1
|
Moralia MA, Quignon C, Simonneaux M, Simonneaux V. Environmental disruption of reproductive rhythms. Front Neuroendocrinol 2022; 66:100990. [PMID: 35227765 DOI: 10.1016/j.yfrne.2022.100990] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 01/06/2022] [Accepted: 02/21/2022] [Indexed: 12/17/2022]
Abstract
Reproduction is a key biological function requiring a precise synchronization with annual and daily cues to cope with environmental fluctuations. Therefore, humans and animals have developed well-conserved photoneuroendocrine pathways to integrate and process daily and seasonal light signals within the hypothalamic-pituitary-gonadal axis. However, in the past century, industrialization and the modern 24/7 human lifestyle have imposed detrimental changes in natural habitats and rhythms of life. Indeed, exposure to an excessive amount of artificial light at inappropriate timing because of shift work and nocturnal urban lighting, as well as the ubiquitous environmental contamination by endocrine-disrupting chemicals, threaten the integrity of the daily and seasonal timing of biological functions. Here, we review recent epidemiological, field and experimental studies to discuss how light and chemical pollution of the environment can disrupt reproductive rhythms by interfering with the photoneuroendocrine timing system.
Collapse
Affiliation(s)
- Marie-Azélie Moralia
- Université de Strasbourg, Centre National de la Recherche Scientifique, Institut des Neurosciences Cellulaires et Intégratives, Strasbourg, France
| | - Clarisse Quignon
- Université de Strasbourg, Centre National de la Recherche Scientifique, Institut des Neurosciences Cellulaires et Intégratives, Strasbourg, France
| | - Marine Simonneaux
- Université de Strasbourg, Centre National de la Recherche Scientifique, Institut des Neurosciences Cellulaires et Intégratives, Strasbourg, France
| | - Valérie Simonneaux
- Université de Strasbourg, Centre National de la Recherche Scientifique, Institut des Neurosciences Cellulaires et Intégratives, Strasbourg, France.
| |
Collapse
|
2
|
Rashid H, Alqahtani SS, Alshahrani S. Diet: A Source of Endocrine Disruptors. Endocr Metab Immune Disord Drug Targets 2021; 20:633-645. [PMID: 31642798 DOI: 10.2174/1871530319666191022100141] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 09/18/2019] [Accepted: 10/01/2019] [Indexed: 12/11/2022]
Abstract
BACKGROUND Food is indispensable for human life and determines the health and wellbeing of the consumer. As food is the source of energy for humans, it also emerges as one of the most important sources of exposure to deleterious chemicals both natural and synthetic. The food exposed chemicals cause a number of detrimental health effects in humans, with endocrine disruption being of serious concern amongst these effects. Such chemicals disrupting the health of endocrine system are known as endocrine-disrupting chemicals (EDCs). The food exposed EDCs need to be identified and classified to effectuate a cautious consumption of food by all and especially by vulnerable groups. AIM The aim of the present review was to discuss food as a source of exposure to common endocrine disruptors in humans. This review presents the occurrence and levels of some of the critical endocrine disruptors exposed through frequently consumed diets. METHODS The major source of data was PubMed, besides other relevant publications. The focus was laid on data from the last five years, however significant earlier data was also considered. CONCLUSION The food as a source of endocrine disruptors to humans cannot be neglected. It is highly imperative for the consumer to recognize food as a source of EDCs and make informed choices in the consumption of food items.
Collapse
Affiliation(s)
- Hina Rashid
- Department of Pharmacology and Toxicology, College of Pharmacy, Jazan University, Jizan, Saudi Arabia
| | - Saad S Alqahtani
- Clinical Pharmacy Department, College of Pharmacy, Jazan University, Jizan, Saudi Arabia
| | - Saeed Alshahrani
- Department of Pharmacology and Toxicology, College of Pharmacy, Jazan University, Jizan, Saudi Arabia
| |
Collapse
|
3
|
Sadogh A, Gorji N, Moeini R. Herbal foodstuffs in Avicenna's recommended diet to improve sperm quality and increase male fertility; an evidence-based approach. JOURNAL OF COMPLEMENTARY & INTEGRATIVE MEDICINE 2021; 19:47-70. [PMID: 33544522 DOI: 10.1515/jcim-2020-0254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Accepted: 01/02/2021] [Indexed: 11/15/2022]
Abstract
Attention to diet was considered important issues in improvement of men infertility in Persian Medicine (PM). The purpose of this study was to extract herbal foodstuffs introduced by Avicenna, one of the greatest PM physicians to improve the semen production and to provide evidence of their impact on the basis of current studies."Canon of Medicine", the most important Avecinna's book, was searched with keywords equivalent to semen, fertility and infertility, main herbal foodstuffs were extracted and was searched with keywords sperm, semen, infertility, and fertility in Google scholar, PubMed and Scopus databases. Manuscripts from 1950 up to December 2019 were selected and reviewed. Almond, Onion, Chickpea, Garlic, Coconut, Palm date, Sesame, Fenugreek, Carrot, Fig, Grapes, Pistachio, Hazelnut and Walnut are among main foodstuffs which recommended by Avicenna and there is also evidence that they have positive effects on testosterone production and improvement of various sperm parameters, including count, motility and morphology. Containing large amount of different macro and micronutrients such as vitamins including vit B, C, A and E, minerals such as Mg, Se, Zn, Cu and Fe, important unsaturated fatty acids such as linoleic and oleic acids, amino acids such as lysine and arginine and phytochemicals such as polyphenols, flavonoids, triterpenes and steroids can be considered as a main factor in the effectiveness of these foodstuffs. Designing a diet based on the fruits, vegetables, nuts and seeds that Avicenna has recommended, may be effective in treating male infertility but further studies are needed to clarify this issue. Research on the effectiveness of his other recommended foodsuffs may also offer new treatments and supplements for this purpose.
Collapse
Affiliation(s)
- Azita Sadogh
- Student Reseaerch Committee, Babol University of Medical Sciences, Babol, Iran
| | - Narjes Gorji
- Department of History of Medical Science, School of Persian medicine, Babol University of Medical Sciences, Tehran, Iran
| | - Reihaneh Moeini
- Department of Persian Medicine, School of Persian Medicine, Babol University of Medical Sciences, Babol, Islamic Republic of Iran.,Traditional Medicine and History of Medical Sciences Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Islamic Republic of Iran
| |
Collapse
|
4
|
Carcass characteristics and serum biochemical profile of Japanese quail by the supplementation of pine needles and vitamin E powder. Biologia (Bratisl) 2019. [DOI: 10.2478/s11756-019-00225-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
5
|
Lambert MR, Edwards TM. Hormonally active phytochemicals and vertebrate evolution. Evol Appl 2017; 10:419-432. [PMID: 28515776 PMCID: PMC5427676 DOI: 10.1111/eva.12469] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 02/13/2017] [Indexed: 01/08/2023] Open
Abstract
Living plants produce a diversity of chemicals that share structural and functional properties with vertebrate hormones. Wildlife species interact with these chemicals either through consumption of plant materials or aquatic exposure. Accumulating evidence shows that exposure to these hormonally active phytochemicals (HAPs) often has consequences for behavior, physiology, and fecundity. These fitness effects suggest there is potential for an evolutionary response by vertebrates to HAPs. Here, we explore the toxicological HAP-vertebrate relationship in an evolutionary framework and discuss the potential for vertebrates to adapt to or even co-opt the effects of plant-derived chemicals that influence fitness. We lay out several hypotheses about HAPs and provide a path forward to test whether plant-derived chemicals influence vertebrate reproduction and evolution. Studies of phytochemicals with direct impacts on vertebrate reproduction provide an obvious and compelling system for studying evolutionary toxicology. Furthermore, an understanding of whether animal populations evolve in response to HAPs could provide insightful context for the study of rapid evolution and how animals cope with chemical agents in the environment.
Collapse
Affiliation(s)
- Max R Lambert
- School of Forestry and Environmental Studies Yale University New Haven CT USA
| | - Thea M Edwards
- Department of Biology University of the South Sewanee TN USA
| |
Collapse
|
6
|
Brennan JC, Denison MS, Holstege DM, Magiatis P, Dallas JL, Gutierrez EG, Soshilov AA, Millam JR. 2,3-cis-2R,3R-(-)-epiafzelechin-3-O-p-coumarate, a novel flavan-3-ol isolated from Fallopia convolvulus seed, is an estrogen receptor agonist in human cell lines. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2013; 13:133. [PMID: 23768005 PMCID: PMC3695784 DOI: 10.1186/1472-6882-13-133] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2012] [Accepted: 05/22/2013] [Indexed: 02/08/2023]
Abstract
Background The plant genus Fallopia is well-known in Chinese traditional medicine and includes many species that contain bioactive compounds, namely phytoestrogens. Consumption of phytoestrogens may be linked to decreased incidence of breast and prostate cancers therefore discovery of novel phytoestrogens and novel sources of phytoestrogens is of interest. Although phytoestrogen content has been analyzed in the rhizomes of various Fallopia sp., seeds of a Fallopia sp. have never been examined for phytoestrogen presence. Methods Analytical chemistry techniques were used with guidance from an in vitro estrogen receptor bioassay (a stably transfected human ovarian carcinoma cell line) to isolate and identify estrogenic components from seeds of Fallopia convolvulus. A transiently transfected human breast carcinoma cell line was used to characterize the biological activity of the isolated compounds on estrogen receptors (ER) α and β. Results Two compounds, emodin and the novel flavan-3-ol, (−)-epiafzelechin-3-O-p-coumarate (rhodoeosein), were identified to be responsible for estrogenic activity of F. convolvulus seed extract. Absolute stereochemistry of rhodoeosein was determined by 1 and 2D NMR, optical rotation and circular dichroism. Emodin was identified by HPLC/DAD, LC/MS/MS, and FT/ICR-MS. When characterizing the ER specificity in biological activity of rhodoeosein and emodin, rhodoeosein was able to exhibit a four-fold greater relative estrogenic potency (REP) in breast cells transiently-transfected with ERβ as compared to those transfected with ERα, and emodin exhibited a six-fold greater REP in ERβ-transfected breast cells. Cell type-specific differences were observed with rhodoeosein but not emodin; rhodoeosein produced superinduction of reporter gene activity in the human ovarian cell line (> 400% of maximum estradiol [E2] induction) but not in the breast cell line. Conclusion This study is the first to characterize the novel flavan-3-ol compound, rhodoeosein, and its ability to induce estrogenic activity in human cell lines. Rhodoeosein and emodin may have potential therapeutic applications as natural products activating ERβ, and further characterization of rhodoeosein is necessary to evaluate its selectivity as a cell type-specific ER agonist.
Collapse
|
7
|
Lu A, Beehner JC, Czekala NM, Koenig A, Larney E, Borries C. Phytochemicals and reproductive function in wild female Phayre's leaf monkeys (Trachypithecus phayrei crepusculus). Horm Behav 2011; 59:28-36. [PMID: 20932837 DOI: 10.1016/j.yhbeh.2010.09.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2010] [Revised: 09/23/2010] [Accepted: 09/29/2010] [Indexed: 11/22/2022]
Abstract
Female reproduction is known to be influenced by food availability and its impact on energetic status. However, emerging evidence suggests that the phytochemical content of food may also be an important factor. Here, we investigated this hypothesis, presenting 20 months of data on fecal progestin (fP) patterns in wild female Phayre's leaf monkeys (Trachypithecus phayrei crepusculus). We examined whether (a) the availability of Vitex (a plant known to contain phytochemicals) might be linked to seasonal fP levels, (b) fP levels were associated with female reproductive performance, and (c) reproductive performance might also be linked with energetic status (as measured by physical condition). We collected fecal samples (N=2077) from 10 adult females to analyze estrogen (fE) and progestin (fP) metabolites, behavioral data from 7 cycling females to determine receptivity, and monthly data on Vitex availability and female physical condition. Seasonally elevated fP levels were found in all females, with higher levels when Vitex leaves and fruits were abundant. During the period of high progestins, females had longer cycle lengths and follicular phases, while receptive periods did not change. Nevertheless, when ovulations occurred, females were more likely to conceive. On the other hand, conceptions were also more likely when physical condition was improving, suggesting that the effects of phytochemicals and energetic status on reproduction may be difficult to separate. Although our results support the predicted effects of Vitex on endocrine and reproductive function, future studies with detailed feeding data and chemical analyses of plants are needed to confirm this finding.
Collapse
Affiliation(s)
- Amy Lu
- Interdepartmental Doctoral Program in Anthropological Sciences, Stony Brook University, Circle Rd., Social and Behav. Sci. Bldg., Stony Brook, NY 11794-4364, USA.
| | | | | | | | | | | |
Collapse
|
8
|
Markman S, Müller CT, Pascoe D, Dawson A, Buchanan KL. Pollutants affect development in nestling starlings Sturnus vulgaris. J Appl Ecol 2010. [DOI: 10.1111/j.1365-2664.2010.01931.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
9
|
Rochester JR, Millam JR. Phytoestrogens and avian reproduction: Exploring the evolution and function of phytoestrogens and possible role of plant compounds in the breeding ecology of wild birds. Comp Biochem Physiol A Mol Integr Physiol 2009; 154:279-88. [PMID: 19559809 DOI: 10.1016/j.cbpa.2009.06.017] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2009] [Revised: 06/19/2009] [Accepted: 06/19/2009] [Indexed: 11/26/2022]
Abstract
Phytoestrogens are secondary plant compounds, which can act to mimic estrogen and cause the disruption of estrogenic responses in organisms. Although there is a substantial body of research studying phytoestrogens, including their mechanisms of estrogenic effects, evolution, and detection in biological systems, little is known about their ecological significance. There is evidence, however, that an ecological relationship involving phytoestrogens exists between plants and animals-plants may produce phytoestrogens to reduce fecundity of organisms that eat them. Birds and other vertebrates may also exploit phytoestrogens to regulate their own reproduction-there are well known examples of phytoestrogens inhibiting reproduction in higher vertebrates, including birds. Also, common plant stressors (e.g., high temperature) increase the production of secondary plant compounds, and, as evidence suggests, also induce phytoestrogen biosynthesis. These observations are consistent with the single study ever done on phytoestrogens and reproduction in wild birds [Leopold, A.S., Erwin, M., Oh, J., Browning, B., 1976. Phytoestrogens adverse effects on reproduction in California quail. Science 191, 98-100.], which found that drought stress correlated with increased levels of phytoestrogens in plants, and that increased phytoestrogen levels correlated with decreased young. This review discusses the hypothesis that plants may have an effect on the reproduction of avian species by producing phytoestrogens as a plant defense against herbivory, and that birds may "use" changing levels of phytoestrogens in the vegetation to ensure that food resources will support potential young produced. Evidence from our laboratory and others appear to support this hypothesis.
Collapse
|