1
|
Infarinato F, Romano P, Goffredo M, Ottaviani M, Galafate D, Gison A, Petruccelli S, Pournajaf S, Franceschini M. Functional Gait Recovery after a Combination of Conventional Therapy and Overground Robot-Assisted Gait Training Is Not Associated with Significant Changes in Muscle Activation Pattern: An EMG Preliminary Study on Subjects Subacute Post Stroke. Brain Sci 2021; 11:brainsci11040448. [PMID: 33915808 PMCID: PMC8066552 DOI: 10.3390/brainsci11040448] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/25/2021] [Accepted: 03/26/2021] [Indexed: 01/03/2023] Open
Abstract
Background: Overground Robot-Assisted Gait Training (o-RAGT) appears to be a promising stroke rehabilitation in terms of clinical outcomes. The literature on surface ElectroMyoGraphy (sEMG) assessment in o-RAGT is limited. This paper aimed to assess muscle activation patterns with sEMG in subjects subacute post stroke after training with o-RAGT and conventional therapy. Methods: An observational preliminary study was carried out with subjects subacute post stroke who received 15 sessions of o-RAGT (5 sessions/week; 60 min) in combination with conventional therapy. The subjects were assessed with both clinical and instrumental evaluations. Gait kinematics and sEMG data were acquired before (T1) and after (T2) the period of treatment (during ecological gait), and during the first session of o-RAGT (o-RAGT1). An eight-channel wireless sEMG device acquired in sEMG signals. Significant differences in sEMG outcomes were found in the BS of TA between T1 and T2. There were no other significant correlations between the sEMG outcomes and the clinical results between T1 and T2. Conclusions: There were significant functional gains in gait after complex intensive clinical rehabilitation with o-RAGT and conventional therapy. In addition, there was a significant increase in bilateral symmetry of the Tibialis Anterior muscles. At this stage of the signals from the tibialis anterior (TA), gastrocnemius medialis (GM), rectus femoris (RF), and biceps femoris caput longus (BF) muscles of each lower extremity. sEMG data processing extracted the Bilateral Symmetry (BS), the Co-Contraction (CC), and the Root Mean Square (RMS) coefficients. Results: Eight of 22 subjects in the subacute stage post stroke agreed to participate in this sEMG study. This subsample demonstrated a significant improvement in the motricity index of the affected lower limb and functional ambulation. The heterogeneity of the subjects’ characteristics and the small number of subjects was associated with high variability research, functional gait recovery was associated with minimal change in muscle activation patterns.
Collapse
Affiliation(s)
- Francesco Infarinato
- Neurorehabilitation Research Laboratory, IRCCS San Raffaele Roma, 00163 Rome, Italy; (F.I.); (P.R.); (M.O.); (D.G.); (A.G.); (S.P.); (S.P.); (M.F.)
| | - Paola Romano
- Neurorehabilitation Research Laboratory, IRCCS San Raffaele Roma, 00163 Rome, Italy; (F.I.); (P.R.); (M.O.); (D.G.); (A.G.); (S.P.); (S.P.); (M.F.)
| | - Michela Goffredo
- Neurorehabilitation Research Laboratory, IRCCS San Raffaele Roma, 00163 Rome, Italy; (F.I.); (P.R.); (M.O.); (D.G.); (A.G.); (S.P.); (S.P.); (M.F.)
- Correspondence: ; Tel.: +39-0652252319
| | - Marco Ottaviani
- Neurorehabilitation Research Laboratory, IRCCS San Raffaele Roma, 00163 Rome, Italy; (F.I.); (P.R.); (M.O.); (D.G.); (A.G.); (S.P.); (S.P.); (M.F.)
| | - Daniele Galafate
- Neurorehabilitation Research Laboratory, IRCCS San Raffaele Roma, 00163 Rome, Italy; (F.I.); (P.R.); (M.O.); (D.G.); (A.G.); (S.P.); (S.P.); (M.F.)
| | - Annalisa Gison
- Neurorehabilitation Research Laboratory, IRCCS San Raffaele Roma, 00163 Rome, Italy; (F.I.); (P.R.); (M.O.); (D.G.); (A.G.); (S.P.); (S.P.); (M.F.)
| | - Simone Petruccelli
- Neurorehabilitation Research Laboratory, IRCCS San Raffaele Roma, 00163 Rome, Italy; (F.I.); (P.R.); (M.O.); (D.G.); (A.G.); (S.P.); (S.P.); (M.F.)
| | - Sanaz Pournajaf
- Neurorehabilitation Research Laboratory, IRCCS San Raffaele Roma, 00163 Rome, Italy; (F.I.); (P.R.); (M.O.); (D.G.); (A.G.); (S.P.); (S.P.); (M.F.)
| | - Marco Franceschini
- Neurorehabilitation Research Laboratory, IRCCS San Raffaele Roma, 00163 Rome, Italy; (F.I.); (P.R.); (M.O.); (D.G.); (A.G.); (S.P.); (S.P.); (M.F.)
- Department of Human Sciences and Promotion of the Quality of Life, San Raffaele University, 00166 Rome, Italy
| |
Collapse
|
2
|
Molteni F, Guanziroli E, Goffredo M, Calabrò RS, Pournajaf S, Gaffuri M, Gasperini G, Filoni S, Baratta S, Galafate D, Le Pera D, Bramanti P, Franceschini M. Gait Recovery with an Overground Powered Exoskeleton: A Randomized Controlled Trial on Subacute Stroke Subjects. Brain Sci 2021; 11:104. [PMID: 33466749 PMCID: PMC7830339 DOI: 10.3390/brainsci11010104] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/09/2021] [Accepted: 01/11/2021] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Overground Robot-Assisted Gait Training (o-RAGT) provides intensive gait rehabilitation. This study investigated the efficacy of o-RAGT in subacute stroke subjects, compared to conventional gait training. METHODS A multicenter randomized controlled trial was conducted on 75 subacute stroke subjects (38 in the Experimental Group (EG) and 37 in the Control Group (CG)). Both groups received 15 sessions of gait training (5 sessions/week for 60 min) and daily conventional rehabilitation. The subjects were assessed at the beginning (T1) and end (T2) of the training period with the primary outcome of a 6 Minutes Walking Test (6MWT), the Modified Ashworth Scale of the Affected lower Limb (MAS-AL), the Motricity Index of the Affected lower Limb (MI-AL), the Trunk Control Test (TCT), Functional Ambulation Classification (FAC), a 10 Meters Walking Test (10MWT), the modified Barthel Index (mBI), and the Walking Handicap Scale (WHS). RESULTS The 6MWT increased in both groups, which was confirmed by both frequentist and Bayesian analyses. Similar outcomes were registered in the MI-AL, 10MWT, mBI, and MAS-AL. The FAC and WHS showed a significant number of subjects improving in functional and community ambulation in both groups at T2. CONCLUSIONS The clinical effects of o-RAGT were similar to conventional gait training in subacute stroke subjects. The results obtained in this study are encouraging and suggest future clinical trials on the topic.
Collapse
Affiliation(s)
- Franco Molteni
- Villa Beretta Rehabilitation Center, Valduce Hospital, Costa Masnaga, 23845 Lecco, Italy; (F.M.); (E.G.); (M.G.); (G.G.)
| | - Eleonora Guanziroli
- Villa Beretta Rehabilitation Center, Valduce Hospital, Costa Masnaga, 23845 Lecco, Italy; (F.M.); (E.G.); (M.G.); (G.G.)
| | - Michela Goffredo
- Neurorehabilitation Research Laboratory, IRCCS San Raffaele Pisana, 00163 Rome, Italy; (S.P.); (D.G.); (D.L.P.); (M.F.)
| | - Rocco Salvatore Calabrò
- Neurorobotic Rehabilitation, IRCCS Centro Neurolesi “Bonino-Pulejo”, 98124 Messina, Italy; (R.S.C.); (P.B.)
| | - Sanaz Pournajaf
- Neurorehabilitation Research Laboratory, IRCCS San Raffaele Pisana, 00163 Rome, Italy; (S.P.); (D.G.); (D.L.P.); (M.F.)
| | - Marina Gaffuri
- Villa Beretta Rehabilitation Center, Valduce Hospital, Costa Masnaga, 23845 Lecco, Italy; (F.M.); (E.G.); (M.G.); (G.G.)
| | - Giulio Gasperini
- Villa Beretta Rehabilitation Center, Valduce Hospital, Costa Masnaga, 23845 Lecco, Italy; (F.M.); (E.G.); (M.G.); (G.G.)
| | - Serena Filoni
- Fondazione Centri di Riabilitazione Padre Pio Onlus, 71013 Foggia, Italy;
| | - Silvano Baratta
- SCRIN Trevi Dipartimento di Riabilitazione USL Umbria 2, 06039 Perugia, Italy;
| | - Daniele Galafate
- Neurorehabilitation Research Laboratory, IRCCS San Raffaele Pisana, 00163 Rome, Italy; (S.P.); (D.G.); (D.L.P.); (M.F.)
| | - Domenica Le Pera
- Neurorehabilitation Research Laboratory, IRCCS San Raffaele Pisana, 00163 Rome, Italy; (S.P.); (D.G.); (D.L.P.); (M.F.)
| | - Placido Bramanti
- Neurorobotic Rehabilitation, IRCCS Centro Neurolesi “Bonino-Pulejo”, 98124 Messina, Italy; (R.S.C.); (P.B.)
| | - Marco Franceschini
- Neurorehabilitation Research Laboratory, IRCCS San Raffaele Pisana, 00163 Rome, Italy; (S.P.); (D.G.); (D.L.P.); (M.F.)
- Department of Human Sciences and Promotion of the Quality of Life, San Raffaele University, 00166 Rome, Italy
| | | |
Collapse
|
3
|
Goffredo M, Infarinato F, Pournajaf S, Romano P, Ottaviani M, Pellicciari L, Galafate D, Gabbani D, Gison A, Franceschini M. Barriers to sEMG Assessment During Overground Robot-Assisted Gait Training in Subacute Stroke Patients. Front Neurol 2020; 11:564067. [PMID: 33193001 PMCID: PMC7604287 DOI: 10.3389/fneur.2020.564067] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 09/15/2020] [Indexed: 12/20/2022] Open
Abstract
Background: The limitation to the use of ElectroMyoGraphy (sEMG) in rehabilitation services is in contrast with its potential diagnostic capacity for rational planning and monitoring of the rehabilitation treatments, especially the overground Robot-Assisted Gait Training (o-RAGT). Objective: To assess the barriers to the implementation of a sEMG-based assessment protocol in a clinical context for evaluating the effects of o-RAGT in subacute stroke patients. Methods: An observational study was conducted in a rehabilitation hospital. The primary outcome was the success rate of the implementation of the sEMG-based assessment. The number of dropouts and the motivations have been registered. A detailed report on difficulties in implementing the sEMG protocol has been edited for each patient. The educational level and the working status of the staff have been registered. Each member of staff completed a brief survey indicating their level of knowledge of sEMG, using a five-point Likert scale. Results: The sEMG protocol was carried out by a multidisciplinary team composed of Physical Therapists (PTs) and Biomedical Engineers (BEs). Indeed, the educational level and the expertise of the members of staff influenced the fulfillment of the implementation of the study. The PTs involved in the study did not receive any formal education on sEMG during their course of study. The low success rate (22.7%) of the protocol was caused by several factors which could be grouped in: patient-related barriers; cultural barriers; technical barriers; and administrative barriers. Conclusions: Since a series of barriers limited the use of sEMG in the clinical rehabilitative environment, concrete actions are needed for disseminating sEMG in rehabilitation services. The sEMG assessment should be included in health systems regulations and specific education should be part of the rehabilitation professionals' curriculum. Clinical Trial Registration: www.ClinicalTrials.gov, identifier: NCT03395717.
Collapse
Affiliation(s)
- Michela Goffredo
- Department of Neurological and Rehabilitation Sciences, IRCCS San Raffaele Pisana, Rome, Italy
| | - Francesco Infarinato
- Department of Neurological and Rehabilitation Sciences, IRCCS San Raffaele Pisana, Rome, Italy
| | - Sanaz Pournajaf
- Department of Neurological and Rehabilitation Sciences, IRCCS San Raffaele Pisana, Rome, Italy
| | - Paola Romano
- Department of Neurological and Rehabilitation Sciences, IRCCS San Raffaele Pisana, Rome, Italy
| | - Marco Ottaviani
- Department of Neurological and Rehabilitation Sciences, IRCCS San Raffaele Pisana, Rome, Italy
| | - Leonardo Pellicciari
- Department of Neurological and Rehabilitation Sciences, IRCCS San Raffaele Pisana, Rome, Italy
| | - Daniele Galafate
- Department of Neurological and Rehabilitation Sciences, IRCCS San Raffaele Pisana, Rome, Italy
| | - Debora Gabbani
- Department of Neurological and Rehabilitation Sciences, IRCCS San Raffaele Pisana, Rome, Italy
| | - Annalisa Gison
- Department of Neurological and Rehabilitation Sciences, IRCCS San Raffaele Pisana, Rome, Italy
| | - Marco Franceschini
- Department of Neurological and Rehabilitation Sciences, IRCCS San Raffaele Pisana, Rome, Italy.,Department of Human Sciences and Promotion of the Quality of Life, San Raffaele University, Rome, Italy
| |
Collapse
|
4
|
Zabel S, Lockhart Z, Badiani N, Cornish J, Falzon L, Flis A, Patterson K, Gregor S, Vaughan-Graham J. Physiotherapy students' perspectives on the use and implementation of exoskeletons as a rehabilitative technology in clinical settings. Disabil Rehabil Assist Technol 2020; 17:840-847. [PMID: 32928001 DOI: 10.1080/17483107.2020.1818139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
PURPOSE Wearable lower body robotic exoskeletons are an emerging technology used in gait rehabilitation to facilitate task-specific overground walking. Despite their proposed utility as a rehabilitation intervention, exoskeletons have not been widely implemented into clinical practice by physiotherapists. This study aims to inform future development of exoskeleton technology through the exploration of physiotherapy student perspectives on the use of the H2 robotic exoskeleton and the implementation of exoskeletons as a therapeutic technology in neurological gait rehabilitation. METHODS A qualitative descriptive study, including fifteen physiotherapy students, was conducted using three equally sized focus groups. A collaborative data analysis process was employed using the DEPICT model. RESULTS Five themes were identified during data analysis: developing evidence-informed practice, clinical considerations for exoskeleton use, resource demands, device-specific challenges for implementation, and future development. The results suggest there are several barriers limiting novel clinicians' future use of exoskeletons. CONCLUSION This study highlights current challenges surrounding exoskeleton implementation into clinical practice and provides direction for future exoskeleton development.Implications for rehabilitationPhysiotherapy students view exoskeletons as a potentially valuable rehabilitation tool once perceived limitations are addressed.This study encourages collaboration between physiotherapists and biomedical engineers for future exoskeleton development.More research is needed to inform treatment parameters and appropriate client criteria to guide exoskeleton use for gait rehabilitation.
Collapse
Affiliation(s)
- Sierra Zabel
- Department of Physical Therapy, University of Toronto, Toronto, Canada
| | | | - Nikhita Badiani
- Department of Physical Therapy, University of Toronto, Toronto, Canada
| | - James Cornish
- Department of Physical Therapy, University of Toronto, Toronto, Canada
| | - Leo Falzon
- Department of Physical Therapy, University of Toronto, Toronto, Canada
| | - Adrian Flis
- Department of Physical Therapy, University of Toronto, Toronto, Canada
| | - Kara Patterson
- Department of Physical Therapy, University of Toronto, Toronto, Canada.,Rehabilitation Sciences Institute, University of Toronto, Toronto, Canada
| | - Sarah Gregor
- Rehabilitation Sciences Institute, University of Toronto, Toronto, Canada
| | | |
Collapse
|