1
|
Haddadi M, Safari R, Hantoushzadeh S. The Diagnostic Role of miRNAs in Identifying Placenta Accreta: A Systematic Review. Am J Obstet Gynecol MFM 2025:101682. [PMID: 40280487 DOI: 10.1016/j.ajogmf.2025.101682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 03/22/2025] [Accepted: 04/15/2025] [Indexed: 04/29/2025]
Abstract
OBJECTIVE This systematic review evaluates the diagnostic accuracy of circulating microRNAs (miRNAs) as potential biomarkers for detecting placenta accreta spectrum (PAS) disorders, a condition characterized by abnormal placental adherence with significant maternal health risks. DATA SOURCES A comprehensive literature search was conducted in PubMed, Embase, and Scopus databases up to October 30, 2024, using predefined keywords such as "miRNA" and "placenta accreta." STUDY ELIGIBILITY Studies investigating miRNA expression in PAS cases compared to controls, using either blood or placental tissue, were included. Articles were screened independently by two reviewers, with discrepancies resolved by consensus. STUDY APPRAISAL AND SYNTHESIS METHODS The methodological quality of eligible studies was assessed using the Newcastle-Ottawa Scale. Extracted data were synthesized to identify miRNAs with diagnostic potential for PAS disorders. Due to significant variations in the comparisons conducted across studies and the diverse outcome measures reported, a meta-analysis of the included studies was not feasible. RESULTS Out of 82 articles identified, 14 met the inclusion criteria after duplicate removal and screening. The studies reported distinct differential expression patterns of miRNAs in PAS cases. Notably, a combination of miR-26a-5p and miR-17-5p demonstrated 100% sensitivity and 82% specificity for predicting PAS in the first-trimester of pregnancy. CONCLUSIONS PAS disorders are typically diagnosed during the third trimester through imaging techniques like ultrasonography. However, miRNAs exhibit promise as non-invasive, early biomarkers, potentially enabling earlier diagnosis and improved clinical management. These findings support the incorporation of miRNA analysis into diagnostic guidelines for PAS.
Collapse
Affiliation(s)
- Mohammad Haddadi
- Vali-E-Asr Reproductive Health Research Center, Family Health Research Institute, Tehran University Of Medical Sciences, Tehran, Iran
| | - Roxana Safari
- Vali-E-Asr Reproductive Health Research Center, Family Health Research Institute, Tehran University Of Medical Sciences, Tehran, Iran
| | - Sedigheh Hantoushzadeh
- Vali-E-Asr Reproductive Health Research Center, Family Health Research Institute, Tehran University Of Medical Sciences, Tehran, Iran.
| |
Collapse
|
2
|
Bartels HC, Hameed S, Young C, Nabhan M, Downey P, Curran KM, McCormack J, Fabre A, Kolch W, Zhernovkov V, Brennan DJ. Spatial proteomics and transcriptomics of the maternal-fetal interface in placenta accreta spectrum. Transl Res 2024; 274:67-80. [PMID: 39349165 DOI: 10.1016/j.trsl.2024.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 08/21/2024] [Accepted: 09/21/2024] [Indexed: 10/02/2024]
Abstract
In severe Placenta Accreta Spectrum (PAS), trophoblasts gain deep access in the myometrium (placenta increta). This study investigated alterations at the fetal-maternal interface in PAS cases using a systems biology approach consisting of immunohistochemistry, spatial transcriptomics and proteomics. We identified spatial variation in the distribution of CD4+, CD3+ and CD8+ T-cells at the maternal-interface in placenta increta cases. Spatial transcriptomics identified transcription factors involved in promotion of trophoblast invasion such as AP-1 subunits ATF-3 and JUN, and NFKB were upregulated in regions with deep myometrial invasion. Pathway analysis of differentially expressed genes demonstrated that degradation of extracellular matrix (ECM) and class 1 MHC protein were increased in increta regions, suggesting local tissue injury and immune suppression. Spatial proteomics demonstrated that increta regions were characterised by excessive trophoblastic proliferation in an immunosuppressive environment. Expression of inhibitors of apoptosis such as BCL-2 and fibronectin were increased, while CTLA-4 was decreased and increased expression of PD-L1, PD-L2 and CD14 macrophages. Additionally, CD44, which is a ligand of fibronectin that promotes trophoblast invasion and cell adhesion was also increased in increta regions. We subsequently examined ligand receptor interactions enriched in increta regions, with interactions with ITGβ1, including with fibronectin and ADAMS, emerging as central in increta. These ITGβ1 ligand interactions are involved in activation of epithelial-mesenchymal transition and remodelling of ECM suggesting a more invasive trophoblast phenotype. In PAS, we suggest this is driven by fibronectin via AP-1 signalling, likely as a secondary response to myometrial scarring.
Collapse
Affiliation(s)
- Helena C Bartels
- Dept of UCD Obstetrics and Gynaecology, School of Medicine, University College Dublin, National Maternity Hospital, Holles Street, Dublin 2, Ireland
| | - Sodiq Hameed
- Systems Biology Ireland, School of Medicine, University College Dublin, Belfield, Ireland
| | - Constance Young
- Department of Histopathology, National Maternity Hospital, Dublin, Ireland
| | - Myriam Nabhan
- Systems Biology Ireland, School of Medicine, University College Dublin, Belfield, Ireland
| | - Paul Downey
- Department of Histopathology, National Maternity Hospital, Dublin, Ireland
| | | | - Janet McCormack
- Research Pathology Core, Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
| | - Aurelie Fabre
- School of Medicine, University College Dublin, Dublin, Ireland; Research Pathology Core, Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland; Histopathology, St Vincent's University Hospital, Dublin, Ireland
| | - Walter Kolch
- Systems Biology Ireland, School of Medicine, University College Dublin, Belfield, Ireland; Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
| | - Vadim Zhernovkov
- Systems Biology Ireland, School of Medicine, University College Dublin, Belfield, Ireland
| | - Donal J Brennan
- Dept of UCD Obstetrics and Gynaecology, School of Medicine, University College Dublin, National Maternity Hospital, Holles Street, Dublin 2, Ireland; Systems Biology Ireland, School of Medicine, University College Dublin, Belfield, Ireland; University College Dublin Gynaecological Oncology Group (UCD-GOG), Mater Misericordiae University Hospital and St Vincent's University Hospital, Dublin, Ireland.
| |
Collapse
|
3
|
Lizárraga-Verdugo E, Beltrán-Ontiveros SA, Gutiérrez-Grijalva EP, Montoya-Moreno M, Gutiérrez-Arzapalo PY, Avendaño-Félix M, Gutiérrez-Castro KP, Cuén-Lazcano DE, González-Quintero P, Mora-Palazuelos CE. The Underlying Molecular Mechanisms of the Placenta Accreta Spectrum: A Narrative Review. Int J Mol Sci 2024; 25:9722. [PMID: 39273667 PMCID: PMC11395310 DOI: 10.3390/ijms25179722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 09/01/2024] [Accepted: 09/03/2024] [Indexed: 09/15/2024] Open
Abstract
Placenta accreta spectrum (PAS) disorders are characterized by abnormal trophoblastic invasion into the myometrium, leading to significant maternal health risks. PAS includes placenta accreta (invasion < 50% of the myometrium), increta (invasion > 50%), and percreta (invasion through the entire myometrium). The condition is most associated with previous cesarean deliveries and increases in chance with the number of prior cesarians. The increasing global cesarean rates heighten the importance of early PAS diagnosis and management. This review explores genetic expression and key regulatory processes, such as apoptosis, cell proliferation, invasion, and inflammation, focusing on signaling pathways, genetic expression, biomarkers, and non-coding RNAs involved in trophoblastic invasion. It compiles the recent scientific literature (2014-2024) from the Scopus, PubMed, Google Scholar, and Web of Science databases. Identifying new biomarkers like AFP, sFlt-1, β-hCG, PlGF, and PAPP-A aids in early detection and management. Understanding genetic expression and non-coding RNAs is crucial for unraveling PAS complexities. In addition, aberrant signaling pathways like Notch, PI3K/Akt, STAT3, and TGF-β offer potential therapeutic targets to modulate trophoblastic invasion. This review underscores the need for interdisciplinary care, early diagnosis, and ongoing research into PAS biomarkers and molecular mechanisms to improve prognosis and quality of life for affected women.
Collapse
Affiliation(s)
- Erik Lizárraga-Verdugo
- Research Unit, Center for Research and Teaching in Health Sciences, Autonomous University of Sinaloa, Culiacan 80030, Mexico
| | - Saúl Armando Beltrán-Ontiveros
- Research Unit, Center for Research and Teaching in Health Sciences, Autonomous University of Sinaloa, Culiacan 80030, Mexico
| | | | - Marisol Montoya-Moreno
- Research Unit, Center for Research and Teaching in Health Sciences, Autonomous University of Sinaloa, Culiacan 80030, Mexico
| | - Perla Y Gutiérrez-Arzapalo
- Research Unit, Center for Research and Teaching in Health Sciences, Autonomous University of Sinaloa, Culiacan 80030, Mexico
| | | | - Karla Paola Gutiérrez-Castro
- Research Unit, Center for Research and Teaching in Health Sciences, Autonomous University of Sinaloa, Culiacan 80030, Mexico
| | - Daniel E Cuén-Lazcano
- Research Unit, Center for Research and Teaching in Health Sciences, Autonomous University of Sinaloa, Culiacan 80030, Mexico
| | - Paul González-Quintero
- Gynecology and Obstetrics Service, Women's Hospital of Culiacan, Health Secretary, Culiacan 80020, Mexico
| | - Carlos Ernesto Mora-Palazuelos
- Research Unit, Center for Research and Teaching in Health Sciences, Autonomous University of Sinaloa, Culiacan 80030, Mexico
| |
Collapse
|
4
|
Lin Z, Wu S, Jiang Y, Chen Z, Huang X, Wen Z, Yuan Y. Unraveling the molecular mechanisms driving enhanced invasion capability of extravillous trophoblast cells: a comprehensive review. J Assist Reprod Genet 2024; 41:591-608. [PMID: 38315418 PMCID: PMC10957806 DOI: 10.1007/s10815-024-03036-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 01/15/2024] [Indexed: 02/07/2024] Open
Abstract
Precise extravillous trophoblast (EVT) invasion is crucial for successful placentation and pregnancy. This review focuses on elucidating the mechanisms that promote heightened EVT invasion. We comprehensively summarize the pivotal roles of hormones, angiogenesis, hypoxia, stress, the extracellular matrix microenvironment, epithelial-to-mesenchymal transition (EMT), immunity, inflammation, programmed cell death, epigenetic modifications, and microbiota in facilitating EVT invasion. The molecular mechanisms underlying enhanced EVT invasion may provide valuable insights into potential pathogenic mechanisms associated with diseases characterized by excessive invasion, such as the placenta accreta spectrum (PAS), thereby offering novel perspectives for managing pregnancy complications related to deficient EVT invasion.
Collapse
Affiliation(s)
- Zihan Lin
- School of Pediatrics, Guangzhou Medical University, Guangzhou, China
| | - Shuang Wu
- School of Pediatrics, Guangzhou Medical University, Guangzhou, China
| | - Yinghui Jiang
- School of Pediatrics, Guangzhou Medical University, Guangzhou, China
| | - Ziqi Chen
- School of Pediatrics, Guangzhou Medical University, Guangzhou, China
| | - Xiaoye Huang
- School of Pediatrics, Guangzhou Medical University, Guangzhou, China
| | - Zhuofeng Wen
- The Sixth Clinical School of Guangzhou Medical University, Guangzhou, China
| | - Yi Yuan
- School of Pediatrics, Guangzhou Medical University, Guangzhou, China.
| |
Collapse
|
5
|
Chen Y, Zou P, Bu C, Jiang Q, Xue L, Bao J, Zhang T. Upregulated CXCL8 in placenta accreta spectruma regulates the migration and invasion of HTR-8/SVneo cells. Mol Biol Rep 2023; 50:8189-8199. [PMID: 37563526 DOI: 10.1007/s11033-023-08669-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 07/05/2023] [Indexed: 08/12/2023]
Abstract
BACKGROUND Placenta accreta spectrum (PAS) is mainly characterized by excessive invasion of the uterine muscle layer accompanied by a large number of foreign blood vessels, leading to severe bleeding during and after delivery. However, the mechanism of excessive invasion of nutrient cells in placenta accreta is currently unclear. METHODS We performed RNA sequencing of 6 PAS patients and 4 control donors, coupled with Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses. The mRNA and protein expression of C-X-C motif ligand 8 (CXCL8) in the placental tissue was measured by qRT‒PCR, immunohistochemical staining and Western blotting. HTR-8/SVneo human villous trophoblast Neo cells were used for in vitro investigation of cell migration and invasion as well as the expression level of CXCL8. RESULTS A total of 1120 differentially expressed mRNAs were identified in PAS patients. Moreover, GO and KEGG analyses indicated that the differentially expressed mRNAs were most closely associated with immune system processes, biological adhesion and Wnt signaling pathway. The CXCL8 mRNA and protein levels in PAS tissue were significantly higher than those in normal placental tissue. Forced overexpression of CXCL8 significantly increased the migration and invasion of HTR-8/SVneo cells, accompanied by the upregulation of matrix metalloproteinase-2 and matrix metalloproteinase-9 and the downregulation of E-cadherin, which was reversed by knockdown of CXCL8. CONCLUSIONS CXCL8 was highly expressed in PAS, and knockdown of CXCL8 suppressed the migration and invasion of HTR-8/SVneo cells, suggesting its potential as a diagnostic and therapeutic target for PAS.
Collapse
Affiliation(s)
- Yuejuan Chen
- Wuxi Maternity and Child Health Care Hospital, Women's Hospital of Jiangnan University, Jiangnan University, Wuxi, 214002, China
| | - Ping Zou
- Wuxi Maternity and Child Health Care Hospital, Women's Hospital of Jiangnan University, Jiangnan University, Wuxi, 214002, China
| | - Chaozhi Bu
- Wuxi Maternity and Child Health Care Hospital, Women's Hospital of Jiangnan University, Jiangnan University, Wuxi, 214002, China
| | - Qianying Jiang
- Wuxi Maternity and Child Health Care Hospital, Women's Hospital of Jiangnan University, Jiangnan University, Wuxi, 214002, China
| | - Lili Xue
- Wuxi Maternity and Child Health Care Hospital, Women's Hospital of Jiangnan University, Jiangnan University, Wuxi, 214002, China
| | - Junfeng Bao
- Wuxi Maternity and Child Health Care Hospital, Women's Hospital of Jiangnan University, Jiangnan University, Wuxi, 214002, China.
| | - Ting Zhang
- Wuxi Maternity and Child Health Care Hospital, Women's Hospital of Jiangnan University, Jiangnan University, Wuxi, 214002, China.
| |
Collapse
|