1
|
Aguila L, Cabrera P, Arias ME, Silva M, Felmer R. Effect of sperm treatment with lysolecithin on in vitro outcomes of equine intracytoplasmic sperm injection. J Equine Vet Sci 2024; 138:105095. [PMID: 38810588 DOI: 10.1016/j.jevs.2024.105095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 05/03/2024] [Accepted: 05/12/2024] [Indexed: 05/31/2024]
Abstract
Intracytoplasmic sperm injection (ICSI) in horses is currently employed for clinical and commercial uses, but the protocol could be optimized to improve its efficiency. We have hypothesized that destabilization of plasma and acrosomal membranes prior to injection would positively impact the developmental potential of equine zygotes generated by ICSI. This study evaluated effects of the sperm treatment with lysolecithin on plasma and acrosomal membranes and on oocyte activation ability, initially following heterologous ICSI on bovine oocytes and subsequently employing equine oocytes. The effects of the lysolecithin -treatment on the efficiency of conventional and piezo-assisted equine ICSI were evaluated. To do this, the equine sperm were treated with different concentrations of lysolecithin and the sperm plasma membrane, acrosome and DNA integrity were evaluated by flow cytometry. The results showed that a lysolecithin concentration of 0.08 % destabilized the membranes of all sperm and affected DNA integrity within the range described for the species (8-30 %). In addition, the heterologous ICSI assay showed that lysolecithin treatment was detrimental to the sperm's ability to activate the oocyte, therefore, chemical oocyte activation was used after equine ICSI after injection with lysolecithin -treated sperm. This group showed similar developmental rate to the control group with and without exogenous activation. In conclusion, lysolecithin pre-treatment is not necessary when using ICSI to produce equine embryos in vitro. The results from the current study provide additional insight regarding the factors impacting ICSI in horses.
Collapse
Affiliation(s)
- L Aguila
- Laboratory of Reproduction, Centre of Reproductive Biotechnology (CEBIOR-BIOREN), Universidad de La Frontera, Temuco 4811322, Chile
| | - P Cabrera
- Laboratory of Reproduction, Centre of Reproductive Biotechnology (CEBIOR-BIOREN), Universidad de La Frontera, Temuco 4811322, Chile; Doctoral Program in Applied Cellular and Molecular Biology, Universidad de La Frontera, Temuco 4811322, Chile
| | - M E Arias
- Laboratory of Reproduction, Centre of Reproductive Biotechnology (CEBIOR-BIOREN), Universidad de La Frontera, Temuco 4811322, Chile; Department of Agricultural Production, Faculty of Agriculture and Environmental Sciences, Universidad de La Frontera, Temuco 4811322, Chile
| | - M Silva
- Departament of Veterinary Sciences and Public Health, Universidad Católica de Temuco, Temuco 4811322, Chile
| | - R Felmer
- Laboratory of Reproduction, Centre of Reproductive Biotechnology (CEBIOR-BIOREN), Universidad de La Frontera, Temuco 4811322, Chile; Department of Agricultural Sciences and Natural Resources, Faculty of Agriculture and Environmental Sciences, Universidad de La Frontera, Temuco 4811322, Chile.
| |
Collapse
|
2
|
Bellido-Quispe DK, Arcce IML, Pinzón-Osorio CA, Campos VF, Remião MH. Chemical activation of mammalian oocytes and its application in camelid reproductive biotechnologies: A review. Anim Reprod Sci 2024; 266:107499. [PMID: 38805838 DOI: 10.1016/j.anireprosci.2024.107499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 04/10/2024] [Accepted: 05/10/2024] [Indexed: 05/30/2024]
Abstract
Mammalian oocyte activation is a critical process occurring post-gamete fusion, marked by a sequence of cellular events initiated by an upsurge in intracellular Ca2+. This surge in calcium orchestrates the activation/deactivation of specific kinases, leading to the subsequent inactivation of MPF and MAPK activities, alongside PKC activation. Despite various attempts to induce artificial activation using distinct chemical compounds as Ca2+ inducers and/or Ca2+-independent agents, the outcomes have proven suboptimal. Notably, incomplete suppression of MPF and MAPK activities persists, necessitating a combination of different agents for enhanced efficiency. Moreover, the inherent specificity of activation methods for each species precludes straightforward extrapolation between them. Consequently, optimization of protocols for each species and for each technique, such as PA, ICSI, and SCNT, is required. Despite recent strides in camelid biotechnologies, the field has seen little advancement in chemical activation methods. Only a limited number of chemical agents have been explored, and the effects of many remain unknown. In ICSI, despite obtaining blastocysts with different chemical compounds that induce Ca2+ and calcium-independent increases, viable offspring have not been obtained. However, SCNT has exhibited varying outcomes, successfully yielding viable offspring with a reduced number of chemical activators. This article comprehensively reviews the current understanding of the physiological activation of oocytes and the molecular mechanisms underlying chemical activation in mammals. The aim is to transfer and apply this knowledge to camelid reproductive biotechnologies, with emphasis on chemical activation in PA, ICSI, and SCNT.
Collapse
Affiliation(s)
| | | | - César Augusto Pinzón-Osorio
- Laboratório de Fisiopatologia e Biotécnicas da Reprodução Animal (FiBRA), Universidade Federal de Pelotas (UFPel), Pelotas, RS, Brazil
| | - Vinicius Farias Campos
- Laboratório de Genômica Estrutural, Universidade Federal de Pelotas (UFPel), Pelotas, RS, Brazil
| | - Mariana Härter Remião
- Laboratório de Genômica Estrutural, Universidade Federal de Pelotas (UFPel), Pelotas, RS, Brazil
| |
Collapse
|
3
|
Bellido-Quispe DK, Mujica Lengua FR, Contreras Huamani M, Palomino JM. Effect of chemical activators after intracytoplasmic sperm injection (ICSI) on embryo development in alpacas. Anim Reprod Sci 2024; 263:107432. [PMID: 38401395 DOI: 10.1016/j.anireprosci.2024.107432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 02/08/2024] [Indexed: 02/26/2024]
Abstract
Low motility and low sperm concentration are characteristics of alpaca semen. Thus, the intracytoplasmic sperm injection (ICSI) technique represents an alternative to improve the reproductive capacity of the male. However, the effect of post-ICSI activation in alpaca is not yet known. The aim of the present study was to compare the effect of chemical activators on alpaca embryo development after ICSI. Alpaca ovaries were collected from a local slaughterhouse and transported to the laboratory. Category I, II and III oocytes were matured for 30 h at 38.5 °C. After ICSI, injected oocytes were randomly divided and activated as follows: i) 5 μM ionomycin for 5 min, ii) 7% ethanol for 4 min, iii) 5 μM ionomycin for 5 min, window period 3 h plus 7% ethanol for 4 min, iv) 5 μM ionomycin for 5 min, window period 3 h, a second ionomycin treatment for 5 min, followed by 1.9 mM 6-DMAP for 3 h, v) 10 mM SrCl2 for 3 h. Culture was carried out for 5 days in SOFaa at 38.5 °C. The cleavage rate was the lowest in the SrCl2 group, morula development was the lowest in the SrCl2 and without activation groups, and blastocyst stage was not different between groups (P<0.05). The rates with SrCl2 were lower in total embryos produced, whereas in transferable embryos they were lower with 2Io/6-DMAP and with SrCl2 (P<0.05). In conclusion, alpaca oocyte activation is more efficient with ionomycin and ethanol to produce transferable embryos.
Collapse
Affiliation(s)
- Dionet Keny Bellido-Quispe
- Instituto Nacional de Innovación Agraria, Estación Experimental Agraria Canaán, Laboratorio de Biotecnología Reproductiva, Ayacucho, Peru.
| | - Fidel Rodolfo Mujica Lengua
- Universidad Nacional de San Cristóbal de Huamanga, Facultad de Ciencias Biológicas, Laboratorio de Biotecnología, Ayacucho, Peru
| | - Mijaíl Contreras Huamani
- Instituto Nacional de Innovación Agraria, Estación Experimental Agraria Canaán, Laboratorio de Biotecnología Reproductiva, Ayacucho, Peru
| | - J Manuel Palomino
- Universidad Científica del Sur, Carrera de Medicina Veterinaria y Zootecnica, Lima, Peru
| |
Collapse
|
4
|
Bovine ICSI: limiting factors, strategies to improve its efficiency and alternative approaches. ZYGOTE 2022; 30:749-767. [PMID: 36082429 DOI: 10.1017/s0967199422000296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Intracytoplasmic sperm injection (ICSI) is an assisted reproductive technique mainly used to overcome severe infertility problems associated with the male factor, but in cattle its efficiency is far from optimal. Artificial activation treatments combining ionomycin (Io) with 6-dimethylaminopurine after piezo-ICSI or anisomycin after conventional ICSI have recently increased the blastocyst rate obtained. Compounds to capacitate bovine spermatozoa, such as heparin and methyl-β-cyclodextrin and compounds to destabilize sperm membranes such as NaOH, lysolecithin and Triton X-100, have been assessed, although they have failed to substantially improve post-ICSI embryonic development. Disulfide bond reducing agents, such as dithiothreitol (DTT), dithiobutylamine and reduced glutathione, have been assessed to decondense the hypercondensed head of bovine spermatozoa, the two latter being more efficient than DTT and less harmful. Although piezo-directed ICSI without external activation has generated high fertilization rates and modest rates of early embryo development, other studies have required exogenous activation to improve the results. This manuscript thoroughly reviews the different strategies used in bovine ICSI to improve its efficiency and proposes some alternative approaches, such as the use of extracellular vesicles (EVs) as 'biological methods of oocyte activation' or the incorporation of EVs in the in vitro maturation and/or culture medium as antioxidant defence agents to improve the competence of the ooplasm, as well as a preincubation of the spermatozoa in estrous oviductal fluid to induce physiological capacitation and acrosome reaction before ICSI, and the use of hyaluronate in the sperm immobilization medium.
Collapse
|
5
|
Lee YJ, Lin W, Peng SY, Lee JW, Lin YH, Yu C, Shen PC. Effects of intracytoplasmic sperm injection timing and fertilization methods on the development of bovine spindle transferred embryos. Theriogenology 2021; 180:63-71. [PMID: 34953350 DOI: 10.1016/j.theriogenology.2021.12.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 12/02/2021] [Accepted: 12/15/2021] [Indexed: 11/27/2022]
Abstract
Cytoplasmic replacement by spindle transfer (ST) technique can be applied to improve the developmental competence of poor qualitied or aged oocytes. In cattle, ST technology has not been well established for producing embryos and the calves successfully using intracytoplasmic sperm injection (ICSI) or in vitro fertilization (IVF). The objective of this study was to develop a novel procedure for producing bovine ST embryos, which could be fundamental to applying ST technology in other mammals. In the present study, the efficacies of performing ICSI before (ICSI-ST) or after (ST-ICSI) and IVF on the development of ST bovine embryos were investigated. Results indicated that the blastocyst rate of ST embryos produced by ICSI-ST (24.7%) was higher (P < 0.05) than that produced by ST-ICSI (5.9%). On the other hand, ST-IVF had the highest fertilization rate (97.3%), polyspermy rate (24.7%), and lowest blastocyst rate (22.7%) when compared to denuded oocytes (DO), zona cut oocytes (ZC), and cumulus-oocyte complexes (COCs)-IVF groups. Finally, the in vitro development rates of ICSI-ST (24.5%) and ST-IVF (25.2%) were not significantly different (P > 0.05). However, the pregnancy rate (46.7%) and birth rate (33.3%) of ST-IVF were higher (P < 0.05) than those of ICSI-ST (6.3% and 0%, respectively). The percentage of mitochondrial DNA (mtDNA) heteroplasmy derived from donor karyoplasts of the 5 claves was between 2% and 18%. Taken together, performing ICSI prior to ST can improve the embryonic development of ST bovine embryos. Moreover, using IVF, instead of ICSI, for ST oocyte fertilization dramatically increased the pregnancy rate and birth rate of ST calves, in which mtDNA heteroplasmy derived from donor karyoplasts exists.
Collapse
Affiliation(s)
- Yu-Ju Lee
- Department of Animal Science, National Pingtung University of Science and Technology, Neipu, Pingtung, 912, Taiwan
| | - Wei Lin
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu city, 300, Taiwan
| | - Shao-Yu Peng
- Department of Animal Science, National Pingtung University of Science and Technology, Neipu, Pingtung, 912, Taiwan
| | - Jai-Wei Lee
- Department of Tropical Agriculture and International Cooperation, National Pingtung University of Science and Technology, Neipu, Pingtung, 912, Taiwan
| | - Yu-Han Lin
- Department of Animal Science, National Pingtung University of Science and Technology, Neipu, Pingtung, 912, Taiwan
| | - Chi Yu
- Department of Animal Science, National Pingtung University of Science and Technology, Neipu, Pingtung, 912, Taiwan
| | - Perng-Chih Shen
- Department of Animal Science, National Pingtung University of Science and Technology, Neipu, Pingtung, 912, Taiwan.
| |
Collapse
|
6
|
Unnikrishnan V, Kastelic J, Thundathil J. Intracytoplasmic Sperm Injection in Cattle. Genes (Basel) 2021; 12:198. [PMID: 33572865 PMCID: PMC7911995 DOI: 10.3390/genes12020198] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Revised: 01/23/2021] [Accepted: 01/26/2021] [Indexed: 10/30/2022] Open
Abstract
Intracytoplasmic sperm injection (ICSI) involves the microinjection of sperm into a matured oocyte. Although this reproductive technology is successfully used in humans and many animal species, the efficiency of this procedure is low in the bovine species mainly due to failed oocyte activation following sperm microinjection. This review discusses various reasons for the low efficiency of ICSI in cattle, potential solutions, and future directions for research in this area, emphasizing the contributions of testis-specific isoforms of Na/K-ATPase (ATP1A4) and phospholipase C zeta (PLC ζ). Improving the efficiency of bovine ICSI would benefit the cattle breeding industries by effectively utilizing semen from elite sires at their earliest possible age.
Collapse
Affiliation(s)
| | | | - Jacob Thundathil
- Department of Production Animal Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N4N1, Canada; (V.U.); (J.K.)
| |
Collapse
|
7
|
Águila L, Zambrano F, Arias ME, Felmer R. Sperm capacitation pretreatment positively impacts bovine intracytoplasmic sperm injection. Mol Reprod Dev 2017; 84:649-659. [PMID: 28513911 DOI: 10.1002/mrd.22834] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 05/02/2017] [Accepted: 05/11/2017] [Indexed: 11/08/2022]
Abstract
The efficiency of intracytoplasmic sperm injection (ICSI) in bovines is low compared to other species due in part to inadequate egg activation and sperm nucleus decondensation after injection. We hypothesized that this low efficiency is due to the lack of complete sperm capacitation, so we evaluated the effects of isobutylmethylxanthine (IBMX) and methyl-β-cyclodextrin (MβCD) on bovine sperm capacitation and on the preimplantation developmental potential of bovine embryos generated by ICSI. Treatment with IBMX and MβCD decreased sperm viability (between 13-30%); nevertheless, 0.4 mM IBMX and 1 mM MβCD increased (p < 0.05) capacitation metrics-that is, acrosome exocytosis, intracellular calcium level, plasma membrane fluidity, and tyrosine phosphorylation-compared to the control. After ICSI, embryos injected with IBMX- and MβCD-treated sperm showed similar cleavage to the untreated group (range 82-88%). Pronucleus formation rate was higher with MβCD-pretreatment (54%) compared to the control group (25%), and blastocyst rate was significantly improved with MβCD-pretreatment (24%) compared to the IBMX (18%) and control (17%) groups. Importantly, embryo quality-as assessed by the total number of cells, cell allocation, and apoptotic cell index-was not affected by the sperm treatments. In conclusion, MβCD pretreatment of sperm improved the efficiency of blastocyst production in bovine ICSI.
Collapse
Affiliation(s)
- Luis Águila
- Laboratory of Reproduction, Centre of Reproductive Biotechnology (CEBIOR-BIOREN), Universidad de La Frontera, Temuco, Chile
| | - Fabiola Zambrano
- Laboratory of Reproduction, Centre of Reproductive Biotechnology (CEBIOR-BIOREN), Universidad de La Frontera, Temuco, Chile
| | - Maria E Arias
- Laboratory of Reproduction, Centre of Reproductive Biotechnology (CEBIOR-BIOREN), Universidad de La Frontera, Temuco, Chile.,Faculty of Agriculture and Forestry Sciences, Department of Agricultural Sciences and Natural Resources, Universidad de La Frontera, Temuco, Chile
| | - Ricardo Felmer
- Laboratory of Reproduction, Centre of Reproductive Biotechnology (CEBIOR-BIOREN), Universidad de La Frontera, Temuco, Chile.,Faculty of Agriculture and Forestry Sciences, Department of Agricultural Sciences and Natural Resources, Universidad de La Frontera, Temuco, Chile
| |
Collapse
|
8
|
Zambrano F, Aguila L, Arias ME, Sanchez R, Felmer R. Effect of sperm pretreatment with glutathione and membrane destabilizing agents lysolecithin and Triton X-100, on the efficiency of bovine intracytoplasmic sperm injection. Reprod Domest Anim 2017; 52:305-311. [PMID: 28058759 DOI: 10.1111/rda.12906] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2016] [Accepted: 11/12/2016] [Indexed: 11/26/2022]
Abstract
Intracytoplasmic sperm injection (ICSI) is an assisted reproduction tool with several applications. Its effectiveness in bovines is lower than that in other species, mainly because of difficulties in the decondensation of the sperm nucleus after injection, and the presence of the acrosome and the plasma membrane which remain intact in this procedure. In this study, we assessed the effect of lysolecithin (LL) and Triton X-100 (TX), in combination with glutathione (GSH) as sperm pretreatments prior to ICSI. The GSH-LL and GSH-TX groups showed 0% of spermatozoa with intact membrane (SYBR 14+/PI), in comparison with the control (63.3%) and GSH (65.7%) groups. The proportions of spermatozoa with damaged acrosome membrane in the GSH-LL, GSH-TX, GSH and control groups were 46%, 35.9%, 10.5% and 7.5%, respectively. Sperm chromatin decondensation analysis showed that the groups incubated for 3 hr with GSH presented greater decondensation (p < .05). Although fertilization was improved in all treatment groups evaluated, no differences were observed in the cleavage rate 72 hr after activation in the GSH (73.7%), GSH-LL (80.2%) and GSH-TX (77.8%) groups compared to the control (66.3%), neither in the blastocyst rate on day 8 (24.0%, 26.2%, 27.1% and 28.4% for the control, GSH, GSH-LL and GSH-TX groups, respectively). No differences were also observed in the total number of cells in all groups. In conclusion, although these sperm treatments promoted nuclear decondensation and induced plasma membrane disruption, these effects were not sufficient to improve bovine embryonic development after ICSI.
Collapse
Affiliation(s)
- F Zambrano
- Laboratory of Reproduction, Centre of Reproductive Biotechnology (CEBIOR-BIOREN), Universidad de La Frontera, Temuco, Chile
| | - L Aguila
- Laboratory of Reproduction, Centre of Reproductive Biotechnology (CEBIOR-BIOREN), Universidad de La Frontera, Temuco, Chile
| | - M E Arias
- Laboratory of Reproduction, Centre of Reproductive Biotechnology (CEBIOR-BIOREN), Universidad de La Frontera, Temuco, Chile.,Department of Animal Production, Faculty of Agriculture and Forestry Sciences, Universidad de La Frontera, Temuco, Chile
| | - R Sanchez
- Laboratory of Reproduction, Centre of Reproductive Biotechnology (CEBIOR-BIOREN), Universidad de La Frontera, Temuco, Chile
| | - R Felmer
- Laboratory of Reproduction, Centre of Reproductive Biotechnology (CEBIOR-BIOREN), Universidad de La Frontera, Temuco, Chile.,Department of Agricultural Sciences and Natural Resources, Faculty of Agriculture and Forestry Sciences, Universidad de La Frontera, Temuco, Chile
| |
Collapse
|