912 DOI: 10.1016/j.sjpain.2013.05.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Magnus Peterson
- Department of Public Health and Caring Sciences, Section of Family Medicine and Preventive Medicine, Uppsala University, Uppsala Sweden
| | - Harald Breivik
- University of Oslo, Oslo Norway.,Department of Pain Management and Research, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
39
|
Danielson P. ROLE OF NEUROPEPTIDES AND OTHER NEUROMODULATORS IN TENDINOPATHY PATHOGENESIS. Br J Sports Med 2013. [DOI: 10.1136/bjsports-2013-092459.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
40
|
Backman LJ, Danielson P. Akt-mediated anti-apoptotic effects of substance P in Anti-Fas-induced apoptosis of human tenocytes. J Cell Mol Med 2013; 17:723-33. [PMID: 23577779 PMCID: PMC3823176 DOI: 10.1111/jcmm.12059] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2012] [Accepted: 03/15/2013] [Indexed: 11/29/2022] Open
Abstract
Substance P (SP) and its receptor, the neurokinin-1 receptor (NK-1 R), are expressed by human tenocytes, and they are both up-regulated in cases of tendinosis, a condition associated with excessive apoptosis. It is known that SP can phosphorylate/activate the protein kinase Akt, which has anti-apoptotic effects. This mechanism has not been studied for tenocytes. The aims of this study were to investigate if Anti-Fas treatment is a good apoptosis model for human tenocytes in vitro, if SP protects from Anti-Fas-induced apoptosis, and by which mechanisms SP mediates an anti-apoptotic response. Anti-Fas treatment resulted in a time- and dose-dependent release of lactate dehydrogenase (LDH), i.e. induction of cell death, and SP dose-dependently reduced the Anti-Fas-induced cell death through a NK-1 R specific pathway. The same trend was seen for the TUNEL assay, i.e. SP reduced Anti-Fas-induced apoptosis via NK-1 R. In addition, it was shown that SP reduces Anti-Fas-induced decrease in cell viability as shown with crystal violet assay. Protein analysis using Western blot confirmed that Anti-Fas induces cleavage/activation of caspase-3 and cleavage of PARP; both of which were inhibited by SP via NK-1 R. Finally, SP treatment resulted in phosphorylation/activation of Akt as shown with Western blot, and it was confirmed that the anti-apoptotic effect of SP was, at least partly, induced through the Akt-dependent pathway. In conclusion, we show that SP reduces Anti-Fas-induced apoptosis in human tenocytes and that this anti-apoptotic effect of SP is mediated through NK-1 R and Akt-specific pathways.
Collapse
Affiliation(s)
- Ludvig J Backman
- Department of Integrative Medical Biology, Anatomy, Umeå University, Umeå, Sweden
| | | |
Collapse
|
41
|
Dean BJF, Gwilym SE, Carr AJ. Why does my shoulder hurt? A review of the neuroanatomical and biochemical basis of shoulder pain. Br J Sports Med 2013; 47:1095-104. [DOI: 10.1136/bjsports-2012-091492] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
42
|
Fong G, Backman LJ, Hart DA, Danielson P, McCormack B, Scott A. Substance P enhances collagen remodeling and MMP-3 expression by human tenocytes. J Orthop Res 2013; 31:91-8. [PMID: 22836729 PMCID: PMC3959169 DOI: 10.1002/jor.22191] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2012] [Accepted: 06/25/2012] [Indexed: 02/06/2023]
Abstract
The loss of collagen organization is considered a hallmark histopathologic feature of tendinosis. At the cellular level, tenocytes have been shown to produce signal substances that were once thought to be restricted to neurons. One of the main neuropeptides implicated in tendinosis, substance P (SP), is known to influence collagen organization, particularly after injury. The aim of this study was to examine the influence of SP on collagen remodeling by primary human tendon cells cultured in vitro in three-dimensional collagen lattices. We found that SP stimulation led to an increased rate of collagen remodeling mediated via the neurokinin-1 receptor (NK-1 R), the preferred cell receptor for SP. Gene expression analysis showed that SP stimulation resulted in significant increases in MMP3, COL3A1 and ACTA2 mRNA levels in the collagen lattices. Furthermore, cyclic tensile loading of tendon cell cultures along with the administration of exogenous SP had an additive effect on MMP3 expression. Immunoblotting confirmed that SP increased MMP3 protein levels via the NK-1 R. This study indicates that SP, mediated via NK-1 R, increases collagen remodeling and leads to increased MMP3 mRNA and protein expression that is further enhanced by cyclic mechanical loading.
Collapse
Affiliation(s)
- Gloria Fong
- Dept. of Physical Therapy, University of British Columbia, Vancouver, BC, Canada,Dept. of Integrative Medical Biology, Anatomy, Umeå University, Umeå, Sweden,Centre for Hip Health and Mobility, Vancouver Coastal Health and Research Institute, Vancouver, BC, Canada
| | - Ludvig J. Backman
- Dept. of Integrative Medical Biology, Anatomy, Umeå University, Umeå, Sweden
| | - David A. Hart
- Centre for Hip Health and Mobility, Vancouver Coastal Health and Research Institute, Vancouver, BC, Canada,McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, AB, Canada
| | - Patrik Danielson
- Dept. of Integrative Medical Biology, Anatomy, Umeå University, Umeå, Sweden
| | - Bob McCormack
- Centre for Hip Health and Mobility, Vancouver Coastal Health and Research Institute, Vancouver, BC, Canada
| | - Alex Scott
- Dept. of Physical Therapy, University of British Columbia, Vancouver, BC, Canada,Centre for Hip Health and Mobility, Vancouver Coastal Health and Research Institute, Vancouver, BC, Canada,Correspondence to: Alex Scott, PhD, Dept. of Physical Therapy, University of British Columbia, Vancouver, BC, Canada, , phone: +1 604 875 4111 Ext. 21810, fax: +1 604 675 2576
| |
Collapse
|
43
|
Han SH, An HJ, Song JY, Shin DE, Kwon YD, Shim JS, Lee SC. Effects of corticosteroid on the expressions of neuropeptide and cytokine mRNA and on tenocyte viability in lateral epicondylitis. JOURNAL OF INFLAMMATION-LONDON 2012; 9:40. [PMID: 23107345 PMCID: PMC3551708 DOI: 10.1186/1476-9255-9-40] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2012] [Accepted: 10/26/2012] [Indexed: 11/10/2022]
Abstract
Background The purpose of this study was to determine the reaction mechanism of corticosteroid by analyzing the expression patterns of neuropeptides (substance P (SP), calcitonin gene related peptide (CGRP)) and of cytokines (interleukin (IL)-1α, tumor growth factor (TGF)-β) after corticosteroid treatment in lateral epicondylitis. In addition, we also investigated whether corticosteroid influenced tenocyte viability. Methods The corticosteroid triamcinolone acetonide (TAA) was applied to cultured tenocytes of lateral epicondylitis, and the changes in the mRNA expressions of neuropeptides and cytokines and tenocyte viabilities were analyzed at seven time points. Quantitative real-time polymerase chain reaction and an MTT assay were used. Results The expression of SP mRNA was maximally inhibited by TAA at 24 hours but recovered at 72 hours, and the expressions of CGRP mRNA and IL-1α mRNA were inhibited at 24 and 3 hours, respectively. The expression of TGF-β mRNA was not significant. Tenocyte viability was significantly reduced by TAA at 24 hours. Conclusions We postulate that the reaction mechanism predominantly responsible for symptomatic relief after a corticosteroid injection involves the inhibitions of neuropeptides and cytokines, such as, CGRP and IL-1α. However the tenocyte viability was compromised by a corticosteroid.
Collapse
Affiliation(s)
- Soo Hong Han
- Department of Orthopaedic Surgery, CHA Bundang Medical Center, CHA University, Gyeonggi-do, 463-712, Korea.
| | | | | | | | | | | | | |
Collapse
|
44
|
Abstract
CONTEXT Tendinopathy is increasing in prevalence and accounts for a substantial part of all sports injuries and occupational disorders. Despite the magnitude of the disorder, high-quality scientific data on etiology and available treatments have been limited. EVIDENCE ACQUISITION The authors conducted a MEDLINE search on tendinopathy, or "tendonitis" or "tendinosis" or "epicondylitis" or "jumpers knee" from 1980 to 2011. The emphasis was placed on updates on epidemiology, etiology, and recent patient-oriented Level 1 literature. RESULTS Repetitive exposure in combination with recently discovered intrinsic factors, such as genetic variants of matrix proteins, and metabolic disorders is a risk factor for the development of tendinopathy. Recent findings demonstrate that tendinosis is characterized by a fibrotic, failed healing response associated with pathological vessel and sensory nerve ingrowth. This aberrant sensory nerve sprouting may partly explain increased pain signaling and partly, by release of neuronal mediators, contribute to the fibrotic alterations observed in tendinopathy. The initial nonoperative treatment should involve eccentric exercise, which should be the cornerstone (basis) of treatment of tendinopathy. Eccentric training combined with extracorporeal shockwave treatment has in some reports shown higher success rates compared to any therapies alone. Injection therapies (cortisone, sclerosing agents, blood products including platelet-rich plasma) may have short-term effects but have no proven long-term treatment effects or meta-analyses to support them. For epicondylitis, cortisone injections have demonstrated poorer long-time results than conservative physiotherapy. Today surgery is less indicated because of successful conservative therapies. New minioperative procedures that, via the endoscope, remove pathologic tissue or abnormal neoinnervation demonstrate promising results but need confirmation by Level 1 studies. CONCLUSIONS Novel targeted therapies are emerging, but multicenter trials are needed to confirm the results of exercise and mini-invasive treatments.
Collapse
Affiliation(s)
- Paul W Ackermann
- Section of Orthopedics and Sports Medicine, Department of Molecular Medicine and Surgery, Stockholm Sports Trauma Research Center, Karolinska Institutet, Stockholm, Sweden
| | | |
Collapse
|
45
|
SWAAT study: extracorporeal shock wave therapy and arginine supplementation and other nutraceuticals for insertional Achilles tendinopathy. Adv Ther 2012; 29:799-814. [PMID: 22923162 DOI: 10.1007/s12325-012-0046-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2012] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Extracorporeal shockwave therapy (ESWT) produces good results in the treatment of insertional Achilles tendinopathy. The efficacy of combined administration of dietary supplements with ESWT has not yet been studied. METHODS In this prospective, randomized clinical trial, Shock Waves therapy and Arginine for Achilles Tendinopathy (SWAAT), subjects affected by insertional Achilles tendinopathy were enrolled. Between January and October 2011, all participants underwent three sessions of ESWT. In addition, the patients in the experimental group received a daily dietary supplement containing arginine, Vinitrox (Bio Serae Laboratories SAS, Bram, France), collagen, methyl-sulfonyl-methane, vitamin C, and bromelain, while the control group patients received placebo. RESULTS There was no statistically significant difference in the visual analog scale (VAS) score between the two groups at 2 months (3.9 vs. 5.1; P=0.07), whereas at 6 months the value was significantly lower in the experimental group (2.0 vs. 2.9; P=0.04). The difference in the Ankle-Hindfoot Scale score at 2 and 6 months of follow-up (FU) was significantly in favor of the experimental group (2 months: 85.4 vs. 72.1; P=0.0035; 6 months: 92.4 vs. 76.5; P=0.0002). The Roles and Maudsley score also showed a statistically significant difference between the two groups in favor of the experimental arm as regards patient satisfaction (at 2 months: 1.7 vs. 2.8; P<0.0001; at 6 months: 1.5 vs. 2.3; P<0.001). There was a statistically significant reduction in tissue oximetry values compared to baseline in both treatment groups at 2 and 6 months of FU. Comparing the groups, only at the last FU, at 6 months, was a significantly lower oximetry value observed in the experimental group versus controls (60.2 vs. 66.0; P=0.007). CONCLUSION On the basis of the results obtained in this study, the authors conclude that in the treatment of insertional Achilles tendinopathy, ESWT induces a hemodynamic re-equilibrium with an amelioration in tendon trophism [corrected]. The addition of specific dietary supplements could improve the therapeutic response.
Collapse
|
46
|
Andia I, Abate M. Platelet-rich plasma injections for tendinopathy and osteoarthritis. ACTA ACUST UNITED AC 2012. [DOI: 10.2217/ijr.12.36] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
47
|
Tendon structure changes after maximal exercise in the Thoroughbred horse: use of ultrasound tissue characterisation to detect in vivo tendon response. Vet J 2012; 194:338-42. [PMID: 22658820 DOI: 10.1016/j.tvjl.2012.04.024] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2011] [Revised: 04/11/2012] [Accepted: 04/20/2012] [Indexed: 11/22/2022]
Abstract
Investigations into the response of the superficial digital flexor tendon (SDFT) of the Thoroughbred horse to mechanical stimuli have been limited to in vitro cell culture studies focused primarily on gene expression of critical matrix proteins. It is uncertain how well in vitro outcomes translate to the tendon of the horse during exercise. The current study examined changes in tendon structure in response to maximal exercise using ultrasound tissue characterisation (UTC) to scan the SDFT prior to and after competitive racing. UTC uses contiguous transverse ultrasound images to assess the dynamics of the echopattern, which has a close relationship with changes in the 3-D ultra-structure of the tendon. Using UTC, it was possible to detect subtle changes in the dynamics of the echopattern, with a reduction in pixels that represent aligned and integer collagen tendon bundles on days 1 and 2 post-race when compared to pre-race (P<0.05). The echopattern of these tendons returned to baseline on day 3. This change in echopattern was not seen in control horses. It was concluded that short-term changes in the SDFT following maximal exercise could be detected using UTC.
Collapse
|
48
|
Backman LJ, Andersson G, Fong G, Alfredson H, Scott A, Danielson P. Alpha-2 adrenergic stimulation triggers Achilles tenocyte hypercellularity: Comparison between two model systems. Scand J Med Sci Sports 2012; 23:687-96. [PMID: 22292987 PMCID: PMC3933766 DOI: 10.1111/j.1600-0838.2011.01442.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/21/2011] [Indexed: 11/29/2022]
Abstract
The histopathology of tendons with painful tendinopathy is often tendinosis, a fibrosis-like condition of unclear pathogenesis characterized by tissue changes including hypercellularity. The primary tendon cells (tenocytes) have been shown to express adrenoreceptors (mainly alpha-2A) as well as markers of catecholamine production, particularly in tendinosis. It is known that adrenergic stimulation can induce proliferation in other cells. The present study investigated the effects of an exogenously administered alpha-2 adrenergic agonist in an established in vivo Achilles tendinosis model (rabbit) and also in an in vitro human tendon cell culture model. The catecholamine producing enzyme tyrosine hydroxylase and the alpha-2A-adrenoreceptor (α2A AR) were expressed by tenocytes, and alpha-2 adrenergic stimulation had a proliferative effect on these cells, in both models. The proliferation was inhibited by administration of an α2A AR antagonist, and the in vitro model further showed that the proliferative alpha-2A effect was mediated via a mitogenic cell signaling pathway involving phosphorylation of extracellular-signal-regulated kinases 1 and 2. The results indicate that catecholamines produced by tenocytes in tendinosis might contribute to the proliferative nature of the pathology through stimulation of the α2A AR, pointing to a novel target for future therapies. The study furthermore shows that animal models are not necessarily required for all aspects of this research.
Collapse
Affiliation(s)
- L J Backman
- Department of Integrative Medical Biology, Anatomy, Umeå University, Umeå, Sweden
| | | | | | | | | | | |
Collapse
|
49
|
Slaterl H, Gibsonl W, Graven-Nielsenl T. Sensory responses to mechanically and chemically induced tendon pain in healthy subjects. Eur J Pain 2012; 15:146-52. [DOI: 10.1016/j.ejpain.2010.06.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2010] [Revised: 05/28/2010] [Accepted: 06/08/2010] [Indexed: 10/19/2022]
|
50
|
Backman LJ, Fong G, Andersson G, Scott A, Danielson P. Substance P is a mechanoresponsive, autocrine regulator of human tenocyte proliferation. PLoS One 2011; 6:e27209. [PMID: 22069500 PMCID: PMC3206074 DOI: 10.1371/journal.pone.0027209] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2011] [Accepted: 10/11/2011] [Indexed: 11/19/2022] Open
Abstract
It has been hypothesised that substance P (SP) may be produced by primary fibroblastic tendon cells (tenocytes), and that this production, together with the widespread distribution of the neurokinin-1 receptor (NK-1 R) in tendon tissue, could play an important role in the development of tendinopathy, a condition of chronic tendon pain and thickening. The aim of this study was to examine the possibility of endogenous SP production and the expression of NK-1 R by human tenocytes. Because tendinopathy is related to overload, and because the predominant tissue pathology (tendinosis) underlying early tendinopathy is characterized by tenocyte hypercellularity, the production of SP in response to loading/strain and the effects of exogenously administered SP on tenocyte proliferation were also studied. A cell culture model of primary human tendon cells was used. The vast majority of tendon cells were immunopositive for the tenocyte/fibroblast markers tenomodulin and vimentin, and immunocytochemical counterstaining revealed that positive immunoreactions for SP and NK-1 R were seen in a majority of these cells. Gene expression analyses showed that mechanical loading (strain) of tendon cell cultures using the FlexCell© technique significantly increased the mRNA levels of SP, whereas the expression of NK-1 R mRNA decreased in loaded as compared to unloaded tendon cells. Reduced NK-1 R protein was also observed, using Western blot, after exogenously administered SP at a concentration of 10−7 M. SP exposure furthermore resulted in increased cell metabolism, increased cell viability, and increased cell proliferation, all of which were found to be specifically mediated via the NK-1 R; this in turn involving a common mitogenic cell signalling pathway, namely phosphorylation of ERK1/2. This study indicates that SP, produced by tenocytes in response to mechanical loading, may regulate proliferation through an autocrine loop involving the NK-1 R.
Collapse
Affiliation(s)
- Ludvig J. Backman
- Department of Integrative Medical Biology, Anatomy, Umeå University, Umeå, Sweden
- Department of Surgical and Perioperative Sciences, Sports Medicine, Umeå University, Umeå, Sweden
- Department of Physical Therapy, University of British Columbia, Vancouver, British Columbia, Canada
| | - Gloria Fong
- Department of Integrative Medical Biology, Anatomy, Umeå University, Umeå, Sweden
- Department of Physical Therapy, University of British Columbia, Vancouver, British Columbia, Canada
- Centre for Hip Health and Mobility, Vancouver Coastal Health and Research Institute, Vancouver, British Columbia, Canada
| | - Gustav Andersson
- Department of Integrative Medical Biology, Anatomy, Umeå University, Umeå, Sweden
| | - Alexander Scott
- Department of Physical Therapy, University of British Columbia, Vancouver, British Columbia, Canada
- Centre for Hip Health and Mobility, Vancouver Coastal Health and Research Institute, Vancouver, British Columbia, Canada
| | - Patrik Danielson
- Department of Integrative Medical Biology, Anatomy, Umeå University, Umeå, Sweden
- * E-mail:
| |
Collapse
|