1
|
Zuo C, Zhang Y, Zhang X, Liu J, Lyu L, Ma T, Chen L, Yu W, Li Y, Wen H, Qi X. Using transcriptome analysis to investigate the induction of vitellogenesis in female Japanese eels (Anguilla japonica). Gen Comp Endocrinol 2025; 367:114729. [PMID: 40228647 DOI: 10.1016/j.ygcen.2025.114729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 04/02/2025] [Accepted: 04/09/2025] [Indexed: 04/16/2025]
Abstract
Oogenesis, encompassing folliculogenesis, development, and maturation, is a complex physiological process that is not solely regulated by gonadotropins but is also actively influenced by multiple growth factors produced by the oocyte and its surrounding follicular cells. The Japanese eel (Anguilla japonica) has a complex life history, resulting in many uncertainties regarding its growth, development, and reproduction. Under artificial culture conditions, oocyte development in the Japanese eel is arrested and can only progress to the vitellogenic stage through artificial induction. In the present study, we observed that, despite receiving the same hormone treatment as normally developing individuals, a small proportion of female eels exhibited oocytes arrested at the perinucleolar stage. Transcriptome analysis revealed that differentially expressed genes are involved in multiple reproductive-related physiological processes and functional pathways, such as tachykinin system, MAPK signaling pathway, steroid-related pathways, oocyte meiosis, Wnt signaling pathway and GnRH signaling pathway. The abnormal expression of the two follicle-stimulating hormone (FSH) subunit genes may be a key factor contributing to this phenomenon. This study reveals the underlying causes of ovarian developmental arrest in hormonally induced female Japanese eels from the perspective of the brain-pituitary-gonad (BPG) axis, providing a research foundation for the artificial reproduction of Japanese eels.
Collapse
Affiliation(s)
- Chenpeng Zuo
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266603, China.
| | - Yonghang Zhang
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266603, China.
| | - Xuanhan Zhang
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266603, China
| | - Jiaqi Liu
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266603, China
| | - Likang Lyu
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266603, China
| | - Teng Ma
- Institute of Marine and Fisheries Research in Rizhao, Rizhao 276825, China
| | - Lingming Chen
- Institute of Marine and Fisheries Research in Rizhao, Rizhao 276825, China
| | - Weimin Yu
- Institute of Marine and Fisheries Research in Rizhao, Rizhao 276825, China
| | - Yun Li
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266603, China
| | - Haishen Wen
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266603, China
| | - Xin Qi
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266603, China.
| |
Collapse
|
2
|
Chang C, He X, Di R, Wang X, Han M, Liang C, Chu M. Thyroid transcriptomic profiling reveals the differential regulation of lncRNA and mRNA related to prolificacy in small tail han sheep with FecB BB genotype. Anim Biotechnol 2024; 35:2312393. [PMID: 38421365 DOI: 10.1080/10495398.2024.2312393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
BACKGROUND The thyroid gland is an important endocrine gland in animals that secretes thyroid hormones and acts on various organs throughout the body. lncRNAs are long non-coding RNAs that play an important role in animal reproduction; however, there is a lack of understanding of their expression patterns and potential roles in the thyroid gland of the Small Tail Han (STH) sheep. In this study, we used RNA-Seq technology to examine the transcriptome expression pattern of the thyroid from the luteal phase (LP) and follicular phase (FP) of FecB BB (MM) STH sheep. RESULTS We identified a total of 122 and 1287 differential expression lncRNAs (DELs) and differential expression mRNAs (DEGs), respectively, which were significantly differentially expressed. These DELs target genes and DEGs can be enriched in several signalling pathways related to the animal reproduction process. CONCLUSIONS The expression profiles of DELs and DEGs in thyroid glands provide a more comprehensive resource for elucidating the reproductive regulatory mechanisms of STH sheep.
Collapse
Affiliation(s)
- Cheng Chang
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
- College of Animal Science, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Xiaoyun He
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Ran Di
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Xiangyu Wang
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Miaoceng Han
- College of Animal Science, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Chen Liang
- College of Animal Science, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Mingxing Chu
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| |
Collapse
|
3
|
Xu X, Zhang X, Chen J, Du X, Sun Y, Zhan L, Wang W, Li Y. Exploring the molecular mechanisms by which per- and polyfluoroalkyl substances induce polycystic ovary syndrome through in silico toxicogenomic data mining. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 275:116251. [PMID: 38537477 DOI: 10.1016/j.ecoenv.2024.116251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 03/01/2024] [Accepted: 03/20/2024] [Indexed: 04/12/2024]
Abstract
The pathogeny of polycystic ovary syndrome (PCOS) is intricate, with endocrine disruptors (EDCs) being acknowledged as significant environmental factors. Research has shown a link between exposure to per- and polyfluoroalkyl substances (PFAS) and the development and progression of PCOS, although the precise mechanism is not fully understood. This study utilized toxicogenomics and comparative toxicogenomics databases to analyze data and investigate how PFAS mixtures may contribute to the development of PCOS. The results indicated that 74 genes are associated with both PFAS exposure and PCOS progression. Enrichment analysis suggested that cell cycle regulation and steroid hormone synthesis may be crucial pathways through which PFAS mixtures participate in the development of PCOS, involving important genes such as CCNB1 and SRD5A1. Furthermore, the study identified transcription factors (TFs) and miRNAs that may be involved in the onset and progression of PCOS, constructing regulatory networks encompassing TFs-mRNA interactions and miRNA-mRNA relationships to elucidate their regulatory roles in gene expression. By utilizing data mining techniques based on toxicogenomic databases, this study provides relatively comprehensive insights into the association between exposure factors and diseases compared to traditional toxicology studies. These findings offer new perspectives for further in vivo or in vitro investigations and contribute to understanding the pathogenesis of PCOS, thereby providing valuable references for identifying clinical treatment targets.
Collapse
Affiliation(s)
- Xueming Xu
- Department of Preventive Medicine, Fujian Provincial Key Laboratory of Environment factors and Cancer, Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province 350122, China
| | - Xiaoping Zhang
- Ganzhou Ganxian District Maternity and Child Health Hospital, Ganzhou, Jiangxi Province 341100, China
| | - Jiake Chen
- Department of Preventive Medicine, Fujian Provincial Key Laboratory of Environment factors and Cancer, Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province 350122, China
| | - Xiushuai Du
- School of Public Health, Fudan University, Shanghai 200032, China
| | - Yi Sun
- Research Center for Environment and Female Reproductive Health, the Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen 518033, China
| | - Liqin Zhan
- Department of Preventive Medicine, Fujian Provincial Key Laboratory of Environment factors and Cancer, Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province 350122, China
| | - Wenxiang Wang
- Department of Preventive Medicine, Fujian Provincial Key Laboratory of Environment factors and Cancer, Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province 350122, China
| | - Yuchen Li
- Department of Preventive Medicine, Fujian Provincial Key Laboratory of Environment factors and Cancer, Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province 350122, China.
| |
Collapse
|
4
|
Tonosaki M, Fujimori A, Yaoi T, Itoh K. Loss of Aspm causes increased apoptosis of developing neural cells during mouse cerebral corticogenesis. PLoS One 2023; 18:e0294893. [PMID: 38019816 PMCID: PMC10686469 DOI: 10.1371/journal.pone.0294893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 11/11/2023] [Indexed: 12/01/2023] Open
Abstract
Abnormal spindle-like microcephaly associated (ASPM) is a causative gene of primary autosomal recessive microcephaly. Microcephaly is considered to be a consequence of a small brain, but the associated molecular mechanisms are not fully understood. In this study, we generated brain-specific Aspm knockout mice to evaluate the fetal brain phenotype and observed cortical reduction in the late stage of murine cortical development. It has been reported that the total number of neurons is regulated by the number of neural stem and progenitor cells. In the Aspm knockout mice, no apparent change was shown in the neural progenitor cell proliferation and there was no obvious effect on the number of newly generated neurons in the developing cortex. On the other hand, the knockout mice showed a constant increase in apoptosis in the cerebral cortex from the early through the late stages of cortical development. Furthermore, apoptosis occurred in the neural progenitor cells associated with DNA damage. Overall, these results suggest that apoptosis of the neural progenitor cells is involved in the thinning of the mouse cerebral cortex, due to the loss of the Aspm gene in neocortical development.
Collapse
Affiliation(s)
- Madoka Tonosaki
- Department of Pathology and Applied Neurobiology, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, Kyoto, Japan
| | - Akira Fujimori
- Department of Basic Medical Sciences for Radiation Damages, National Institute of Radiological Sciences (NIRS), National Institutes for Quantum and Radiological Science and Technology (QST), Chiba, Japan
| | - Takeshi Yaoi
- Department of Pathology and Applied Neurobiology, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, Kyoto, Japan
| | - Kyoko Itoh
- Department of Pathology and Applied Neurobiology, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, Kyoto, Japan
| |
Collapse
|
5
|
Tsai KK, Bae BI, Hsu CC, Cheng LH, Shaked Y. Oncogenic ASPM Is a Regulatory Hub of Developmental and Stemness Signaling in Cancers. Cancer Res 2023; 83:2993-3000. [PMID: 37384617 PMCID: PMC10502471 DOI: 10.1158/0008-5472.can-23-0158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 01/27/2023] [Accepted: 06/26/2023] [Indexed: 07/01/2023]
Abstract
Despite recent advances in molecularly targeted therapies and immunotherapies, the effective treatment of advanced-stage cancers remains a largely unmet clinical need. Identifying driver mechanisms of cancer aggressiveness can lay the groundwork for the development of breakthrough therapeutic strategies. Assembly factor for spindle microtubules (ASPM) was initially identified as a centrosomal protein that regulates neurogenesis and brain size. Mounting evidence has demonstrated the pleiotropic roles of ASPM in mitosis, cell-cycle progression, and DNA double-strand breaks (DSB) repair. Recently, the exon 18-preserved isoform 1 of ASPM has emerged as a critical regulator of cancer stemness and aggressiveness in various malignant tumor types. Here, we describe the domain compositions of ASPM and its transcript variants and overview their expression patterns and prognostic significance in cancers. A summary is provided of recent progress in the molecular elucidation of ASPM as a regulatory hub of development- and stemness-associated signaling pathways, such as the Wnt, Hedgehog, and Notch pathways, and of DNA DSB repair in cancer cells. The review emphasizes the potential utility of ASPM as a cancer-agnostic and pathway-informed prognostic biomarker and therapeutic target.
Collapse
Affiliation(s)
- Kelvin K. Tsai
- Laboratory of Advanced Molecular Therapeutics, Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Division of Gastroenterology, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei, Taiwan
| | - Byoung-Il Bae
- Department of Neuroscience, University of Connecticut School of Medicine, Farmington, Connecticut
| | - Chung-Chi Hsu
- School of Medicine, College of Medicine, I-Shou University, Kaohsiung City, Taiwan
| | - Li-Hsin Cheng
- Laboratory of Advanced Molecular Therapeutics, Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yuval Shaked
- Department of Cell Biology and Cancer Science, Rappaport Faculty of Medicine, Technion – Israel Institute of Technology, Haifa, Israel
- Technion Integrated Cancer Center, Technion – Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
6
|
Wu X, Li Z, Wang ZQ, Xu X. The neurological and non-neurological roles of the primary microcephaly-associated protein ASPM. Front Neurosci 2023; 17:1242448. [PMID: 37599996 PMCID: PMC10436222 DOI: 10.3389/fnins.2023.1242448] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 07/24/2023] [Indexed: 08/22/2023] Open
Abstract
Primary microcephaly (MCPH), is a neurological disorder characterized by small brain size that results in numerous developmental problems, including intellectual disability, motor and speech delays, and seizures. Hitherto, over 30 MCPH causing genes (MCPHs) have been identified. Among these MCPHs, MCPH5, which encodes abnormal spindle-like microcephaly-associated protein (ASPM), is the most frequently mutated gene. ASPM regulates mitotic events, cell proliferation, replication stress response, DNA repair, and tumorigenesis. Moreover, using a data mining approach, we have confirmed that high levels of expression of ASPM correlate with poor prognosis in several types of tumors. Here, we summarize the neurological and non-neurological functions of ASPM and provide insight into its implications for the diagnosis and treatment of MCPH and cancer.
Collapse
Affiliation(s)
- Xingxuan Wu
- Guangdong Key Laboratory for Genome Stability and Disease Prevention and Marshall Laboratory of Biomedical Engineering, Shenzhen University Medical School, Shenzhen, Guangdong, China
- Shenzhen University-Friedrich Schiller Universität Jena Joint PhD Program in Biomedical Sciences, Shenzhen University School of Medicine, Shenzhen, Guangdong, China
- Laboratory of Genome Stability, Leibniz Institute on Aging-Fritz Lipmann Institute, Jena, Germany
| | - Zheng Li
- Guangdong Key Laboratory for Genome Stability and Disease Prevention and Marshall Laboratory of Biomedical Engineering, Shenzhen University Medical School, Shenzhen, Guangdong, China
| | - Zhao-Qi Wang
- Shenzhen University-Friedrich Schiller Universität Jena Joint PhD Program in Biomedical Sciences, Shenzhen University School of Medicine, Shenzhen, Guangdong, China
- Laboratory of Genome Stability, Leibniz Institute on Aging-Fritz Lipmann Institute, Jena, Germany
| | - Xingzhi Xu
- Guangdong Key Laboratory for Genome Stability and Disease Prevention and Marshall Laboratory of Biomedical Engineering, Shenzhen University Medical School, Shenzhen, Guangdong, China
- Shenzhen University-Friedrich Schiller Universität Jena Joint PhD Program in Biomedical Sciences, Shenzhen University School of Medicine, Shenzhen, Guangdong, China
| |
Collapse
|
7
|
Wang J, Chen H, Zeng X. Identification of hub genes associated with follicle development in multiple births sheep by WGCNA. Front Vet Sci 2022; 9:1057282. [PMID: 36601328 PMCID: PMC9806849 DOI: 10.3389/fvets.2022.1057282] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 11/21/2022] [Indexed: 12/23/2022] Open
Abstract
Sheep exhibit a distinct estrous cycle that includes four different phases: proestrus, estrus, late estrus, and luteal phase. As the estrous cycle repeats, follicular development regularly alternates. We thus investigated ovarian transcriptome data from each of the four phases using weighted gene co-expression network analysis (WGCNA) to identify modules, pathways, and genes essential to follicle growth and development. We clustered mRNA and long non-coding RNA (lncRNA) into different modules by WGCNA, and calculated correlation coefficients between genes and Stages of the estrous cycle. Co-expression of the black module (cor = 0.81, P<0.001) and the yellow module (cor = 0.61, P<0.04) was found to be critical for follicle growth and development. A total of 2066 genes comprising the black and yellow modules was used for functional enrichment. The results reveal that these genes are mainly enriched in Cell cycle, PI3K-Akt signaling pathway, Oocyte meiosis, Apoptosis, and other important signaling pathways. We also identified seven hub genes (BUB1B, MAD2L1, ASPM, HSD3B1, WDHD1, CENPA, and MXI1) that may play a role in follicle development. Our study may provide several important new markers allowing in depth exploration of the genetic basis for multiparous reproduction in sheep.
Collapse
Affiliation(s)
- Jinglei Wang
- College of Animal Science and Technology, Shihezi University, Shihezi, China
| | - Hanying Chen
- School of Pharmacy, Shihezi University, Shihezi, China
| | - Xiancun Zeng
- College of Animal Science and Technology, Shihezi University, Shihezi, China,*Correspondence: Xiancun Zeng
| |
Collapse
|