1
|
Frolova VS, Nikishina YO, Shmukler YB, Nikishin DA. Serotonin Signaling in Mouse Preimplantation Development: Insights from Transcriptomic and Structural-Functional Analyses. Int J Mol Sci 2024; 25:12954. [PMID: 39684667 DOI: 10.3390/ijms252312954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 11/24/2024] [Accepted: 12/01/2024] [Indexed: 12/18/2024] Open
Abstract
Serotonin (5-HT), a versatile signaling molecule, plays a variety of roles in both neurotransmission and tissue regulation. The influence of serotonin on early development was first studied in marine invertebrate embryos and has since been documented in a variety of vertebrate species, including mammals. The present study investigates the expression and functional activity of serotonin components in mouse embryos, focusing on key receptors and transporters. Transcriptomic analyses revealed that mRNA transcripts related to serotonin show marked expression during the oogenesis and preimplantation stages. The results of the immunohistochemical studies show the presence of serotonin, the vesicular monoamine transporter VMAT2, and several membrane receptors (5-HT1B, 5-HT1D, 5-HT2B, 5-HT7) in the early stages of development. A functional analysis performed with the VMAT inhibitor reserpine revealed the crucial role of vesicular transport in the maintenance of serotonin signaling. The findings presented here support the hypothesis that serotonin plays a significant role in oocyte maturation and embryonic development, as well as in interblastomere interactions.
Collapse
Affiliation(s)
- Veronika S Frolova
- Department of Embryology, Faculty of Biology, Lomonosov Moscow State University, Moscow 119234, Russia
| | - Yulia O Nikishina
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, Moscow 119334, Russia
| | - Yuri B Shmukler
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, Moscow 119334, Russia
| | - Denis A Nikishin
- Department of Embryology, Faculty of Biology, Lomonosov Moscow State University, Moscow 119234, Russia
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, Moscow 119334, Russia
| |
Collapse
|
2
|
Tea M, Pan YK, Lister JGR, Perry SF, Gilmour KM. Effects of serta and sertb knockout on aggression in zebrafish (Danio rerio). J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2024; 210:785-799. [PMID: 38416162 DOI: 10.1007/s00359-024-01693-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 01/12/2024] [Accepted: 02/01/2024] [Indexed: 02/29/2024]
Abstract
Zebrafish (Danio rerio) are unusual in having two paralogues of the serotonin re-uptake transporter (Sert), slc6a4a (serta) and slc6a4b (sertb), the transporter that serves in serotonin re-uptake from a synapse into the pre-synaptic cell or in serotonin uptake from the extracellular milieu into cells in the peripheral tissues. To address a knowledge gap concerning the specific roles of these paralogues, we used CRISPR/Cas9 technology to generate zebrafish knockout lines predicted to lack functional expression of Serta or Sertb. The consequences of loss-of-function of Serta or Sertb were assessed at the gene expression level, focusing on the serotonergic signalling pathway, and at the behaviour level, focusing on aggression. Whereas serta mRNA was expressed in all tissues examined, with high expression in the heart, gill and brain, only the brain displayed substantial sertb mRNA expression. In both serta-/- and sertb-/- fish, changes in transcript abundances of multiple components of the serotonin signalling pathway were detected, including proteins involved in serotonin synthesis (tph1a, tph1b, tph2, ddc), packaging (vmat2) and degradation (mao), and serotonin receptors (htr1aa, htr1ab). Using a mirror aggression test, serta-/- male but not female fish exhibited greater aggression than wildtype fish. However, both male and female sertb-/- fish displayed less aggression than their wildtype counterparts. These differences in behaviour between serta-/- and sertb-/- individuals hold promise for increasing our understanding of the neurophysiological basis of aggression in zebrafish.
Collapse
Affiliation(s)
- Michael Tea
- Department of Biology, University of Ottawa, 30 Marie Curie Pvt, Ottawa, ON, K1N 6N5, Canada
| | - Yihang Kevin Pan
- Department of Biology, University of Ottawa, 30 Marie Curie Pvt, Ottawa, ON, K1N 6N5, Canada
| | - Joshua G R Lister
- Department of Biology, University of Ottawa, 30 Marie Curie Pvt, Ottawa, ON, K1N 6N5, Canada
| | - Steve F Perry
- Department of Biology, University of Ottawa, 30 Marie Curie Pvt, Ottawa, ON, K1N 6N5, Canada
| | - Kathleen M Gilmour
- Department of Biology, University of Ottawa, 30 Marie Curie Pvt, Ottawa, ON, K1N 6N5, Canada.
| |
Collapse
|
3
|
Noble A, Qubrosi R, Cariba S, Favaro K, Payne SL. Neural dependency in wound healing and regeneration. Dev Dyn 2024; 253:181-203. [PMID: 37638700 DOI: 10.1002/dvdy.650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 07/31/2023] [Accepted: 08/02/2023] [Indexed: 08/29/2023] Open
Abstract
In response to injury, humans and many other mammals form a fibrous scar that lacks the structure and function of the original tissue, whereas other vertebrate species can spontaneously regenerate damaged tissues and structures. Peripheral nerves have been identified as essential mediators of wound healing and regeneration in both mammalian and nonmammalian systems, interacting with the milieu of cells and biochemical signals present in the post-injury microenvironment. This review examines the diverse functions of peripheral nerves in tissue repair and regeneration, specifically during the processes of wound healing, blastema formation, and organ repair. We compare available evidence in mammalian and nonmammalian models, identifying critical nerve-mediated mechanisms for regeneration and providing future perspectives toward integrating these mechanisms into a therapeutic framework to promote regeneration.
Collapse
Affiliation(s)
- Alexandra Noble
- Department of Biomedical Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Rozana Qubrosi
- Department of Biomedical Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Solsa Cariba
- Department of Biomedical Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Kayla Favaro
- Department of Biomedical Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Samantha L Payne
- Department of Biomedical Sciences, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
4
|
Levin M. Bioelectric networks: the cognitive glue enabling evolutionary scaling from physiology to mind. Anim Cogn 2023; 26:1865-1891. [PMID: 37204591 PMCID: PMC10770221 DOI: 10.1007/s10071-023-01780-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 04/12/2023] [Accepted: 04/24/2023] [Indexed: 05/20/2023]
Abstract
Each of us made the remarkable journey from mere matter to mind: starting life as a quiescent oocyte ("just chemistry and physics"), and slowly, gradually, becoming an adult human with complex metacognitive processes, hopes, and dreams. In addition, even though we feel ourselves to be a unified, single Self, distinct from the emergent dynamics of termite mounds and other swarms, the reality is that all intelligence is collective intelligence: each of us consists of a huge number of cells working together to generate a coherent cognitive being with goals, preferences, and memories that belong to the whole and not to its parts. Basal cognition is the quest to understand how Mind scales-how large numbers of competent subunits can work together to become intelligences that expand the scale of their possible goals. Crucially, the remarkable trick of turning homeostatic, cell-level physiological competencies into large-scale behavioral intelligences is not limited to the electrical dynamics of the brain. Evolution was using bioelectric signaling long before neurons and muscles appeared, to solve the problem of creating and repairing complex bodies. In this Perspective, I review the deep symmetry between the intelligence of developmental morphogenesis and that of classical behavior. I describe the highly conserved mechanisms that enable the collective intelligence of cells to implement regulative embryogenesis, regeneration, and cancer suppression. I sketch the story of an evolutionary pivot that repurposed the algorithms and cellular machinery that enable navigation of morphospace into the behavioral navigation of the 3D world which we so readily recognize as intelligence. Understanding the bioelectric dynamics that underlie construction of complex bodies and brains provides an essential path to understanding the natural evolution, and bioengineered design, of diverse intelligences within and beyond the phylogenetic history of Earth.
Collapse
Affiliation(s)
- Michael Levin
- Allen Discovery Center at Tufts University, 200 Boston Ave., Suite 4600, Medford, MA, 02155, USA.
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA, USA.
| |
Collapse
|
5
|
Karki S, Saadaoui M, Dunsing V, Kerridge S, Da Silva E, Philippe JM, Maurange C, Lecuit T. Serotonin signaling regulates actomyosin contractility during morphogenesis in evolutionarily divergent lineages. Nat Commun 2023; 14:5547. [PMID: 37684231 PMCID: PMC10491668 DOI: 10.1038/s41467-023-41178-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 08/24/2023] [Indexed: 09/10/2023] Open
Abstract
Serotonin is a neurotransmitter that signals through 5-HT receptors to control key functions in the nervous system. Serotonin receptors are also ubiquitously expressed in various organs and have been detected in embryos of different organisms. Potential morphogenetic functions of serotonin signaling have been proposed based on pharmacological studies but a mechanistic understanding is still lacking. Here, we uncover a role of serotonin signaling in axis extension of Drosophila embryos by regulating Myosin II (MyoII) activation, cell contractility and cell intercalation. We find that serotonin and serotonin receptors 5HT2A and 5HT2B form a signaling module that quantitatively regulates the amplitude of planar polarized MyoII contractility specified by Toll receptors and the GPCR Cirl. Remarkably, serotonin signaling also regulates actomyosin contractility at cell junctions, cellular flows and epiblast morphogenesis during chicken gastrulation. This phylogenetically conserved mechanical function of serotonin signaling in regulating actomyosin contractility and tissue flow reveals an ancestral role in morphogenesis of multicellular organisms.
Collapse
Affiliation(s)
- Sanjay Karki
- Aix-Marseille Université & CNRS, IBDM-UMR7288 & Turing Centre for Living Systems, Marseille, France
| | - Mehdi Saadaoui
- Aix-Marseille Université & CNRS, IBDM-UMR7288 & Turing Centre for Living Systems, Marseille, France
| | - Valentin Dunsing
- Aix-Marseille Université & CNRS, IBDM-UMR7288 & Turing Centre for Living Systems, Marseille, France
| | - Stephen Kerridge
- Aix-Marseille Université & CNRS, IBDM-UMR7288 & Turing Centre for Living Systems, Marseille, France
| | - Elise Da Silva
- Aix-Marseille Université & CNRS, IBDM-UMR7288 & Turing Centre for Living Systems, Marseille, France
| | - Jean-Marc Philippe
- Aix-Marseille Université & CNRS, IBDM-UMR7288 & Turing Centre for Living Systems, Marseille, France
| | - Cédric Maurange
- Aix-Marseille Université & CNRS, IBDM-UMR7288 & Turing Centre for Living Systems, Marseille, France
| | - Thomas Lecuit
- Aix-Marseille Université & CNRS, IBDM-UMR7288 & Turing Centre for Living Systems, Marseille, France.
- Collège de France, Paris, France.
| |
Collapse
|
6
|
Rivetti C, Houghton J, Basili D, Hodges G, Campos B. Genes-to-Pathways Species Conservation Analysis: Enabling the Exploration of Conservation of Biological Pathways and Processes Across Species. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2023; 42:1152-1166. [PMID: 36861224 DOI: 10.1002/etc.5600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/19/2023] [Accepted: 02/27/2023] [Indexed: 06/18/2023]
Abstract
The last two decades have witnessed a strong momentum toward integration of cell-based and computational approaches in safety assessments. This is fueling a global regulatory paradigm shift toward reduction and replacement of the use of animals in toxicity tests while promoting the use of new approach methodologies. The understanding of conservation of molecular targets and pathways provides an opportunity to extrapolate effects across species and ultimately to determine the taxonomic applicability domain of assays and biological effects. Despite the wealth of genome-linked data available, there is a compelling need for improved accessibility, while ensuring that it reflects the underpinning biology. We present the novel pipeline Genes-to-Pathways Species Conservation Analysis (G2P-SCAN) to further support understanding on cross-species extrapolation of biological processes. This R package extracts, synthetizes, and structures the data available from different databases, that is, gene orthologs, protein families, entities, and reactions, linked to human genes and respective pathways across six relevant model species. The use of G2P-SCAN enables the overall analysis of orthology and functional families to substantiate the identification of conservation and susceptibility at the pathway level. In the present study we discuss five case studies, demonstrating the validity of the developed pipeline and its potential use as species extrapolation support. We foresee this pipeline will provide valuable biological insights and create space for the use of mechanistically based data to inform potential species susceptibility for research and safety decision purposes. Environ Toxicol Chem 2023;42:1152-1166. © 2023 UNILEVER GLOBAL IP LTD. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Collapse
Affiliation(s)
- Claudia Rivetti
- Safety and Environmental Assurance Centre, Unilever, Colworth Science Park, Bedfordshire, United Kingdom
| | - Jade Houghton
- Safety and Environmental Assurance Centre, Unilever, Colworth Science Park, Bedfordshire, United Kingdom
| | - Danilo Basili
- Safety and Environmental Assurance Centre, Unilever, Colworth Science Park, Bedfordshire, United Kingdom
| | - Geoff Hodges
- Safety and Environmental Assurance Centre, Unilever, Colworth Science Park, Bedfordshire, United Kingdom
| | - Bruno Campos
- Safety and Environmental Assurance Centre, Unilever, Colworth Science Park, Bedfordshire, United Kingdom
| |
Collapse
|
7
|
Mercurio S, Bozzo M, Pennati A, Candiani S, Pennati R. Serotonin Receptors and Their Involvement in Melanization of Sensory Cells in Ciona intestinalis. Cells 2023; 12:cells12081150. [PMID: 37190059 DOI: 10.3390/cells12081150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/05/2023] [Accepted: 04/11/2023] [Indexed: 05/17/2023] Open
Abstract
Serotonin (5-hydroxytryptamine (5-HT)) is a biogenic monoamine with pleiotropic functions. It exerts its roles by binding to specific 5-HT receptors (5HTRs) classified into different families and subtypes. Homologs of 5HTRs are widely present in invertebrates, but their expression and pharmacological characterization have been scarcely investigated. In particular, 5-HT has been localized in many tunicate species but only a few studies have investigated its physiological functions. Tunicates, including ascidians, are the sister group of vertebrates, and data about the role of 5-HTRs in these organisms are thus important for understanding 5-HT evolution among animals. In the present study, we identified and described 5HTRs in the ascidian Ciona intestinalis. During development, they showed broad expression patterns that appeared consistent with those reported in other species. Then, we investigated 5-HT roles in ascidian embryogenesis exposing C. intestinalis embryos to WAY-100635, an antagonist of the 5HT1A receptor, and explored the affected pathways in neural development and melanogenesis. Our results contribute to unraveling the multifaceted functions of 5-HT, revealing its involvement in sensory cell differentiation in ascidians.
Collapse
Affiliation(s)
- Silvia Mercurio
- Department of Environmental Science and Policy, Università degli Studi di Milano, 20133 Milan, Italy
| | - Matteo Bozzo
- Dipartimento di Scienze della Terra, dell'Ambiente e della Vita, Università degli Studi di Genova, 16132 Genoa, Italy
| | | | - Simona Candiani
- Dipartimento di Scienze della Terra, dell'Ambiente e della Vita, Università degli Studi di Genova, 16132 Genoa, Italy
| | - Roberta Pennati
- Department of Environmental Science and Policy, Università degli Studi di Milano, 20133 Milan, Italy
| |
Collapse
|
8
|
Reis ACC, Jorge BC, da Silva Moreira S, Stein J, Perdão CB, de Matos Manoel B, Arena AC. Embryo-fetal safety evaluation of ondansetron in rats. Birth Defects Res 2023; 115:605-613. [PMID: 36737400 DOI: 10.1002/bdr2.2154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 01/16/2023] [Accepted: 01/23/2023] [Indexed: 02/05/2023]
Abstract
BACKGROUND Ondansetron is a 5HT3 receptor antagonist, used to mitigate the effects of nausea and vomiting after chemotherapy or surgery. Since nausea and vomiting are common experiences during the first trimester of pregnancy, this antiemetic has been the main drug used during this period. METHODS To evaluate the effects of ondansetron on the embryo-fetal development, which are still very contradictory, pregnant rats were exposed to therapeutic doses of ondansetron (1.7 or 2.5 mg/kg) daily, from gestational day (GD) 6 to 15. RESULTS No clinical signs of toxicity were observed in dams during the treatment. Although the hemato-biochemical parameters were similar among the groups, histological changes, as well as a reduction in the weight of kidney were found in the treated dams. After fetal examination, no visceral and skeletal abnormalities were observed in treated fetuses. CONCLUSION In conclusion, therapeutic doses of ondansetron have low teratogenic potential in rats. These data provide important information about the drug safety during pregnancy.
Collapse
Affiliation(s)
- Ana Carolina Casali Reis
- Department of Structural and Functional Biology, Institute of Biosciences of Botucatu, Universidade Estadual Paulista - UNESP, Botucatu, São Paulo, Brazil
| | - Bárbara Campos Jorge
- Department of Structural and Functional Biology, Institute of Biosciences of Botucatu, Universidade Estadual Paulista - UNESP, Botucatu, São Paulo, Brazil
| | - Suyane da Silva Moreira
- Department of Structural and Functional Biology, Institute of Biosciences of Botucatu, Universidade Estadual Paulista - UNESP, Botucatu, São Paulo, Brazil
| | - Júlia Stein
- Department of Structural and Functional Biology, Institute of Biosciences of Botucatu, Universidade Estadual Paulista - UNESP, Botucatu, São Paulo, Brazil
| | - Carolina Barizan Perdão
- Department of Structural and Functional Biology, Institute of Biosciences of Botucatu, Universidade Estadual Paulista - UNESP, Botucatu, São Paulo, Brazil
| | - Beatriz de Matos Manoel
- College of Health Science, Federal University of Grande Dourados, Dourados, Mato Grosso do Sul, Brazil
| | - Arielle Cristina Arena
- Department of Structural and Functional Biology, Institute of Biosciences of Botucatu, Universidade Estadual Paulista - UNESP, Botucatu, São Paulo, Brazil
- Center of Toxicological Assistance (CEATOX), Institute of Biosciences of Botucatu, Universidade Estadual Paulista - Botucatu (UNESP), Botucatu, São Paulo, Brazil
| |
Collapse
|
9
|
Tryptophan Hydroxylase-2-Mediated Serotonin Biosynthesis Suppresses Cell Reprogramming into Pluripotent State. Int J Mol Sci 2023; 24:ijms24054862. [PMID: 36902295 PMCID: PMC10003565 DOI: 10.3390/ijms24054862] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 02/20/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023] Open
Abstract
The monoamine neurotransmitter serotonin (5-hydroxytryptamine, 5-HT) has important functions both in the neural system and during embryonic development in mammals. In this study, we set out to investigate whether and how endogenous serotonin affects reprogramming to pluripotency. As serotonin is synthesized from tryptophan by the rate limiting enzymes tryptophan hydroxylase-1 and -2 (TPH1 and TPH2), we have assessed the reprogramming of TPH1- and/or TPH2-deficient mouse embryonic fibroblasts (MEFs) to induced pluripotent stem cells (iPSCs). The reprogramming of the double mutant MEFs showed a dramatic increase in the efficiency of iPSC generation. In contrast, ectopic expression of TPH2 alone or in conjunction with TPH1 reverted the rate of reprogramming of the double mutant MEFs to the wild-type level and besides, TPH2 overexpression significantly suppressed reprogramming of wild-type MEFs. Our data thus suggest a negative role of serotonin biosynthesis in the reprogramming of somatic cells to a pluripotent state.
Collapse
|
10
|
da Silva Junior CA, Marques DA, Patrone LGA, Biancardi V, Bícego KC, Gargaglioni LH. Intra-uterine diazepam exposure decreases the number of catecholaminergic and serotoninergic neurons of neonate rats. Neurosci Lett 2023; 795:137014. [PMID: 36521643 DOI: 10.1016/j.neulet.2022.137014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 12/08/2022] [Accepted: 12/09/2022] [Indexed: 12/14/2022]
Abstract
Benzodiazepines, such as diazepam (DZP), are used to treat anxiety disorders, and are prescribed to pregnant woman for therapeutic purposes. Concerns regarding their consequences on postnatal development rise as they cross the placenta and interact with the embryo. Occurrence of malformation and behavioral syndromes have been reported for different ages, but little is known about their effects on the brain after exposure during intrauterine life. Thus, we sought to evaluate the effects of intrauterine exposure to DZP on the number of brainstem's catecholaminergic and serotonergic neurons, implicated in respiratory control, in male and female rats on postnatal (P) day 12-13, using immunofluorescence labeling for tyrosine-hydroxylase (TH) and serotonin (5-HT). We observed a reduction in the number of catecholaminergic neurons for males and females. Special attention is given to the reduction in the density of neurons in the A6 region, involved in ventilatory responses to CO2. Interestingly, only males showed a reduction in the number of serotonergic neurons, while females were not affected. These findings suggest that in utero exposure to DZP results in deleterious neuroanatomical effects on P12-13 rats and raises a note of concern for women clinicians to make more informed choices about the use of anxiolytic treatments during gestation.
Collapse
Affiliation(s)
- Carlos Aparecido da Silva Junior
- Department of Applied Science, William & Mary, Williamsburg, VA, United States; Department of Animal Morphology and Physiology, FCAV - UNESP - São Paulo State University, Jaboticabal, SP, Brazil
| | - Danuzia A Marques
- Department of Pediatrics, Québec Heart and Lung Institute, Université Laval, Québec, QC, Canada
| | - Luís Gustavo A Patrone
- Department of Animal Morphology and Physiology, FCAV - UNESP - São Paulo State University, Jaboticabal, SP, Brazil
| | - Vivian Biancardi
- Department of Physiology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Kênia C Bícego
- Department of Animal Morphology and Physiology, FCAV - UNESP - São Paulo State University, Jaboticabal, SP, Brazil
| | - Luciane H Gargaglioni
- Department of Animal Morphology and Physiology, FCAV - UNESP - São Paulo State University, Jaboticabal, SP, Brazil.
| |
Collapse
|
11
|
The 5-HT and PLC Signaling Pathways Regulate the Secretion of IL-1β, TNF-α and BDNF from NG2 Cells. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:7425538. [PMID: 35600957 PMCID: PMC9122684 DOI: 10.1155/2022/7425538] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 03/24/2022] [Accepted: 03/25/2022] [Indexed: 01/26/2023]
Abstract
The present study was clarified the relationship between NG2 glial cells and 5-hydroxytryptamine (5-HT) to further revealed a role in the regulation of cortical excitability. The co-localization of NG2 cells and 5-HT in rat prefrontal cortex was determined using immunofluorescence. Different concentrations of 5-HT were applied to cultured NG2 cells. Real-time PCR measured the expression of interleukin-1β (IL-1β), tumor necrosis factor-α (TNF-α) and brain-derived neurotrophic factor (BDNF). Changes in the expression of IL-1β, TNF-α, and BDNF in NG2 cells were detected after the addition of 5-HT receptor specific blockers and phospholipase C (PLC) specific activators and inhibitors. The results confirmed that the NG2 protein and 5-HT co-localized in the prefrontal cortex. 5-HT treatment of NG2 cells significantly reduced the expression of IL-1β and BDNF mRNA and increased the expression of TNF-α. The 5-HT receptor specific inhibitors alverine citrate, ketanserin, ondansetron and SB-399885 blocked the regulatory effects of 5-HT on NG2 cells. The PLC signal was linked to the secretion of IL-1β, TNF-α and BDNF in NG2 cells. These results indicated that 5-HT affected IL-1β, TNF-α, and BDNF secretion from NG2 cells via the 5-HT1A, 5-HT2A, 5-HT3, 5-HT6 receptors and the PLC signaling pathway.
Collapse
|
12
|
Domingues RR, Wiltbank MC, Hernandez LL. Pregnancy Complications and Neonatal Mortality in a Serotonin Transporter Null Mouse Model: Insight Into the Use of Selective Serotonin Reuptake Inhibitor During Pregnancy. Front Med (Lausanne) 2022; 9:848581. [PMID: 35360732 PMCID: PMC8960382 DOI: 10.3389/fmed.2022.848581] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 02/17/2022] [Indexed: 11/13/2022] Open
Abstract
Selective serotonin reuptake inhibitors (SSRI) are widely prescribed to pregnant woman. Although some SSRI compounds are known to cause pregnancy loss and fetal malformations, other SSRI continue to be used by pregnant women. However, several studies have associated the use of SSRI with adverse pregnancy outcomes: intrauterine growth restriction, preterm birth, and neonatal morbidity. Nonetheless, interpretation of studies in humans are typically complicated by the adverse pregnancy outcomes caused by depression itself. Therefore, we used a mutant mouse model with genetic ablation of the serotonin transporter, the target site for SSRI, to unravel the role of the serotonin transporter on pregnancy outcomes. The serotonin transporter null mice had increased pregnancy loss (17.5 vs. 0%), decreased number of pups born (6.6 ± 0.2 vs. 7.5 ± 0.2), and increased neonatal mortality (2.3-fold). Furthermore, preterm birth, dystocia, and fetal malformations were only observed in serotonin transporter null mice. This genetically ablated serotonin transporter mouse recapitulates several adverse pregnancy outcomes similar to those in women undergoing SSRI treatment during gestation. Additionally, neonatal loss in the present study reproduced a sudden infant death phenotype as in humans and mice with altered serotonergic signaling. In conclusion, findings from this study demonstrate a role for serotonin transporter in pregnancy maintenance and neonatal health. Additionally, it suggests that the adverse pregnancy outcomes in women taking SSRI during gestation might be due to altered serotonin transporter function caused by SSRI independent of underlying depression. This is a critical finding, given the number of women prescribed SSRI during pregnancy, and provides the framework for critical research in this area.
Collapse
Affiliation(s)
- Rafael R. Domingues
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI, United States
- Endocrinology and Reproductive Physiology Program, University of Wisconsin-Madison, Madison, WI, United States
| | - Milo C. Wiltbank
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI, United States
- Endocrinology and Reproductive Physiology Program, University of Wisconsin-Madison, Madison, WI, United States
| | - Laura L. Hernandez
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI, United States
- Endocrinology and Reproductive Physiology Program, University of Wisconsin-Madison, Madison, WI, United States
- *Correspondence: Laura L. Hernandez,
| |
Collapse
|
13
|
Romero-Reyes J, Vázquez-Martínez ER, Bahena-Alvarez D, López-Jiménez J, Molina-Hernández A, Camacho-Arroyo I, Díaz NF. Differential localization of serotoninergic system elements in human amniotic epithelial cells†. Biol Reprod 2021; 105:439-448. [PMID: 34057176 DOI: 10.1093/biolre/ioab106] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 05/21/2021] [Indexed: 11/13/2022] Open
Abstract
Serotonin or 5-hydroxytryptamine (5-HT) is a biogenic amine involved in regulating several functions, including development. However, its impact on human embryo development has been poorly studied. The present work investigated the expression and distribution of the main components of the serotoninergic system in human amniotic tissue and human amniotic epithelial cells (hAEC) in vitro, as an alternative model of early human embryo development. Amniotic membranes from full-term healthy pregnancies were used. Human amnion tissue or hAEC isolated from the amnion was processed for reverse transcription-polymerase chain reaction and immunofluorescence analyses of the main components of the serotoninergic system. We found the expression of tryptophan hydroxylase type 1 (TPH1), type 2 (TPH2), serotonin transporter (SERT), monoamine oxidase-A (MAOA), as well as HTR1D and HTR7 receptors at mRNA level in amnion tissue as well in hAEC. Interestingly, we found the presence of 5-HT in the nucleus of the cells in amnion tissue, whereas it was located in the cytoplasm of isolated hAEC. We detected TPH1, TPH2, and HTR1D receptor in both the nucleus and cytoplasm. SERT, MAOA, and HTR7 receptor were only observed in the cytoplasm. The results presented herein show, for the first time, the presence of the serotoninergic system in human amnion in vivo and in vitro.
Collapse
Affiliation(s)
- Jessica Romero-Reyes
- Unidad de Investigación en Reproducción Humana, Instituto Nacional de Perinatología- Facultad de Química, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, México
| | - Edgar Ricardo Vázquez-Martínez
- Unidad de Investigación en Reproducción Humana, Instituto Nacional de Perinatología- Facultad de Química, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, México
| | - Daniel Bahena-Alvarez
- Departamento de Neurociencia Cognitiva, Instituto de Fisiología Celular, UNAM, Ciudad de México, México
| | - Jessica López-Jiménez
- Departamento de Fisiología y Desarrollo Celular, Instituto Nacional de Perinatología (INPer), Ciudad de México, México
| | - Anayansi Molina-Hernández
- Departamento de Fisiología y Desarrollo Celular, Instituto Nacional de Perinatología (INPer), Ciudad de México, México
| | - Ignacio Camacho-Arroyo
- Unidad de Investigación en Reproducción Humana, Instituto Nacional de Perinatología- Facultad de Química, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, México
| | - Néstor Fabián Díaz
- Departamento de Fisiología y Desarrollo Celular, Instituto Nacional de Perinatología (INPer), Ciudad de México, México
| |
Collapse
|