1
|
Cao J, Wang Y, Wang S, Shen Y, Li W, Wei Z, Li S, Lin Q, Chang Y. Expression of Key Steroidogenic Enzymes in Human Placenta and Associated Adverse Pregnancy Outcomes. MATERNAL-FETAL MEDICINE 2023; 5:163-172. [PMID: 40416852 PMCID: PMC12096406 DOI: 10.1097/fm9.0000000000000167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 06/15/2022] [Indexed: 11/26/2022] Open
Abstract
Steroid hormones, including progestagens, estrogens, androgens, corticosteroids, and their precursor cholesterol, perform essential functions in the successful establishment and maintenance of pregnancy and normal fetal development. As the core endocrine organ at the prenatal stage, the human placenta is involved in the biosynthesis, metabolism, and delivery of steroid hormones. Steroidogenic pathways are tightly regulated by placenta-intrinsic cytochrome P450 and hydroxysteroid dehydrogenase. However, the relationship between placental steroidogenic enzyme expression and adverse pregnancy outcomes is controversial. In this review, we summarize the possible upstream regulatory mechanisms of placental steroidogenic enzymes in physiologic and pathophysiologic states. We also describe the human placental barrier model and examine the potential of single-cell sequencing for evaluating the primary functions and cellular origin of steroidogenic enzymes. Finally, we examine the existing evidence for the association between placental steroidogenic enzyme dysregulation and adverse pregnancy outcomes.
Collapse
Affiliation(s)
- Jiasong Cao
- Tianjin Key Laboratory of Human Development and Reproductive Regulation, Tianjin Central Hospital of Gynecology Obstetrics and Nankai University Affiliated Hospital of Obstetrics and Gynecology, Tianjin 300100, China
| | - Yixin Wang
- School of Clinical Medicine, Tianjin Medical University, Tianjin 300070, China
| | - Shuqi Wang
- School of Clinical Medicine, Tianjin Medical University, Tianjin 300070, China
| | - Yongmei Shen
- Tianjin Key Laboratory of Human Development and Reproductive Regulation, Tianjin Central Hospital of Gynecology Obstetrics and Nankai University Affiliated Hospital of Obstetrics and Gynecology, Tianjin 300100, China
| | - Wen Li
- Tianjin Key Laboratory of Human Development and Reproductive Regulation, Tianjin Central Hospital of Gynecology Obstetrics and Nankai University Affiliated Hospital of Obstetrics and Gynecology, Tianjin 300100, China
| | - Zhuo Wei
- Tianjin Key Laboratory of Human Development and Reproductive Regulation, Tianjin Central Hospital of Gynecology Obstetrics and Nankai University Affiliated Hospital of Obstetrics and Gynecology, Tianjin 300100, China
| | - Shanshan Li
- Tianjin Key Laboratory of Human Development and Reproductive Regulation, Tianjin Central Hospital of Gynecology Obstetrics and Nankai University Affiliated Hospital of Obstetrics and Gynecology, Tianjin 300100, China
| | - Qimei Lin
- Tianjin Key Laboratory of Human Development and Reproductive Regulation, Tianjin Central Hospital of Gynecology Obstetrics and Nankai University Affiliated Hospital of Obstetrics and Gynecology, Tianjin 300100, China
| | - Ying Chang
- Tianjin Key Laboratory of Human Development and Reproductive Regulation, Tianjin Central Hospital of Gynecology Obstetrics and Nankai University Affiliated Hospital of Obstetrics and Gynecology, Tianjin 300100, China
| |
Collapse
|
2
|
Valadas J, Sachett A, Marcon M, Bastos LM, Piato A. Ochratoxin A induces locomotor impairment and oxidative imbalance in adult zebrafish. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:21144-21155. [PMID: 36264473 DOI: 10.1007/s11356-022-23692-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 10/13/2022] [Indexed: 06/16/2023]
Abstract
Ochratoxin A (OTA) is a mycotoxin produced by species of filamentous fungi widely found as a contaminant in food and with high toxic potential. Studies have shown that this toxin causes kidney and liver damage; however, data on the central nervous system effects of exposure to OTA are still scarce. Thus, this study aimed to investigate the effects of exposure to OTA on behavioral and neurochemical parameters in adult zebrafish. The animals were treated with different doses of OTA (1.38, 2.77, and 5.53 mg/kg) with intraperitoneal injections and submitted to behavioral evaluations in the open tank and social interaction tests. Subsequently, they were euthanized, and the brains were used to assess markers associated with oxidative status. In the open tank test, OTA altered distance traveled, absolute turn angle, mean speed, and freezing time. However, no significant effects were observed in the social interaction test. Moreover, OTA also increased glutathione peroxidase (GPx), glutathione-S-transferase (GST), and glutathione reductase (GR) levels and decreased non-protein thiols (NPSH) levels in the zebrafish brain. This study showed that OTA can affect behavior and neurochemical levels in zebrafish.
Collapse
Affiliation(s)
- Jéssica Valadas
- Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Rua Ramiro Barcelos, 2600, Prédio UFRGS n° 21116, 6º andar - Campus Saúde, Porto Alegre, RS, 90035-003, Brazil
| | - Adrieli Sachett
- Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Rua Ramiro Barcelos, 2600, Prédio UFRGS n° 21116, 6º andar - Campus Saúde, Porto Alegre, RS, 90035-003, Brazil
| | - Matheus Marcon
- Departamento de Bioquímica, Farmacologia e Fisiologia, Universidade Federal do Triângulo Mineiro (UFTM), Uberaba, MG, Brazil
| | - Leonardo M Bastos
- Departamento de Farmacologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Angelo Piato
- Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Rua Ramiro Barcelos, 2600, Prédio UFRGS n° 21116, 6º andar - Campus Saúde, Porto Alegre, RS, 90035-003, Brazil.
- Departamento de Farmacologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil.
| |
Collapse
|
3
|
Ganesan AR, Mohan K, Karthick Rajan D, Pillay AA, Palanisami T, Sathishkumar P, Conterno L. Distribution, toxicity, interactive effects, and detection of ochratoxin and deoxynivalenol in food: A review. Food Chem 2021; 378:131978. [PMID: 35033712 DOI: 10.1016/j.foodchem.2021.131978] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 11/28/2021] [Accepted: 12/28/2021] [Indexed: 12/19/2022]
Abstract
Mycotoxins are secondary metabolites of fungi that cause severe damage to agricultural products and food in the food supply chain. These detrimental pollutants have been directly linked with poor socioeconomic patterns and human health issues. Among the natural micropollutants, ochratoxin A (OTA) and deoxynivalenol (DON) are widely distributed in food materials. The primary occurrence of these mycotoxins is reported in almost all cereal grains and fresh agro-products. Both mycotoxins have shown harmful effects, such as nephrotoxic, hepatotoxic, and genotoxic effects, in humans due to their complex structural formation during the degradation/acetylation reaction. In addition, improper preharvest, harvest, and postharvest handling tend to lead to the formation of OTA and DON in various food commodities, which allows different harmful fungicides in practice. Therefore, this review provides more insight into the distribution and toxicity of OTA/DON in the food matrix and human health. Furthermore, the interactive effects of OTA/DON with co-contaminated organic and inorganic compounds are discussed. Finally, international regulation and mitigation strategies for detoxication are critically evaluated to meet food safety and good agriculture practices.
Collapse
Affiliation(s)
- Abirami Ramu Ganesan
- Group of Fermentation and Distillation, Laimburg Research Centre, Ora (BZ), Auer 39040, Italy.
| | - Kannan Mohan
- PG and Research Department of Zoology, Sri Vasavi College, Erode, Tamil Nadu 638 316, India
| | - Durairaj Karthick Rajan
- Centre of Advanced Study in Marine Biology, Faculty of Marine Sciences, Annamalai University, Parangipettai, Tamil Nadu 608502, India
| | - Arti A Pillay
- School of Applied Sciences, College of Engineering Science and Technology, Fiji National University, Nabua Campus- 7222, Fiji Islands
| | - Thavamani Palanisami
- Global Innovative Centre for Advanced Nanomaterials (GICAN), University of Newcastle, Callaghan, NSW 2308, Australia
| | - Palanivel Sathishkumar
- Department of Prosthodontics, Saveetha Dental College and Hospital, SIMATS, Saveetha University, Chennai 600 077, Tamil Nadu, India
| | - Lorenza Conterno
- Group of Fermentation and Distillation, Laimburg Research Centre, Ora (BZ), Auer 39040, Italy.
| |
Collapse
|
4
|
EFSA Panel on Contaminants in the Food Chain (CONTAM), Schrenk D, Bodin L, Chipman JK, del Mazo J, Grasl‐Kraupp B, Hogstrand C, Hoogenboom L(R, Leblanc J, Nebbia CS, Nielsen E, Ntzani E, Petersen A, Sand S, Schwerdtle T, Vleminckx C, Wallace H, Alexander J, Dall'Asta C, Mally A, Metzler M, Binaglia M, Horváth Z, Steinkellner H, Bignami M. Risk assessment of ochratoxin A in food. EFSA J 2020; 18:e06113. [PMID: 37649524 PMCID: PMC10464718 DOI: 10.2903/j.efsa.2020.6113] [Citation(s) in RCA: 113] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The European Commission asked EFSA to update their 2006 opinion on ochratoxin A (OTA) in food. OTA is produced by fungi of the genus Aspergillus and Penicillium and found as a contaminant in various foods. OTA causes kidney toxicity in different animal species and kidney tumours in rodents. OTA is genotoxic both in vitro and in vivo; however, the mechanisms of genotoxicity are unclear. Direct and indirect genotoxic and non-genotoxic modes of action might each contribute to tumour formation. Since recent studies have raised uncertainty regarding the mode of action for kidney carcinogenicity, it is inappropriate to establish a health-based guidance value (HBGV) and a margin of exposure (MOE) approach was applied. For the characterisation of non-neoplastic effects, a BMDL 10 of 4.73 μg/kg body weight (bw) per day was calculated from kidney lesions observed in pigs. For characterisation of neoplastic effects, a BMDL 10 of 14.5 μg/kg bw per day was calculated from kidney tumours seen in rats. The estimation of chronic dietary exposure resulted in mean and 95th percentile levels ranging from 0.6 to 17.8 and from 2.4 to 51.7 ng/kg bw per day, respectively. Median OTA exposures in breastfed infants ranged from 1.7 to 2.6 ng/kg bw per day, 95th percentile exposures from 5.6 to 8.5 ng/kg bw per day in average/high breast milk consuming infants, respectively. Comparison of exposures with the BMDL 10 based on the non-neoplastic endpoint resulted in MOEs of more than 200 in most consumer groups, indicating a low health concern with the exception of MOEs for high consumers in the younger age groups, indicating a possible health concern. When compared with the BMDL 10 based on the neoplastic endpoint, MOEs were lower than 10,000 for almost all exposure scenarios, including breastfed infants. This would indicate a possible health concern if genotoxicity is direct. Uncertainty in this assessment is high and risk may be overestimated.
Collapse
|
5
|
In vitro effects of single and binary mixtures of regulated mycotoxins and persistent organochloride pesticides on steroid hormone production in MA-10 Leydig cell line. Toxicol In Vitro 2019; 60:272-280. [DOI: 10.1016/j.tiv.2019.06.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 06/03/2019] [Accepted: 06/09/2019] [Indexed: 01/29/2023]
|
6
|
Park H, Park HS, Lim W, Song G. Ochratoxin A suppresses proliferation of Sertoli and Leydig cells in mice. Med Mycol 2019; 58:71-82. [DOI: 10.1093/mmy/myz016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Revised: 01/28/2019] [Accepted: 02/07/2019] [Indexed: 12/12/2022] Open
Abstract
Abstract
Ochratoxin A (OTA) is a mycotoxin originating from Penicillium and Aspergillus. In addition to toxic effects in various tissues and cells, including neurons, immune cells, hepatocytes, and nephrons, it also causes carcinogenesis and teratogenesis. Although the negative effects of OTA with respect to the pathogenesis of diseases and the malfunction of various organs have been studied widely, the biological signaling mechanisms in testicular cells are less well known. Therefore, we determined the hazardous effect of OTA in two types of testicular cells: TM3 (mouse Leydig cells) and TM4 (mouse Sertoli cells). Treatment with OTA led to a significant decrease in the proliferation of both cell lines, as revealed by an increased proportion of cells in the sub-G1 phase. In addition, the phosphorylation of signaling molecules belonging to the PI3K (Akt, P70S6K, and S6) and MAPK (ERK1/2 and JNK) pathways was regulated by OTA in a dose-dependent manner in TM3 and TM4 cells. Furthermore, the combination treatment of OTA and signaling inhibitors (LY294002, U0126, or SP600125) exerted synergistic antiproliferative effects in TM3 and TM4 cells. OTA also reduced the concentration of calcium ions in the cytosol and mitochondria, which disrupted the calcium homeostasis necessary for maintaining the normal physiological functions of testicular cells. In conclusion, the results of the present study demonstrate the mechanism underlying the antiproliferative effects of OTA in mouse testicular cells. Exposure to OTA may result in abnormal sperm maturation and the failure of spermatogenesis, which leads to male infertility.
Collapse
Affiliation(s)
- Hahyun Park
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Republic of Korea
| | - Hee Seo Park
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Republic of Korea
| | - Whasun Lim
- Department of Food and Nutrition, Kookmin University, Seoul, 02707, Republic of Korea
| | - Gwonhwa Song
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Republic of Korea
| |
Collapse
|
7
|
Bonyadi F, Hasanzadeh S, Malekinejad H, Najafi G. Cyclopiazonic acid decreases sperm quality and in vitro fertilisation rate in mice. WORLD MYCOTOXIN J 2018. [DOI: 10.3920/wmj2018.2337] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The presence of cyclopiazonic acid (CPA) as a mycotoxin has been reported in feed and foodstuffs. The aim of this investigation was to determine the effects of CPA on reproductive functions of male mice. In this experiment, 40 mature male mice were randomly assigned into five groups (n=8): control, control-sham, CPA (0.03 mg/kg, body weight (BW)), CPA (0.06 mg/kg, BW) and CPA (0.12 mg/kg, BW). Following 28 days exposure to CPA, sperm quality parameters, in vitro fertilisation (IVF) capacity of sperms, serum testosterone level, Leydig cells number and serum total antioxidant capacity (TAC) were analysed. The results revealed a significant (P<0.05) reduction in sperm count, sperm viability, sperm motility, chromatin quality of sperm, sperms with intact DNA, IVF rate, testosterone level, Leydig cell distribution and TAC in comparison to the control group. The most prominent detrimental effects of CPA were found at the highest given dose level. Our results suggest that CPA at higher dose levels exerts detrimental effects on the male reproductive system. Moreover, these descriptive warrant further investigations into the specific mechanisms of action and the effects of CPA on spermatogenesis.
Collapse
Affiliation(s)
- F. Bonyadi
- Department of Basic Science, Histology section, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| | - S. Hasanzadeh
- Department of Basic Science, Histology section, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| | - H. Malekinejad
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Urmia University of Medical Sciences, Urmia, Iran
| | - G. Najafi
- Department of Basic Science, Anatomy and Embryology section, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| |
Collapse
|
8
|
Chatuphonprasert W, Jarukamjorn K, Ellinger I. Physiology and Pathophysiology of Steroid Biosynthesis, Transport and Metabolism in the Human Placenta. Front Pharmacol 2018; 9:1027. [PMID: 30258364 PMCID: PMC6144938 DOI: 10.3389/fphar.2018.01027] [Citation(s) in RCA: 161] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 08/24/2018] [Indexed: 12/11/2022] Open
Abstract
The steroid hormones progestagens, estrogens, androgens, and glucocorticoids as well as their precursor cholesterol are required for successful establishment and maintenance of pregnancy and proper development of the fetus. The human placenta forms at the interface of maternal and fetal circulation. It participates in biosynthesis and metabolism of steroids as well as their regulated exchange between maternal and fetal compartment. This review outlines the mechanisms of human placental handling of steroid compounds. Cholesterol is transported from mother to offspring involving lipoprotein receptors such as low-density lipoprotein receptor (LDLR) and scavenger receptor class B type I (SRB1) as well as ATP-binding cassette (ABC)-transporters, ABCA1 and ABCG1. Additionally, cholesterol is also a precursor for placental progesterone and estrogen synthesis. Hormone synthesis is predominantly performed by members of the cytochrome P-450 (CYP) enzyme family including CYP11A1 or CYP19A1 and hydroxysteroid dehydrogenases (HSDs) such as 3β-HSD and 17β-HSD. Placental estrogen synthesis requires delivery of sulfate-conjugated precursor molecules from fetal and maternal serum. Placental uptake of these precursors is mediated by members of the solute carrier (SLC) family including sodium-dependent organic anion transporter (SOAT), organic anion transporter 4 (OAT4), and organic anion transporting polypeptide 2B1 (OATP2B1). Maternal-fetal glucocorticoid transport has to be tightly regulated in order to ensure healthy fetal growth and development. For that purpose, the placenta expresses the enzymes 11β-HSD 1 and 2 as well as the transporter ABCB1. This article also summarizes the impact of diverse compounds and diseases on the expression level and activity of the involved transporters, receptors, and metabolizing enzymes and concludes that the regulatory mechanisms changing the physiological to a pathophysiological state are barely explored. The structure and the cellular composition of the human placental barrier are introduced. While steroid production, metabolism and transport in the placental syncytiotrophoblast have been explored for decades, few information is available for the role of placental-fetal endothelial cells in these processes. With regard to placental structure and function, significant differences exist between species. To further decipher physiologic pathways and their pathologic alterations in placental steroid handling, proper model systems are mandatory.
Collapse
Affiliation(s)
- Waranya Chatuphonprasert
- Pathophysiology of the Placenta, Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria.,Faculty of Medicine, Mahasarakham University, Maha Sarakham, Thailand
| | - Kanokwan Jarukamjorn
- Research Group for Pharmaceutical Activities of Natural Products Using Pharmaceutical Biotechnology (PANPB), Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen, Thailand
| | - Isabella Ellinger
- Pathophysiology of the Placenta, Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
9
|
Sex differences in ochratoxin a toxicity in F344 rats after 7 and 21 days of daily oral administration. Food Chem Toxicol 2018; 111:363-373. [DOI: 10.1016/j.fct.2017.11.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 10/26/2017] [Accepted: 11/03/2017] [Indexed: 01/09/2023]
|
10
|
|
11
|
Malir F, Ostry V, Pfohl-Leszkowicz A, Novotna E. Ochratoxin A: developmental and reproductive toxicity-an overview. ACTA ACUST UNITED AC 2014; 98:493-502. [PMID: 24395216 DOI: 10.1002/bdrb.21091] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Accepted: 12/10/2013] [Indexed: 12/19/2022]
Abstract
Ochratoxin A (OTA) is nephrotoxic, hepatotoxic, reprotoxic, embryotoxic, teratogenic, neurotoxic, immunotoxic, and carcinogenic for laboratory and farm animals. Male and female reproductive health has deteriorated in many countries during the last few decades. A number of toxins in environment are suspected to affect reproductive system in male and female. OTA is one of them. OTA has been found to be teratogenic in several animal models including rat, mouse, hamster, quail, and chick, with reduced birth weight and craniofacial abnormalities being the most common signs. The presence of OTA also results in congenital defects in the fetus. Neither the potential of OTA to cause malformations in human nor its teratogenic mode of action is known. Exposure to OTA leads to increased embryo lethality manifested as resorptions or dead fetuses. The mechanism of OTA transfer across human placenta (e.g., which transporters are involved in the transfer mechanism) is not fully understood. Some of the toxic effects of OTA are potentiated by other mycotoxins or other contaminants. Therefore, OTA exposure of pregnant women should be minimized. OTA has been shown to be an endocrine disruptor and a reproductive toxicant, with abilities of altering sperm quality. Other studies have shown that OTA is a testicular toxin in animals. Thus, OTA is a biologically plausible cause of testicular cancer in man.
Collapse
Affiliation(s)
- Frantisek Malir
- Department of Biology, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czech Republic
| | | | | | | |
Collapse
|
12
|
Santos R, Schoevers E, Roelen B, Fink-Gremmels J. Mycotoxins and female reproduction: in vitro approaches. WORLD MYCOTOXIN J 2013. [DOI: 10.3920/wmj2013.1596] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Exposure to mycotoxins has been linked to adverse effects on female reproduction by interfering with the synthesis, metabolism or degradation of steroid hormones, interaction with steroid receptors or impairing oocyte maturation and competence. To assess such effects, many studies initially focussed on possible endocrine actions of mycotoxins using specific cell lines known to express key enzymes involved in the synthesis of steroid hormones. Using these models, zearalenone, deoxynivalenol, ochratoxin A, T-2 and HT-2 toxins, and aflatoxin B1 were claimed to be endocrine active substances. As yet, zearalenone is the only mycotoxin for which a direct interaction with oestrogen receptors could be demonstrated, classifying this mycotoxin as an endocrine disruptor. Mycotoxin exposure of complex cell systems like ovarian follicles at the earliest (primordial) to most advanced (pre-ovulatory) stages can serve not only as the first indication of the potential of a mycotoxin to affect female reproduction, but also provides insight in specific mechanisms involved in such an effect and identifies vulnerable phases in follicle development. Zearalenone is the most widely studied mycotoxin regarding female reproduction, but effects on oocyte maturation have also been demonstrated for deoxynivalenol. Exposure to zearalenone impairs the formation of primordial, while its metabolite ?-zearalenol is more harmful to fertilised oocytes than zearalenone itself. This short overview aims to provide an introduction into the different models, such as cell lines and oocytes, commonly used to assess the potential adverse effects of mycotoxins on female reproduction.
Collapse
Affiliation(s)
- R.R. Santos
- Institute for Risk Assessment Sciences, Division Veterinary Pharmacology, Pharmacotherapy and Toxicology, Faculty of Veterinary Medicine, Utrecht University, P.O. Box 80152, 3508 TD Utrecht, the Netherlands
- Laboratory of Wild Animal Biology and Medicine, Federal University of Pará, Rua Augusto Corrêa, Campus Básico, CEP 66075-110, Belém, Pará, Brazil
| | - E.J. Schoevers
- Department of Farm Animal Health, Faculty of Veterinary Medicine, Utrecht University, P.O. Box 80151, 3508 TD Utrecht, the Netherlands
| | - B.A.J. Roelen
- Department of Farm Animal Health, Faculty of Veterinary Medicine, Utrecht University, P.O. Box 80151, 3508 TD Utrecht, the Netherlands
| | - J. Fink-Gremmels
- Institute for Risk Assessment Sciences, Division Veterinary Pharmacology, Pharmacotherapy and Toxicology, Faculty of Veterinary Medicine, Utrecht University, P.O. Box 80152, 3508 TD Utrecht, the Netherlands
| |
Collapse
|