1
|
Hajhashemi V, Sadeghi H, Madab FK. Anti-inflammatory and antinociceptive effects of sitagliptin in animal models and possible mechanisms involved in the antinociceptive activity. Korean J Pain 2024; 37:26-33. [PMID: 38123184 PMCID: PMC10764209 DOI: 10.3344/kjp.23262] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/24/2023] [Accepted: 12/03/2023] [Indexed: 12/23/2023] Open
Abstract
Background Sitagliptin is an antidiabetic drug that inhibits dipeptidyl peptidase-4 enzyme. This study aimed to investigate the antinociceptive and anti-inflammatory effects of sitagliptin in formalin and carrageenan tests and determine the possible mechanism(s) of its antinociceptive activity. Methods Male Swiss mice (25-30 g) and male Wistar rats (180-220 g) were used for formalin and carrageenan tests, respectively. In the formalin test, paw licking time and in the carrageenan test, paw thickness were considered as indexes of pain behavior and inflammation respectively. Three doses of sitagliptin (2.5, 5, and 10 mg/kg) were used in these tests. Also, several antagonists and enzyme inhibitors were used to evaluate the role of adrenergic, serotonergic, dopaminergic, and opioid receptors as well as the NO/cGMP/KATP pathway in the antinociceptive effect of sitagliptin (5 mg/kg). Results Sitagliptin showed significant antinociceptive and anti-inflammatory effects in the formalin and carrageenan tests respectively. In the carrageenan test, all three doses of sitagliptin significantly (P < 0.001) reduced paw thickness. Pretreatment with yohimbine, prazosin, propranolol, naloxone, and cyproheptadine could not reverse the antinociceptive effect of sitagliptin (5 mg/Kg), which indicates that adrenergic, opioid, and serotonin receptors (5HT2) are not involved in the antinociceptive effects. L-NAME, methylene blue, glibenclamide, ondansetron, and sulpiride were able to reverse this effect. Conclusions NO/cGMP/KATP, 5HT3 and D2 pathways play an important role in the antinociceptive effect of sitagliptin. Additionally significant anti-inflammatory effects observed in the carrageenan test might contribute in reduction of pain response in the second phase of the formalin test.
Collapse
Affiliation(s)
- Valiollah Hajhashemi
- Department of Pharmacology and Isfahan Pharmaceutical Sciences Research Center, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Hossein Sadeghi
- Department of Pharmacology, Faculty of Medicine, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Fatemeh Karimi Madab
- Department of Pharmacology and Isfahan Pharmaceutical Sciences Research Center, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
2
|
Piątkowska-Chmiel I, Gawrońska-Grzywacz M, Popiołek Ł, Herbet M, Dudka J. The novel adamantane derivatives as potential mediators of inflammation and neural plasticity in diabetes mice with cognitive impairment. Sci Rep 2022; 12:6708. [PMID: 35468904 PMCID: PMC9035983 DOI: 10.1038/s41598-022-10187-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 03/14/2022] [Indexed: 12/12/2022] Open
Abstract
Diabetes is a chronic disease leading to memory difficulties and deterioration of learning abilities. The previous studies showed that modulation of inflammatory pathways in the diabetic brain may reduce dysfunction or cell death in brain areas which are important for control of cognitive function. In the present study, we investigated the neuroprotective actions of newly synthesized adamantane derivatives on diabetes-induced cognitive impairment in mice. Our study relied on the fact that both vildagliptin and saxagliptin belong to DPP4 inhibitors and, contain adamantanyl group. Efficacy of tested compounds at reversing diabetes-induced different types of memory impairment was evaluated with the use of selected behavioural tests. The following neuroinflammatory indicators were also analyzed: neuroinflammatory indicators and the expression of genes involved in the inflammatory response of brain (Cav1, Bdnf). Our study demonstrated that new adamantane derivatives, similarly to DPP4 inhibitors, can restrict diabetes-induced cognitive deficits. We demonstrated that the overexpression of GLP-1-glucagon-like peptide as well as Bdnf, Cav1 genes translate into central blockade of pro-inflammatory synthesis of cytokines and significantly improvement on memory performance in diabetes mice. Newly synthesized adamantane derivatives might have important roles in prevention and treatment of cognitive impairment by inflammatory events in patients with diabetes or related diseases.
Collapse
Affiliation(s)
- Iwona Piątkowska-Chmiel
- Chair and Department of Toxicology, Faculty of Pharmacy, Medical University of Lublin, 8b Jaczewskiego Street, 20-090, Lublin, Poland.
| | - Monika Gawrońska-Grzywacz
- Chair and Department of Toxicology, Faculty of Pharmacy, Medical University of Lublin, 8b Jaczewskiego Street, 20-090, Lublin, Poland
| | - Łukasz Popiołek
- Chair and Department of Organic Chemistry, Faculty of Pharmacy, Medical University of Lublin, 4A Chodźki Street, 20-093, Lublin, Poland
| | - Mariola Herbet
- Chair and Department of Toxicology, Faculty of Pharmacy, Medical University of Lublin, 8b Jaczewskiego Street, 20-090, Lublin, Poland
| | - Jarosław Dudka
- Chair and Department of Toxicology, Faculty of Pharmacy, Medical University of Lublin, 8b Jaczewskiego Street, 20-090, Lublin, Poland
| |
Collapse
|
3
|
Nicotinic Amidoxime Derivate BGP-15, Topical Dosage Formulation and Anti-Inflammatory Effect. Pharmaceutics 2021; 13:pharmaceutics13122037. [PMID: 34959318 PMCID: PMC8707203 DOI: 10.3390/pharmaceutics13122037] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/24/2021] [Accepted: 11/25/2021] [Indexed: 12/19/2022] Open
Abstract
BGP-15 is a Hungarian-developed drug candidate with numerous beneficial effects. Its potential anti-inflammatory effect is a common assumption, but it has not been investigated in topical formulations yet. The aim of our study was to formulate 10% BGP-15 creams with different penetration enhancers to ensure good drug delivery, improve bioavailability of the drug and investigate the potential anti-inflammatory effect of BGP-15 creams in vivo. Since the exact mechanism of the effect is still unknown, the antioxidant effect (tested with UVB radiation) and the ability of BGP-15 to decrease macrophage activation were evaluated. Biocompatibility investigations were carried out on HaCaT cells to make sure that the formulations and the selected excipients can be safely used. Dosage form studies were also completed with texture analysis and in vitro release with Franz diffusion chamber apparatus. Our results show that the ointments were able to reduce the extent of local inflammation in mice, but the exact mechanism of the effect remains unknown since BGP-15 did not show any antioxidant effect, nor was it able to decrease LPS-induced macrophage activation. Our results support the hypothesis that BGP-15 has a potential anti-inflammatory effect, even if it is topically applied, but the mechanism of the effect remains unclear and requires further pharmacological studies.
Collapse
|
4
|
Anti-fibrotic activity of sitagliptin against concanavalin A-induced hepatic fibrosis. Role of Nrf2 activation/NF-κB inhibition. Int Immunopharmacol 2021; 100:108088. [PMID: 34454288 DOI: 10.1016/j.intimp.2021.108088] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 08/18/2021] [Accepted: 08/19/2021] [Indexed: 12/23/2022]
Abstract
Sitagliptin is known for its anti-diabetic activity though it has other pleiotropic pharmacological actions. Its effect against concanavalin A (Con A)-induced hepatic fibrosis has not been investigated yet. Our target was to test whether sitagliptin can suppress the development of Con A-induced hepatic fibrosis and if so, what are the mechanisms involved? Con A (6 mg/kg) was injected once weekly to male Swiss albino mice for four weeks. Sitagliptin was daily administered concurrently with Con A. Results have shown the potent hepatoprotective activity of sitagliptin against Con A-induced hepatitis and fibrosis. That was evident through the amelioration of hepatotoxicity serum parameters (ALT, AST, ALP, and LDH) and the increase in the level of serum albumin in sitagliptin treated mice. Simultaneously, there was amendment of the Con A-induced hepatic lesions and repression of fibrosis in sitagliptin-treated animals. Hydroxyproline, collagen content and the immuno-expression of the fibrotic markers, TGF-β and α-SMA were depressed upon sitagliptin treatment. Sitagliptin suppressed Con A-induced oxidative stress and increased antioxidants. RT-PCR analysis showed enhancement of mRNA expression of nuclear factor erythroid 2-related factor 2 (Nrf2) and its target genes (GCLc, GCLm, NQO-1, HO-1) by sitagliptin. Furthermore, sitagliptin ameliorated the level and immuno-expression of nuclear factor kappa-B (NF-κB) alongside the immuno-expression of the inflammatory cytokine, TNF-α. Taken together, this study demonstrates the hepatoprotective activity of sitagliptin which may be in part related to enhancement of Nrf2 signaling pathway and inhibition of NF-κB which interact inflammatory response in liver. Sitagliptin might be a new candidate to suppress hepatitis-associated fibrosis.
Collapse
|
5
|
Pinheiro MM, Pinheiro FMM, Diniz SN, Fabbri A, Infante M. Combination of vitamin D and dipeptidyl peptidase-4 inhibitors (VIDPP-4i) as an immunomodulation therapy for autoimmune diabetes. Int Immunopharmacol 2021; 95:107518. [PMID: 33756226 DOI: 10.1016/j.intimp.2021.107518] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 02/15/2021] [Accepted: 02/16/2021] [Indexed: 12/18/2022]
Abstract
Type 1 diabetes (T1D) and latent autoimmune diabetes in adults (LADA) represent the most common types of autoimmune diabetes and are characterized by different age of onset, degrees of immune-mediated destruction of pancreatic beta cells and rates of disease progression towards insulin dependence. Several immunotherapies aimed to counteract autoimmune responses against beta cells and preserve beta-cell function are currently being investigated, particularly in T1D. Preliminary findings suggest a potential role of combination therapy with vitamin D and dipeptidyl peptidase-4 (DPP-4) inhibitors (VIDPP-4i) in preserving beta-cell function in autoimmune diabetes. This manuscript aims to provide a comprehensive overview of the immunomodulatory properties of vitamin D and DPP-4 inhibitors, as well as the rationale for investigation of their combined use as an immunomodulation therapy for autoimmune diabetes.
Collapse
Affiliation(s)
- Marcelo Maia Pinheiro
- UNIVAG, University Center, Dom Orlando Chaves Ave, 2655 - Cristo Rei, Várzea Grande, 78118-000 Mato Grosso, Brazil; Universidade Anhanguera de São Paulo - SP, 3305, Raimundo Pereira de Magalhães Ave., Pirituba, São Paulo, 05145-200 São Paulo, Brazil.
| | - Felipe Moura Maia Pinheiro
- Hospital de Base, Faculdade de Medicina de São José do Rio Preto FAMERP - SP, 5546, Brigadeiro Faria Lima Ave, Vila São Pedro, São José do Rio Preto, 15015-500 São Paulo, Brazil
| | - Susana Nogueira Diniz
- Universidade Anhanguera de São Paulo - SP, 3305, Raimundo Pereira de Magalhães Ave., Pirituba, São Paulo, 05145-200 São Paulo, Brazil
| | - Andrea Fabbri
- Diabetes Research Institute Federation (DRIF), Division of Endocrinology and Diabetes, CTO Andrea Alesini Hospital, ASL Roma 2, Department of Systems Medicine, University of Rome Tor Vergata, Via San Nemesio 21, 00145 Rome, Italy
| | - Marco Infante
- Diabetes Research Institute Federation (DRIF), Division of Endocrinology and Diabetes, CTO Andrea Alesini Hospital, ASL Roma 2, Department of Systems Medicine, University of Rome Tor Vergata, Via San Nemesio 21, 00145 Rome, Italy; UniCamillus, Saint Camillus International University of Health Sciences, Via di Sant'Alessandro, 8, 00131 Rome, Italy; Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Via San Nemesio 21, 00145 Rome, Italy.
| |
Collapse
|
6
|
Mozafari N, Azadi S, Mehdi-Alamdarlou S, Ashrafi H, Azadi A. Inflammation: A bridge between diabetes and COVID-19, and possible management with sitagliptin. Med Hypotheses 2020; 143:110111. [PMID: 32721805 PMCID: PMC7361050 DOI: 10.1016/j.mehy.2020.110111] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 07/04/2020] [Accepted: 07/12/2020] [Indexed: 02/06/2023]
Abstract
Patients with SARS-CoV-2 infections experience lymphopenia and inflammatory cytokine storms in the severe stage of the disease, leading to multi-organ damage. The exact pattern of immune system changes and their condition during the disease process is unclear. The available knowledge has indicated that the NF-kappa-B pathway, which is induced by several mediators, has a significant role in cytokine storm through the various mechanisms. Therefore, identifying the state of the immune cells and the dominant mechanisms for the production of cytokines incorporated in the cytokine storm can be a critical step in the therapeutic approach. On the other hand, some studies identified a higher risk for diabetic patients. Diabetes mellitus exhibits a close association with inflammation and increases the chance of developing COVID-19. Patients with diabetes mellitus have shown to have more virus entry, impaired immunity response, less viral elimination, and dysregulated inflammatory cytokines. The parallel analysis of COVID-19 and diabetes mellitus pathogenesis has proposed that the control of the inflammation through the interfering with the critical points of major signaling pathways may provide the new therapeutic approaches. In recent years, the role of Dipeptidyl Peptidase 4 (DPP4) in chronic inflammation has been proved. Numerous immune cells express the DPP4 protein. DPP4 regulates antibody production, cytokine secretion, and immunoglobulin class switching. DPP4 inhibitors like sitagliptin reduce inflammation intensity in different states. Following the accumulating data, we hypothesize that sitagliptin might reduce COVID-19 severity. Sitagliptin, an available DPP4 inhibitor drug, showed multidimensional anti-inflammatory effects among diabetic patients. It reduces the inflammation mostly by affecting on NF-kappa-B signaling pathway. Under the fact that inflammatory mediators are active in individuals with COVID-19, blocking the predominant pathway could be helpful.
Collapse
Affiliation(s)
- Negin Mozafari
- Department of Pharmaceutics, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Soha Azadi
- Department of Clinical Pharmacy, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sanaz Mehdi-Alamdarlou
- Department of Pharmaceutics, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hajar Ashrafi
- Department of Pharmaceutics, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amir Azadi
- Department of Pharmaceutics, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran; Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
7
|
Hung YW, Wang Y, Lee SL. DPP-4 inhibitor reduces striatal microglial deramification after sensorimotor cortex injury induced by external force impact. FASEB J 2020; 34:6950-6964. [PMID: 32246809 DOI: 10.1096/fj.201902818r] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 03/08/2020] [Accepted: 03/17/2020] [Indexed: 12/12/2022]
Abstract
Dipeptidyl peptidase-4 inhibitors (or gliptins), a class of antidiabetic drugs, have recently been shown to have protective actions in the central nervous system. Their cellular and molecular mechanisms responsible for these effects are largely unknown. In the present study, two structurally different gliptins, sitagliptin and vildagliptin, were examined for their therapeutic actions in a controlled cortical impact (CCI) model of moderate traumatic brain injury (TBI) in mice. Early post-CCI treatment with sitagliptin, but not vildagliptin, significantly reduced body asymmetry, locomotor hyperactivity, and brain lesion volume. Sitagliptin attenuated post-CCI microglial deramification in the ipsilateral dorsolateral (DL) striatum, while vildagliptin had no effect. Sitagliptin also reduced striatal expression of galectin-3 and monocyte chemoattractant protein 1(MCP-1), and increased the cortical and striatal levels of the anti-inflammatory cytokine IL-10 on the ipsilateral side. These data support a differential protective effect of sitagliptin against TBI, possibly mediated by an anti-inflammatory effect in striatum to preserve connective network. Both sitagliptin and vildagliptin produced similar increases of active glucagon-like peptide-1 (GLP-1) in blood and brain. Increasing active GLP-1 may not be the sole molecular mechanisms for the neurotherapeutic effect of sitagliptin in TBI.
Collapse
Affiliation(s)
- Yu-Wen Hung
- Institute of Cellular and System Medicine, National Health Research Institutes, Zhunan Town, Miaoli County, Taiwan, R.O.C
| | - Yun Wang
- Center for Neuropsychiatric Research, National Health Research Institutes, Zhunan Town, Miaoli County, Taiwan, R.O.C
| | - Sheau-Ling Lee
- Institute of Cellular and System Medicine, National Health Research Institutes, Zhunan Town, Miaoli County, Taiwan, R.O.C
| |
Collapse
|
8
|
Khedr RM, Ahmed AAE, Kamel R, Raafat EM. Sitagliptin attenuates intestinal ischemia/reperfusion injury via cAMP/PKA, PI3K/Akt pathway in a glucagon-like peptide 1 receptor-dependent manner. Life Sci 2018; 211:31-39. [PMID: 30195035 DOI: 10.1016/j.lfs.2018.09.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 08/07/2018] [Accepted: 09/03/2018] [Indexed: 12/21/2022]
Abstract
AIMS This study investigated the effect of sitagliptin prophylactic treatment on intestinal I/R rat model and explored the possible underlying mechanism. MAIN METHODS Forty-five male Sprague-Dawley rats were randomly assigned to 3 groups: Sham group (operation without clamping), I/R group (operation with clamping) and sitagliptin pretreated group (300 mg/kg/day; p.o.) for 2 weeks before I/R insult. Intestinal I/R was performed by clamping the superior mesenteric artery for 30 min, followed by 60 min reperfusion after removal of clamping. At the end of the experimental period, all rats were sacrificed for histopathological, biochemical, PCR and western blot assessment. KEY FINDINGS Pretreatment with sitagliptin remarkably alleviated the pathological changes induced by I/R in the jejunum, suppressed upregulated NF-κB, TNF-α, IL-1βand MPO caused by I/R. Moreover, sitagliptin decreased the Bax/Bcl-2 ratio and accordingly suppressed apoptotic tissue damage as reflected by a caspase-3 level reduction in rat intestine subjected to I/R injury. Interestingly, sitagliptin could obviously increase the active GLP-1 level and GLP-1 receptor mRNA expression in the jejunum of I/R rats. This was associated with the augmentation of the cAMP level and enhancement of PKA activity. Simultaneously, sitagliptin treatment was able to increase the protein expression levels of phosphorylated PI3K and Akt. SIGNIFICANCE Sitagliptin has shown protective effects against intestinal I/R injury in rats through reduction of intestinal inflammation and apoptosis. The molecular mechanisms may be partially correlated with activation of cAMP/PKA and PI3K/Akt signaling pathway by the GLP-1/GLP-1 receptor.
Collapse
Affiliation(s)
- Rehab M Khedr
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Helwan University, Cairo, Egypt.
| | - Amany A E Ahmed
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Helwan University, Cairo, Egypt
| | - Rehab Kamel
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Helwan University, Cairo, Egypt; Pharmacology and Toxicology Department, Faculty of Pharmacy, Ahram Canadian University, Cairo, Egypt
| | - Eman M Raafat
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Helwan University, Cairo, Egypt
| |
Collapse
|
9
|
Wiciński M, Wódkiewicz E, Słupski M, Walczak M, Socha M, Malinowski B, Pawlak-Osińska K. Neuroprotective Activity of Sitagliptin via Reduction of Neuroinflammation beyond the Incretin Effect: Focus on Alzheimer's Disease. BIOMED RESEARCH INTERNATIONAL 2018; 2018:6091014. [PMID: 30186862 PMCID: PMC6116461 DOI: 10.1155/2018/6091014] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 06/22/2018] [Accepted: 07/26/2018] [Indexed: 12/25/2022]
Abstract
Sitagliptin is a member of a class of drugs that inhibit dipeptidyl peptidase (DPP-4). It increases the levels of the active form of incretins such as GLP-1 (glucagon-like peptide-1) or GIP (gastric inhibitory polypeptide) and by their means positively affects glucose metabolism. It is successfully applied in the treatment of diabetes mellitus type 2. The most recent scientific reports suggest beneficial effect of sitagliptin on diseases in which neuron damage occurs. Result of experimental studies may indicate a reducing influence of sitagliptin on inflammatory response within encephalon area. Sitagliptin decreased the levels of proinflammatory factors: TNF-α (tumor necrosis factor-α), IL-6 (interleukin-6), IL-17 (interleukin-17), and CD-163 (cluster of differentiation 163), and contributed to an increase in levels of anti-inflammatory factors: IL-10 (interleukin-10) and TGF-β (transforming growth factor β). Moreover, sitagliptin demonstrated antioxidative and antiapoptotic properties by modifying glutamate and glutathione levels within the region of hippocampus in mice. It has been observed that sitagliptin decreases accumulation of β-amyloid within encephalon structures in experimental models of Alzheimer's dementia. This effect may be connected with SDF-1α (stromal cell-derived factor 1α) concentration. Administration of sitagliptin caused a significant improvement in MMSE (Mini-Mental State Examination) tests used for assessment of dementias. The paper presents potential mechanisms of sitagliptin activity in conditions connected with neuroinflammation with special emphasis on Alzheimer's disease.
Collapse
Affiliation(s)
- Michał Wiciński
- Department of Pharmacology and Therapeutics, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, M. Curie 9, 85-090 Bydgoszcz, Poland
| | - Eryk Wódkiewicz
- Department of Pharmacology and Therapeutics, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, M. Curie 9, 85-090 Bydgoszcz, Poland
| | - Maciej Słupski
- Department of Hepatobiliary and General Surgery, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, M. Curie 9, 85-090 Bydgoszcz, Poland
| | - Maciej Walczak
- Department of Pharmacology and Therapeutics, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, M. Curie 9, 85-090 Bydgoszcz, Poland
| | - Maciej Socha
- Department of Obstetrics, Gynecology and Gynecological Oncology, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, Ujejskiego 75, 85-168 Bydgoszcz, Poland
| | - Bartosz Malinowski
- Department of Pharmacology and Therapeutics, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, M. Curie 9, 85-090 Bydgoszcz, Poland
| | - Katarzyna Pawlak-Osińska
- Department of Pathophysiology of Hearing and Balance System, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, M. Curie 9, 85-090 Bydgoszcz, Poland
| |
Collapse
|
10
|
Jonnalagadda VG, Char HP, Samudrala PK. Re: Cohen et al.:Impact of Statin Intake on Kidney Stone Formation (Urology 2018). Urology 2018; 118:244. [PMID: 29852191 DOI: 10.1016/j.urology.2018.02.052] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 02/15/2018] [Accepted: 02/17/2018] [Indexed: 10/14/2022]
Affiliation(s)
- Venu Gopal Jonnalagadda
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research, C/O NETES Institute of Technology & Science, Mirza, Assam, India
| | | | - Pavan Kumar Samudrala
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research, C/O NETES Institute of Technology & Science, Mirza, Assam, India
| |
Collapse
|
11
|
Pinheiro MM, Pinheiro FMM, Trabachin ML. Dipeptidyl peptidase-4 inhibitors (DPP-4i) combined with vitamin D3: An exploration to treat new-onset type 1 diabetes mellitus and latent autoimmune diabetes in adults in the future. Int Immunopharmacol 2018; 57:11-17. [DOI: 10.1016/j.intimp.2018.02.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2017] [Revised: 02/03/2018] [Accepted: 02/09/2018] [Indexed: 02/08/2023]
|
12
|
Király K, Kozsurek M, Lukácsi E, Barta B, Alpár A, Balázsa T, Fekete C, Szabon J, Helyes Z, Bölcskei K, Tékus V, Tóth ZE, Pap K, Gerber G, Puskár Z. Glial cell type-specific changes in spinal dipeptidyl peptidase 4 expression and effects of its inhibitors in inflammatory and neuropatic pain. Sci Rep 2018; 8:3490. [PMID: 29472575 PMCID: PMC5823904 DOI: 10.1038/s41598-018-21799-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Accepted: 02/08/2018] [Indexed: 01/02/2023] Open
Abstract
Altered pain sensations such as hyperalgesia and allodynia are characteristic features of various pain states, and remain difficult to treat. We have shown previously that spinal application of dipeptidyl peptidase 4 (DPP4) inhibitors induces strong antihyperalgesic effect during inflammatory pain. In this study we observed low level of DPP4 mRNA in the rat spinal dorsal horn in physiological conditions, which did not change significantly either in carrageenan-induced inflammatory or partial nerve ligation-generated neuropathic states. In naïve animals, microglia and astrocytes expressed DPP4 protein with one and two orders of magnitude higher than neurons, respectively. DPP4 significantly increased in astrocytes during inflammation and in microglia in neuropathy. Intrathecal application of two DPP4 inhibitors tripeptide isoleucin-prolin-isoleucin (IPI) and the antidiabetic drug vildagliptin resulted in robust opioid-dependent antihyperalgesic effect during inflammation, and milder but significant opioid-independent antihyperalgesic action in the neuropathic model. The opioid-mediated antihyperalgesic effect of IPI was exclusively related to mu-opioid receptors, while vildagliptin affected mainly delta-receptor activity, although mu- and kappa-receptors were also involved. None of the inhibitors influenced allodynia. Our results suggest pathology and glia-type specific changes of DPP4 activity in the spinal cord, which contribute to the development and maintenance of hyperalgesia and interact with endogenous opioid systems.
Collapse
Affiliation(s)
- Kornél Király
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, H-1089, Budapest, Hungary
| | - Márk Kozsurek
- Department of Anatomy, Histology and Embryology, Semmelweis University, H-1094, Budapest, Hungary
| | - Erika Lukácsi
- Department of Anatomy, Histology and Embryology, Semmelweis University, H-1094, Budapest, Hungary
| | - Benjamin Barta
- Department of Anatomy, Histology and Embryology, Semmelweis University, H-1094, Budapest, Hungary
| | - Alán Alpár
- Department of Anatomy, Histology and Embryology, Semmelweis University, H-1094, Budapest, Hungary
| | - Tamás Balázsa
- Department of Anatomy, Histology and Embryology, Semmelweis University, H-1094, Budapest, Hungary
| | - Csaba Fekete
- "Lendület" Laboratory of Integrative Neurobiology, Institute of Experimental Medicine of the Hungarian Academy of Sciences, H-1083, Budapest, Hungary
| | - Judit Szabon
- "Lendület" Laboratory of Integrative Neurobiology, Institute of Experimental Medicine of the Hungarian Academy of Sciences, H-1083, Budapest, Hungary
| | - Zsuzsanna Helyes
- Department of Pharmacology and Pharmacotherapy, Medical School & Szentágothai Research Centre, University of Pécs, H-7624, Pécs, Hungary.,MTA-PTE NAP B Chronic Pain Research Group, University of Pécs, H-7624, Pécs, Hungary
| | - Kata Bölcskei
- Department of Pharmacology and Pharmacotherapy, Medical School & Szentágothai Research Centre, University of Pécs, H-7624, Pécs, Hungary
| | - Valéria Tékus
- Department of Pharmacology and Pharmacotherapy, Medical School & Szentágothai Research Centre, University of Pécs, H-7624, Pécs, Hungary
| | - Zsuzsanna E Tóth
- Department of Anatomy, Histology and Embryology, Semmelweis University, H-1094, Budapest, Hungary
| | - Károly Pap
- Department of Traumatology, Semmelweis University, H-1113 Budapest, Hungary & Department of Orthopaedics and Traumatology, Uzsoki Hospital, H-1145, Budapest, Hungary
| | - Gábor Gerber
- Department of Anatomy, Histology and Embryology, Semmelweis University, H-1094, Budapest, Hungary
| | - Zita Puskár
- Department of Anatomy, Histology and Embryology, Semmelweis University, H-1094, Budapest, Hungary.
| |
Collapse
|
13
|
Ittichaicharoen J, Apaijai N, Tanajak P, Sa-Nguanmoo P, Chattipakorn N, Chattipakorn S. Dipeptidyl peptidase-4 inhibitor enhances restoration of salivary glands impaired by obese-insulin resistance. Arch Oral Biol 2017; 85:148-153. [PMID: 29073562 DOI: 10.1016/j.archoralbio.2017.10.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 09/20/2017] [Accepted: 10/19/2017] [Indexed: 01/12/2023]
Abstract
OBJECTIVE Chronic high-fat diet consumption causes not only obese- insulin resistance, but also leads to pathological changes in salivary glands, including increased mitochondrial dysfunction, apoptosis, oxidative stress, and inflammation. Dipeptidyl peptidase-4 inhibitor (vildagliptin) is an oral anti-diabetic drug, using for treatment of type 2 diabetes. Vildagliptin has been shown to exert beneficial effects on several organs in cases of obese-insulin resistant condition. However, the effect of vildagliptin on salivary glands impaired by obese-insulin resistance has not been investigated. The hypothesis in this study is that vildagliptin confers beneficial effects on the salivary gland impaired by obese-insulin resistance via decreasing mitochondrial dysfunction, apoptosis, oxidative stress, and inflammation. DESIGN Twenty-four male Wistar rats were divided into two groups. Each group was fed with either a normal (ND; n=8) or a high fat diet (HFD; n=16) for 16 weeks. At week 13, the HFD-fed rats were subdivided into 2 subgroups to receive either a vehicle or vildagliptin (3mg/kg/day) for 28days via gavage feeding. ND-fed rats were treated with the vehicle. At the end of treatment, metabolic parameters were examined, and rats were killed. Submandibular glands were removed to appraise inflammatory markers, apoptosis and mitochondrial function. RESULTS Vehicle-treated HFD-fed rats developed obese-insulin resistance with an increase in oxidative stress, inflammation, apoptosis, and mitochondrial dysfunction in the salivary glands. Vildagliptin therapy reduced oxidative stress, inflammation, apoptosis and mitochondrial dysfunction in salivary gland of HFD-fed rats. CONCLUSION Vildagliptin prevented salivary gland injury occurring due to obese-insulin resistance.
Collapse
Affiliation(s)
- Jitjiroj Ittichaicharoen
- Department of Oral Biology and Diagnostic Sciences, Faculty of Dentistry, Chiang Mai University, Chiang Mai, 50200, Thailand; Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Nattayaporn Apaijai
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand; Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Pongpan Tanajak
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand; Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Piangkwan Sa-Nguanmoo
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand; Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Nipon Chattipakorn
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand; Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Siriporn Chattipakorn
- Department of Oral Biology and Diagnostic Sciences, Faculty of Dentistry, Chiang Mai University, Chiang Mai, 50200, Thailand; Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200, Thailand.
| |
Collapse
|
14
|
Bloomgarden Z. Upper extremity arthropathy in diabetes. J Diabetes 2017; 9:542-543. [PMID: 28374546 DOI: 10.1111/1753-0407.12557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Affiliation(s)
- Zachary Bloomgarden
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, USA
| |
Collapse
|