1
|
Zhang J, Liu M, Yue J, Yang J, Xiao Y, Yang J, Cai E. Effects of virtual reality with different modalities on upper limb recovery: a systematic review and network meta-analysis on optimizing stroke rehabilitation. Front Neurol 2025; 16:1544135. [PMID: 40236896 PMCID: PMC11996652 DOI: 10.3389/fneur.2025.1544135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Accepted: 03/17/2025] [Indexed: 04/17/2025] Open
Abstract
Background As a major cause of disability worldwide, stroke affects about 80% of survivors with upper limb (UL) motor dysfunction, significantly impairing their quality of life. Virtual reality (VR) has been recognized as an innovative rehabilitation tool; however, the effectiveness of VR systems with different immersion modalities is still uncertain. This systematic review and network meta-analysis (NMA) aims to evaluate the comparative effectiveness of intervention measures, including non-immersive gaming consoles, immersive VR (IVR), non-immersive VR (NIVR), and conventional therapy (CT) on upper limb motor function in stroke rehabilitation. Materials and methods A systematic search of PubMed, Embase, Cochrane Library, and Scopus identified randomized controlled trials (RCTs) published up to 12 June 2024. UL motor recovery was assessed using the Fugl-Meyer Upper Extremity (FMUE) scale. The NMA was performed using the Bayesian approach with the BUGSnet package in R software to calculate the relative effectiveness of each intervention. Results 34 RCTs involving 1,704 participants were included. Among non-immersive gaming systems, Microsoft Kinect demonstrated the greatest effective in enhancing UL motor function, followed by Nintendo Wii, then NIVR and IVR head-mounted devices. CT showed the least effective. Specifically, Microsoft Kinect significantly improved FMUE scores (mean difference [MD] = 7.27, 95% confidence interval [CI]: 0.59 to 13.77, p < 0.05), followed by Nintendo Wii (MD = 4.53, 95% CI: 0.87 to 8.14, p < 0.05), and NIVR (MD = 3.57, 95% CI: 1.18 to 6.01, p < 0.05). In contrast, IVR head-mounted devices showed no statistically significant differences in outcomes, with MD of 4.16 (95% CI: -0.02 to 8.38). Conclusion Non-immersive gaming console of Microsoft Kinect is the most effective intervention for improving UL motor function in stroke survivors. In contrast, IVR head-mounted devices did not offer significant advantages over CT. These findings suggest that non-immersive gaming consoles of Microsoft Kinect could be a more cost-effective and accessible alternative for stroke rehabilitation.
Collapse
Affiliation(s)
- Jiali Zhang
- The Third Affiliated Hospital of Yunnan University of Chinese Medicine, Kunming Municipal Hospital of Traditional Chinese Medicine, Kunming, Yunnan, China
| | - Mingxiu Liu
- Bishan Hospital of Chongqing Medical University, Chongqing, China
| | - Junlin Yue
- The Third Affiliated Hospital of Yunnan University of Chinese Medicine, Kunming Municipal Hospital of Traditional Chinese Medicine, Kunming, Yunnan, China
| | - Jinmei Yang
- The Third Affiliated Hospital of Yunnan University of Chinese Medicine, Kunming Municipal Hospital of Traditional Chinese Medicine, Kunming, Yunnan, China
| | - Yan Xiao
- The Third Affiliated Hospital of Yunnan University of Chinese Medicine, Kunming Municipal Hospital of Traditional Chinese Medicine, Kunming, Yunnan, China
| | - Jie Yang
- The Third Affiliated Hospital of Yunnan University of Chinese Medicine, Kunming Municipal Hospital of Traditional Chinese Medicine, Kunming, Yunnan, China
| | - Enli Cai
- College of Nursing, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| |
Collapse
|
2
|
Sánchez-Gil JJ, Sáez-Manzano A, López-Luque R, Ochoa-Sepúlveda JJ, Cañete-Carmona E. Gamified devices for stroke rehabilitation: A systematic review. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2024; 258:108476. [PMID: 39520875 DOI: 10.1016/j.cmpb.2024.108476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 10/16/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024]
Abstract
BACKGROUND AND OBJECTIVE Rehabilitation after stroke is essential to minimize permanent disability. Gamification, the integration of game elements into non-game environments, has emerged as a promising strategy for increasing motivation and rehabilitation effectiveness. This article systematically reviews the gamified devices used in stroke rehabilitation and evaluates their impact on emotional, social, and personal effects on patients, providing a comprehensive view of gamified rehabilitation. METHODS A comprehensive search using the PRISMA 2020 guidelines was conducted using the IEEE Xplore, PubMed, Springer Link, APA PsycInfo, and ScienceDirect databases. Empirical studies published between January 2019 and December 2023 that quantified the effects of gamification in terms of usability, motivation, engagement, and other qualitative patient responses were selected. RESULTS In total, 169 studies involving 6404 patients were included. Gamified devices are categorized into four types: robotic/motorized, non-motorized, virtual reality, and neuromuscular electrical stimulation. The results showed that gamified devices not only improved motor and cognitive function but also had a significant positive impact on patients' emotional, social and personal levels. Most studies have reported high levels of patient satisfaction and motivation, highlighting the effectiveness of gamification in stroke rehabilitation. CONCLUSIONS Gamification in stroke rehabilitation offers significant benefits beyond motor and cognitive recovery by improving patients' emotional and social well-being. This systematic review provides a comprehensive overview of the most effective gamified technologies and highlights the need for future multidisciplinary research to optimize the design and implementation of gamified solutions in stroke rehabilitation.
Collapse
Affiliation(s)
- Juan J Sánchez-Gil
- Department of Electronic and Computer Engineering, University of Córdoba, Córdoba, Spain.
| | - Aurora Sáez-Manzano
- Department of Electronic and Computer Engineering, University of Córdoba, Córdoba, Spain
| | - Rafael López-Luque
- Institute of Neurosciences, Hospital Cruz Roja de Córdoba, Córdoba, Spain
| | | | - Eduardo Cañete-Carmona
- Department of Electronic and Computer Engineering, University of Córdoba, Córdoba, Spain
| |
Collapse
|
3
|
Pavan A, Fasano A, Lattanzi S, Cortellini L, Cipollini V, Insalaco S, Mauro MC, Germanotta M, Aprile IG. Effectiveness of Two Models of Telerehabilitation in Improving Recovery from Subacute Upper Limb Disability after Stroke: Robotic vs. Non-Robotic. Brain Sci 2024; 14:941. [PMID: 39335435 PMCID: PMC11430637 DOI: 10.3390/brainsci14090941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 09/13/2024] [Accepted: 09/19/2024] [Indexed: 09/30/2024] Open
Abstract
BACKGROUND/OBJECTIVES Finding innovative digital solutions is fundamental to ensure prompt and continuous care for patients with chronic neurological disorders, whose demand for rehabilitation also in home-based settings is steadily increasing. The aim is to verify the safety and the effectiveness of two telerehabilitation (TR) models in improving recovery from subacute upper limb (UL) disability after stroke, with and without a robotic device. METHODS One hundred nineteen subjects with subacute post-stroke UL disability were assessed for eligibility. Of them, 30 patients were enrolled in the study and randomly assigned to either the Robotic Group (RG), undergoing a 20-session TR program, using a robotic device, or the Non-Robotic Group (NRG), undergoing a 20-session TR program without robotics. Clinical evaluations were measured at baseline (T0) and post-intervention (T1, 5 weeks after baseline), and included assessments of quality of life, motor skills, and clinical/functional status. The primary outcome measure was the World Health Organization Disability Assessment Schedule 2.0, evaluating the change in perceived disability. RESULTS Statistical analysis shows that patients of both groups improved significantly over time in all domains analyzed (mean decrease from baseline in the WHODAS 2.0 of 6.09 ± 2.62% for the NRG, and of 0.76 ± 2.21% for the RG), with a greater improvement of patients in the NRG in motor (Fugl-Meyer Assessment Upper Extremity-motor function, Box and Block Test) and cognitive skills (Trail Making Test-A). CONCLUSIONS This study highlights the potential of TR programs to transform stroke rehabilitation by enhancing accessibility and patient-centered care, promoting autonomy, improving adherence, and leading to better outcomes and quality of life for stroke survivors.
Collapse
Affiliation(s)
| | - Alessio Fasano
- Neuromotor Rehabilitation Department, IRCCS Fondazione Don Carlo Gnocchi ONLUS, 50143 Florence, Italy; (A.P.); (S.L.); (L.C.); (V.C.); (S.I.); (M.C.M.); (M.G.); (I.G.A.)
| | | | | | | | | | | | | | | |
Collapse
|
4
|
Soleimani M, Ghazisaeedi M, Heydari S. The efficacy of virtual reality for upper limb rehabilitation in stroke patients: a systematic review and meta-analysis. BMC Med Inform Decis Mak 2024; 24:135. [PMID: 38790042 PMCID: PMC11127427 DOI: 10.1186/s12911-024-02534-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 05/14/2024] [Indexed: 05/26/2024] Open
Abstract
BACKGROUND Stroke frequently gives rise to incapacitating motor impairments in the upper limb. Virtual reality (VR) rehabilitation has exhibited potential for augmenting upper extremity recovery; nonetheless, the optimal techniques for such interventions remain a topic of uncertainty. The present systematic review and meta-analysis were undertaken to comprehensively compare VR-based rehabilitation with conventional occupational therapy across a spectrum of immersion levels and outcome domains. METHODS A systematic search was conducted in PubMed, IEEE, Scopus, Web of Science, and PsycNET databases to identify randomized controlled trials about upper limb rehabilitation in stroke patients utilizing VR interventions. The search encompassed studies published in the English language up to March 2023. The identified studies were stratified into different categories based on the degree of immersion employed: non-immersive, semi-immersive, and fully-immersive settings. Subsequent meta-analyses were executed to assess the impact of VR interventions on various outcome measures. RESULTS Of the 11,834 studies screened, 55 studies with 2142 patients met the predefined inclusion criteria. VR conferred benefits over conventional therapy for upper limb motor function, functional independence, Quality of life, Spasticity, and dexterity. Fully immersive VR showed the greatest gains in gross motor function, while non-immersive approaches enhanced fine dexterity. Interventions exceeding six weeks elicited superior results, and initiating VR within six months post-stroke optimized outcomes. CONCLUSIONS This systematic review and meta-analysis demonstrates that adjunctive VR-based rehabilitation enhances upper limb motor recovery across multiple functional domains compared to conventional occupational therapy alone after stroke. Optimal paradigms likely integrate VR's immersive capacity with conventional techniques. TRIAL REGISTRATION This systematic review and meta-analysis retrospectively registered in the OSF registry under the identifier [ https://doi.org/10.17605/OSF.IO/YK2RJ ].
Collapse
Affiliation(s)
- Mohsen Soleimani
- Department of Health Information Management and Medical Informatics, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran
| | - Marjan Ghazisaeedi
- Department of Health Information Management and Medical Informatics, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran
| | - Soroush Heydari
- Department of Health Information Management and Medical Informatics, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
5
|
Huang X, Liao O, Jiang S, Li J, Ma X. Kinematic analysis in post-stroke patients with moderate to severe upper limb paresis and non-disabled controls. Clin Biomech (Bristol, Avon) 2024; 113:106206. [PMID: 38401320 DOI: 10.1016/j.clinbiomech.2024.106206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 12/23/2023] [Accepted: 02/13/2024] [Indexed: 02/26/2024]
Abstract
BACKGROUND Kinematic analysis has been recommended to quantify the upper limb motor function after stroke. However, previous studies have rarely reported the kinematic data of the post-stroke patients with moderate to severe upper limb paresis due to the poor accomplishment of the complex tasks. METHODS 27 post-stroke individuals and 20 non-disabled people participated in the study. The trunk and upper limb movements during the Hand-to-mouth task were captured by the motion capture system and upper extremity kinematic analysis software automatically. The subgroup analysis within stroke group were conducted layering by the Fugl-Meyer Assessment for Upper Extremity scores (severe: 16-31; moderate: 32-50). FINDINGS The paretic upper limbs in the stroke group tended to use more trunk and shoulder compensatory strategies to offset the impact of spasticity and weakness compared with non-disabled controls. The less-affected limbs in the stroke group also showed abnormal kinematic data. There were significant differences between the kinematic metrics of severe and moderate subgroups. INTERPRETATION The Hand-to-mouth task is a good and feasible option for kinematic analysis of these patients. It is essential to layer the severity of the paresis and put more emphasis on trunk movements in the future kinematic studies.
Collapse
Affiliation(s)
- Xinyun Huang
- Acupuncture Center, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China; Yueyang Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Shanghai Research Institute of Acupuncture and Meridian, Shanghai 200030, China
| | - Ouping Liao
- Yueyang Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Traditional Chinese Medicine department, DeYang People's Hospital, Sichuan 618099, China
| | - Shuyun Jiang
- Gait and Motion Analysis Center, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Jing Li
- Acupuncture Center, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Xiaopeng Ma
- Acupuncture Center, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China; Shanghai Research Institute of Acupuncture and Meridian, Shanghai 200030, China.
| |
Collapse
|
6
|
Térémetz M, Hamdoun S, Colle F, Gerardin E, Desvilles C, Carment L, Charron S, Cuenca M, Calvet D, Baron JC, Turc G, Maier MA, Rosso C, Mas JL, Lindberg PG. Efficacy of interactive manual dexterity training after stroke: a pilot single-blinded randomized controlled trial. J Neuroeng Rehabil 2023; 20:93. [PMID: 37464404 PMCID: PMC10355015 DOI: 10.1186/s12984-023-01213-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 07/10/2023] [Indexed: 07/20/2023] Open
Abstract
OBJECTIVE To compare the efficacy of Dextrain Manipulandum™ training of dexterity components such as force control and independent finger movements, to dose-matched conventional therapy (CT) post-stroke. METHODS A prospective, single-blind, pilot randomized clinical trial was conducted. Chronic-phase post-stroke patients with mild-to-moderate dexterity impairment (Box and Block Test (BBT) > 1) received 12 sessions of Dextrain or CT. Blinded measures were obtained before and after training and at 3-months follow-up. Primary outcome was BBT-change (after-before training). Secondary outcomes included changes in motor impairments, activity limitations and dexterity components. Corticospinal excitability and short intracortical inhibition (SICI) were measured using transcranial magnetic stimulation. RESULTS BBT-change after training did not differ between the Dextrain (N = 21) vs CT group (N = 21) (median [IQR] = 5[2-7] vs 4[2-7], respectively; P = 0.36). Gains in BBT were maintained at the 3-month post-training follow-up, with a non-significant trend for enhanced BBT-change in the Dextrain group (median [IQR] = 3[- 1-7.0], P = 0.06). Several secondary outcomes showed significantly larger changes in the Dextrain group: finger tracking precision (mean ± SD = 0.3 ± 0.3N vs - 0.1 ± 0.33N; P < 0.0018), independent finger movements (34.7 ± 25.1 ms vs 7.7 ± 18.5 ms, P = 0.02) and maximal finger tapping speed (8.4 ± 7.1 vs 4.5 ± 4.9, P = 0.045). At follow-up, Dextrain group showed significantly greater improvement in Motor Activity Log (median/IQR = 0.7/0.2-0.8 vs 0.2/0.1-0.6, P = 0.05). Across both groups SICI increased in patients with greater BBT-change (Rho = 0.80, P = 0.006). Comparing Dextrain subgroups with maximal grip force higher/lower than median (61.2%), BBT-change was significantly larger in patients with low vs high grip force (7.5 ± 5.6 vs 2.9 ± 2.8; respectively, P = 0.015). CONCLUSIONS Although immediate improvements in gross dexterity post-stroke did not significantly differ between Dextrain training and CT, our findings suggest that Dextrain enhances recovery of several dexterity components and reported hand-use, particularly when motor impairment is moderate (low initial grip force). Findings need to be confirmed in a larger trial. Trial registration ClinicalTrials.gov NCT03934073 (retrospectively registered).
Collapse
Affiliation(s)
- Maxime Térémetz
- Institute of Psychiatry and Neuroscience of Paris, INSERM U1266, Université Paris Cité, 102-108 Rue de La Santé, 75014, Paris, France
| | - Sonia Hamdoun
- Institute of Psychiatry and Neuroscience of Paris, INSERM U1266, Université Paris Cité, 102-108 Rue de La Santé, 75014, Paris, France
- Service de Médecine Physique et de Réadaptation, Groupe Hospitalier Universitaire Paris, Psychiatrie et Neurosciences, 1 Rue Cabanis, 75014, Paris, France
| | - Florence Colle
- SSR Neurologique, Hôpitaux de Saint-Maurice, 12/14 Rue du Val d'Osne, 94410, Saint-Maurice, France
| | - Eloïse Gerardin
- Neurology Department, Stroke Unit, UCLouvain/CHU UCL Namur (Godinne), Yvoir, Belgium
| | - Claire Desvilles
- Institute of Psychiatry and Neuroscience of Paris, INSERM U1266, Université Paris Cité, 102-108 Rue de La Santé, 75014, Paris, France
| | - Loïc Carment
- Institute of Psychiatry and Neuroscience of Paris, INSERM U1266, Université Paris Cité, 102-108 Rue de La Santé, 75014, Paris, France
| | - Sylvain Charron
- Institute of Psychiatry and Neuroscience of Paris, INSERM U1266, Université Paris Cité, 102-108 Rue de La Santé, 75014, Paris, France
| | - Macarena Cuenca
- Centre de Recherche Clinique, Groupe Hospitalier Universitaire Paris, Psychiatrie et Neurosciences, 1 Rue Cabanis, 75014, Paris, France
| | - David Calvet
- Institute of Psychiatry and Neuroscience of Paris, INSERM U1266, Université Paris Cité, 102-108 Rue de La Santé, 75014, Paris, France
- Service de Neurologie, Groupe Hospitalier Universitaire Paris, Psychiatrie et Neurosciences, 1 Rue Cabanis, 75014, Paris, France
- FHU NeuroVasc, Paris, France
| | - Jean-Claude Baron
- Institute of Psychiatry and Neuroscience of Paris, INSERM U1266, Université Paris Cité, 102-108 Rue de La Santé, 75014, Paris, France
- Service de Neurologie, Groupe Hospitalier Universitaire Paris, Psychiatrie et Neurosciences, 1 Rue Cabanis, 75014, Paris, France
- FHU NeuroVasc, Paris, France
| | - Guillaume Turc
- Institute of Psychiatry and Neuroscience of Paris, INSERM U1266, Université Paris Cité, 102-108 Rue de La Santé, 75014, Paris, France
- Service de Neurologie, Groupe Hospitalier Universitaire Paris, Psychiatrie et Neurosciences, 1 Rue Cabanis, 75014, Paris, France
- FHU NeuroVasc, Paris, France
| | - Marc A Maier
- Université Paris Cité, CNRS, Integrative Neuroscience and Cognition Center, 75006, Paris, France
| | - Charlotte Rosso
- Institut du Cerveau et de la Moelle Épinière, ICM, Inserm U 1127, CNRS UMR 7225, Sorbonne Université, Paris, France
| | - Jean-Louis Mas
- Institute of Psychiatry and Neuroscience of Paris, INSERM U1266, Université Paris Cité, 102-108 Rue de La Santé, 75014, Paris, France
- Service de Neurologie, Groupe Hospitalier Universitaire Paris, Psychiatrie et Neurosciences, 1 Rue Cabanis, 75014, Paris, France
- FHU NeuroVasc, Paris, France
| | - Påvel G Lindberg
- Institute of Psychiatry and Neuroscience of Paris, INSERM U1266, Université Paris Cité, 102-108 Rue de La Santé, 75014, Paris, France.
| |
Collapse
|
7
|
Hao J, He Z, Yu X, Remis A. Comparison of immersive and non-immersive virtual reality for upper extremity functional recovery in patients with stroke: a systematic review and network meta-analysis. Neurol Sci 2023:10.1007/s10072-023-06742-8. [PMID: 36959332 DOI: 10.1007/s10072-023-06742-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 03/09/2023] [Indexed: 03/25/2023]
Abstract
OBJECTIVE This systematic review aimed to compare the effects of immersive and non-immersive virtual reality on upper extremity function in stroke survivors by employing a network meta-analysis approach. DATA SOURCES MEDLINE, Embase, CINAHL Plus, APA PsycINFO, and Scopus were searched. Virtual reality was used for upper extremity rehabilitation; dose-matched conventional rehabilitation was used for comparison. Fugl-Meyer Assessment was used to assess upper extremity function. Searches were limited to English language randomized controlled trials. METHODS Two independent reviewers conducted study selection, data extraction, and quality assessment. Methodological quality was assessed using the Physiotherapy Evidence Database scale. A random-effects frequentist network meta-analysis was conducted by assuming a common random-effects standard deviation for all comparisons in the network. RESULTS Twenty randomized controlled trials with 813 participants were included, with each study evaluated as good quality. Immersive virtual reality systems were most effective at improving upper extremity function, followed by non-immersive virtual reality systems, then non-immersive gaming consoles of Microsoft Kinect and Nintendo Wii. Conventional rehabilitation was least effective. Immersive virtual reality was estimated to induce 1.39 (95% confidence interval (CI): 0.25, 2.53) and 1.38 (95% CI: 0.55, 2.20) standard mean differences of improvements in upper extremity function, compared to Nintendo Wii intervention and conventional rehabilitation, respectively. CONCLUSION This systematic review and network meta-analysis highlights the superior effects of immersive virtual reality to non-immersive virtual reality systems and gaming consoles on upper extremity motor recovery.
Collapse
Affiliation(s)
- Jie Hao
- College of Allied Health Professions, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
| | - Zhengting He
- Department of Epidemiology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, 21205, USA.
| | - Xin Yu
- Beijing Rehabilitation Medical College, Beijing Rehabilitation Hospital, Capital Medical University, Beijing, 100144, China
| | - Andréas Remis
- Gate Parkway Primary Care Center, Department of Physical Medicine and Rehabilitation, Mayo Clinic, Jacksonville, FL, 32256, USA
| |
Collapse
|