1
|
Gu Y, Chen G, Ning X. Homeobox Protein BarH-like 1 Promotes Gastric Cancer Progression by Activating Coiled-Coil Domain-Containing Protein 178. Dig Dis Sci 2024; 69:1182-1199. [PMID: 38358459 DOI: 10.1007/s10620-024-08312-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 01/22/2024] [Indexed: 02/16/2024]
Abstract
BACKGROUND Coiled-coil domain-containing protein 178 (CCDC178) has been revealed to exert metastasis-promoting properties in hepatocellular carcinoma, whereas its function in gastric cancer (GC) has not been fully understood. AIMS We evaluated its role in GC and the molecular mechanism. METHODS The differentially expressed genes in datasets related to GC metastasis were intersected with survival-related genes in GC, followed by prognostic significance prediction. Loss- and gain-of-function assays were conducted to examine the involvement of CCDC178, Homeobox protein BarH-like 1 (BARX1), and the extracellular signal-regulated kinase (ERK) pathway in GC cell malignant phenotype and the polarization of tumor-associated macrophages (TAM). The corresponding functions were verified in the in vivo animal experiment. RESULTS High CCDC178 expression predicted a poor prognosis for GC patients, and CCDC178 correlated significantly with macrophage infiltration in GC tissues. CCDC178 activated the ERK pathway in GC. Silencing of CCDC178 reduced the colony formation, migratory and invasive potential of GC cells, and the M2-like polarization of TAM, which was reversed by TBHQ (an ERK activator). BARX1 bound to the promoter region of CCDC178, thus inducing its transcriptional level. Silencing of BARX1 suppressed the M2-type polarization of TAM in vitro and in vivo, and CCDC178 mitigated the repressing role of BARX1 knockdown. CONCLUSIONS BARX1 activates the transcription of CCDC178 to induce the ERK pathway, thereby supporting macrophage recruitment and M2-like polarization in GC.
Collapse
Affiliation(s)
- Yue Gu
- Department of General Surgery, The Fourth Affiliated Hospital of Harbin Medical University, No. 37, Yiyuan Street, Nangang District, 150001, Harbin, Heilongjiang, People's Republic of China.
| | - Gang Chen
- Department of General Surgery, The Fourth Affiliated Hospital of Harbin Medical University, No. 37, Yiyuan Street, Nangang District, 150001, Harbin, Heilongjiang, People's Republic of China
| | - Xinwei Ning
- Department of General Surgery, The Fourth Affiliated Hospital of Harbin Medical University, No. 37, Yiyuan Street, Nangang District, 150001, Harbin, Heilongjiang, People's Republic of China
| |
Collapse
|
2
|
Guan X, Liang J, Xiang Y, Li T, Zhong X. BARX1 repressed FOXF1 expression and activated Wnt/β-catenin signaling pathway to drive lung adenocarcinoma. Int J Biol Macromol 2024; 261:129717. [PMID: 38290639 DOI: 10.1016/j.ijbiomac.2024.129717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 01/01/2024] [Accepted: 01/17/2024] [Indexed: 02/01/2024]
Abstract
BACKGROUND Underlying molecular mechanisms of BARX homeobox 1 (BARX1) in lung adenocarcinoma (LUAD) remain elusive. METHODS Abnormally expressed genes in LUAD tissues were analyzed by RNA-sequencing. CCK-8, colony formation, transwell, and wound healing assays examined proliferation, colony formation, invasion, and migration of LUAD cells, respectively. Electrophoretic mobility shift assay and chromatin immunoprecipitation assay examined the interaction between BARX1 and Forkhead Box F1 (FOXF1). Xenograft mouse model of LUAD was constructed to monitor the growth and metastasis of tumor. RESULTS BARX1 was upregulated, FOXF1 was downregulated in LUAD tissues and cells. There was a negative correlation between BARX1 and FOXF1 expression. BARX1 deficiency limited malignant phenotypes of LUAD cells, including proliferation, invasion, migration and EMT. In vivo, BARX1 knockdown suppressed tumor growth and metastasis in A549-drove xenograft mouse model. BARX1 interacted with FOXF1 promoter and repressed FOXF1 expression. Upregulation of BARX1 promoted the expression of Wnt5a, β-catenin, and phosphorylated-glycogen synthase kinase-3 beta (p-GSK3β), whereas inhibited FOXF1, p-β-catenin, and GSK3β in LUAD cells. BARX1 knockdown caused an opposite result. Rescue assays uncovered that FOXF1 reversed the impact of BARX1 on malignant phenotypes and Wnt/β-catenin of LUAD cells. CONCLUSION BARX1 repressed FOXF1 expression and activated Wnt/β-catenin signaling pathway to drive lung adenocarcinoma.
Collapse
Affiliation(s)
- Xiaojiao Guan
- Department of Pathology, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Jie Liang
- Department of Thoracic Surgery, The First Hospital of China Medical University, Shenyang 110001, China
| | - Yifan Xiang
- Department of Thoracic Surgery, The First Hospital of China Medical University, Shenyang 110001, China
| | - Tian Li
- School of Basic Medicine, Fourth Military Medical University, Xi'an 710032, China.
| | - Xinwen Zhong
- Department of Thoracic Surgery, The First Hospital of China Medical University, Shenyang 110001, China.
| |
Collapse
|
3
|
Zhang T, Qiu L, Cao J, Li Q, Zhang L, An G, Ni J, Jia H, Li S, Li K. ZFP36 loss-mediated BARX1 stabilization promotes malignant phenotypes by transactivating master oncogenes in NSCLC. Cell Death Dis 2023; 14:527. [PMID: 37587140 PMCID: PMC10432398 DOI: 10.1038/s41419-023-06044-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 07/27/2023] [Accepted: 08/07/2023] [Indexed: 08/18/2023]
Abstract
Non-small cell lung cancer (NSCLC) is the most common type of lung cancer, with high morbidity and mortality worldwide. Although the dysregulation of BARX1 expression has been shown to be associated with malignant cancers, including NSCLC, the underlying mechanism remains elusive. In this study, we identified BARX1 as a common differentially expressed gene in lung squamous cell carcinoma and adenocarcinoma. Importantly, we uncovered a novel mechanism behind the regulation of BARX1, in which ZFP36 interacted with 3'UTR of BARX1 mRNA to mediate its destabilization. Loss of ZFP36 led to the upregulation of BARX1, which further promoted the proliferation, migration and invasion of NSCLC cells. In addition, the knockdown of BARX1 inhibited tumorigenicity in mouse xenograft. We demonstrated that BARX1 promoted the malignant phenotypes by transactivating a set of master oncogenes involved in the cell cycle, DNA synthesis and metastasis. Overall, our study provides insights into the mechanism of BARX1 actions in NSCLC and aids a better understanding of NSCLC pathogenesis.
Collapse
Affiliation(s)
- Tongjia Zhang
- Department of Biochemistry and Biophysics, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, School of Basic Medical Sciences, Peking University Health Science Center, 100191, Beijing, China
| | - Lizhen Qiu
- Department of Biochemistry and Biophysics, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, School of Basic Medical Sciences, Peking University Health Science Center, 100191, Beijing, China
| | - Jiashun Cao
- Department of Thoracic Surgery, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, 102218, Beijing, China
| | - Qiu Li
- Department of Research, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, 102218, Beijing, China
| | - Lifan Zhang
- Department of Biochemistry and Biophysics, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, School of Basic Medical Sciences, Peking University Health Science Center, 100191, Beijing, China
| | - Guoshun An
- Department of Biochemistry and Biophysics, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, School of Basic Medical Sciences, Peking University Health Science Center, 100191, Beijing, China
| | - Juhua Ni
- Department of Biochemistry and Biophysics, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, School of Basic Medical Sciences, Peking University Health Science Center, 100191, Beijing, China
| | - Hongti Jia
- Department of Biochemistry and Biophysics, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, School of Basic Medical Sciences, Peking University Health Science Center, 100191, Beijing, China
| | - Shuyan Li
- Department of Biochemistry and Biophysics, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, School of Basic Medical Sciences, Peking University Health Science Center, 100191, Beijing, China.
| | - Kailong Li
- Department of Biochemistry and Biophysics, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, School of Basic Medical Sciences, Peking University Health Science Center, 100191, Beijing, China.
| |
Collapse
|
4
|
Huang X, Wang Z, Zhang J, Ni X, Bai G, Cao J, Zhang C, Han Z, Liu T. BARX1 promotes osteosarcoma cell proliferation and invasion by regulating HSPA6 expression. J Orthop Surg Res 2023; 18:211. [PMID: 36927457 PMCID: PMC10018937 DOI: 10.1186/s13018-023-03690-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 03/08/2023] [Indexed: 03/18/2023] Open
Abstract
Osteosarcoma (OS) is a bone tumour affecting adolescents. Dysregulation of Barx homeobox 1 (BARX1) expression is involved in various cancers, but its function and mechanism in the process of OS are undefined. This study revealed that BARX1 expression is higher in OS tissue than in adjacent normal tissue. Downregulation of BARX1 in OS cells significantly suppressed their proliferation and migration, whereas enforced expression of exogenous BARX1 exerted the opposite effects on OS cells. Subsequently, heat shock 70-kDa protein 6 (HSPA6) expression was clearly increased after BARX1 overexpression in OS cells, as confirmed by RNA sequencing. The dual-luciferase reporter assay confirmed that HSPA6 expression is directly regulated by BARX1. The in vitro assay indicated that silencing HSPA6 expression attenuated OS proliferation and migration induced by BARX1. A dual immunofluorescence labelling assay provided further evidence that BARX1 was overexpressed and associated with HSPA6 overexpression in OS tumour tissue. In conclusion, BARX1 promotes OS cell proliferation and migration by inducing the expression of HSPA6, which plays an oncogenic role in OS. BARX1 and HSPA6 can potentially act as novel therapeutic targets for OS.
Collapse
Affiliation(s)
- Xing Huang
- Department of Orthopaedic Oncology, The Second Affiliated Hospital of Naval Medical University, No. 415 Fengyang Road, Huangpu District, Shanghai, 200003, China
| | - Zhenhua Wang
- Department of Laboratory Medicine, Changzheng Hospital, Naval Medical University, No. 415 Fengyang Road, Huangpu District, Shanghai, 200003, China
| | - Jing Zhang
- Department of Orthopaedic Oncology, The Second Affiliated Hospital of Naval Medical University, No. 415 Fengyang Road, Huangpu District, Shanghai, 200003, China
| | - Xiangzhi Ni
- Department of Orthopaedic Oncology, The Second Affiliated Hospital of Naval Medical University, No. 415 Fengyang Road, Huangpu District, Shanghai, 200003, China
| | - Guangjian Bai
- Department of Orthopaedic Oncology, The Second Affiliated Hospital of Naval Medical University, No. 415 Fengyang Road, Huangpu District, Shanghai, 200003, China
| | - Jiashi Cao
- Department of Orthopedics, No. 455 Hospital of Chinese People's Liberation Army, The Navy Medical University, No. 338 Huaihai West Road, Shanghai, 200052, China
| | - Chunlei Zhang
- Department of Orthopedics, Nanjing Hospital of Traditional Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, China.
| | - Zhitao Han
- School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China.
| | - Tielong Liu
- Department of Orthopaedic Oncology, The Second Affiliated Hospital of Naval Medical University, No. 415 Fengyang Road, Huangpu District, Shanghai, 200003, China.
| |
Collapse
|
5
|
Wang D, Liu X, Cao L, Gong S, He Y, Jiang X, Wang Z. miR-486-3p Controls the Apoptosis of Endometrial Carcinoma Cells. J BIOMATER TISS ENG 2022. [DOI: 10.1166/jbt.2022.2985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Our study aimed to discuss the mechanism of miR-486-3p in controlling the apoptosis of endometrial carcinoma (EC) cells. EC cells were divided into NC group, miR-486-3p mimic and miR-486-3p inhibitor group followed by analysis of miR-486-3p level by Real-time PCR, cell proliferation
by spectrophotometric method, apoptosis by FCM, cell migration and invasion by Transwell analysis. EC cells showed reduced miR-486-3p level. The EC malignant biological behaviors could be prompted through retraining miR-486-3p level with increased EC cell invasive capacity. DDR1 was a target
of miR-486-3p. The variation of tumor activity could be regulated through controlling DDR1 expression. In conclusion, the apoptotic and invasive characteristic of EC cells are restrained after overexpression of miR-486-3p in EC cells through targeting DDR1, indicating that miR-486-3p could
be considered to be one kind of brand-new target for the treatment of EC.
Collapse
Affiliation(s)
- Donghua Wang
- Department of Obstetrics and Gynecology, Wuhan No.1 Hospital, Wuhan, Hubei, 430022, China
| | - Xiaoli Liu
- Department of Obstetrics and Gynecology, Wuhan No.1 Hospital, Wuhan, Hubei, 430022, China
| | - Lirong Cao
- Department of Obstetrics and Gynecology, Wuhan No.1 Hospital, Wuhan, Hubei, 430022, China
| | - Shixiong Gong
- Department of Obstetrics and Gynecology, Wuhan No.1 Hospital, Wuhan, Hubei, 430022, China
| | - Yi He
- Department of Obstetrics and Gynecology, Wuhan No.1 Hospital, Wuhan, Hubei, 430022, China
| | - Xiangbin Jiang
- Department of Obstetrics and Gynecology, Wuhan No.1 Hospital, Wuhan, Hubei, 430022, China
| | - Zhongxian Wang
- Department of Obstetrics and Gynecology, Wuhan No.1 Hospital, Wuhan, Hubei, 430022, China
| |
Collapse
|
6
|
Li Z, Zou W, Sun J, Zhou S, Zhou Y, Cai X, Zhang J. A comprehensive gene expression profile of allergic rhinitis-derived nasal fibroblasts and the potential mechanism for its phenotype. Hum Exp Toxicol 2022; 41:9603271211069038. [PMID: 35133179 DOI: 10.1177/09603271211069038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND Allergic rhinitis (AR) is a common immunoglobulin E-mediated immune response involved various cell types, while the role of nasal fibroblasts (NFs) in the pathogenesis of AR is less understood. PURPOSE The study aimed to uncover the gene expression profile of AR-derived NFs and the potential mechanism for the changed phenotype of AR-NFs. RESEARCH DESIGN The primary NFs were isolated from 3 AR patients (AR-NFs) and 3 controls (Ctrl-NFs), and the proliferation, migration and interleukins production abilities of NFs were detected respectively. RNA-sequence was used to identify differentially expressed genes (DEGs) in AR-NFs. Transcription factor (TF) regulatory network and bioinformatic analyses were both conducted to clarify the biological roles of DEGs including the TFs. The DEG with the highest validated |fold change (FC)| value, detected by qPCR, was selected for further confirmation. RESULTS AR-NFs showed a higher proliferation and migration abilities as well as released higher levels of IL-33 and IL-6, compared to Ctrl-NFs. A total of 729 DEGs were screened out in AR-NFs. TF regulatory network indicated that BARX homeobox 1 (BARX1) and forkhead box L1 were the major node TFs. Bioinformatic analyses showed that a large number of DEGs including several target genes of BARX1 were both enriched cytokine-related GO terms, and immune- or inflammation-related pathways. BARX1 had the highest |FC| value, and silencing BARX1 in AR-NFs resulted in the significant downregulation of proliferation and migration abilities, and the production of interleukins. CONCLUSIONS Our study for the first time provided the gene expression profile of AR-derived NFs, and BARX1 could be developed as a potent target to alleviate the pathogenesis of AR.
Collapse
Affiliation(s)
- Zhengwen Li
- Department of Otorhinolaryngology, 278245Shanghai Tenth Peoples' Hospital, Tongji University, Shanghai, China
| | - Wentao Zou
- Department of Otorhinolaryngology, 278245Shanghai Tenth Peoples' Hospital, Tongji University, Shanghai, China
| | - Jingwen Sun
- Department of Otorhinolaryngology, 278245Shanghai Tenth Peoples' Hospital, Tongji University, Shanghai, China
| | - Shuang Zhou
- Department of Otorhinolaryngology, 278245Shanghai Tenth Peoples' Hospital, Tongji University, Shanghai, China
| | - Yue Zhou
- Department of Otorhinolaryngology, 278245Shanghai Tenth Peoples' Hospital, Tongji University, Shanghai, China
| | - Xiaojing Cai
- Department of Otorhinolaryngology, 278245Shanghai Tenth Peoples' Hospital, Tongji University, Shanghai, China
| | - Jiaxiong Zhang
- Department of Otorhinolaryngology, 278245Shanghai Tenth Peoples' Hospital, Tongji University, Shanghai, China
| |
Collapse
|