1
|
Lundin BF, Knight GT, Fedorchak NJ, Krucki K, Iyer N, Maher JE, Izban NR, Roberts A, Cicero MR, Robinson JF, Iskandar BJ, Willett R, Ashton RS. RosetteArray ® Platform for Quantitative High-Throughput Screening of Human Neurodevelopmental Risk. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.01.587605. [PMID: 38798648 PMCID: PMC11118315 DOI: 10.1101/2024.04.01.587605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Neural organoids have revolutionized how human neurodevelopmental disorders (NDDs) are studied. Yet, their utility for screening complex NDD etiologies and in drug discovery is limited by a lack of scalable and quantifiable derivation formats. Here, we describe the RosetteArray® platform's ability to be used as an off-the-shelf, 96-well plate assay that standardizes incipient forebrain and spinal cord organoid morphogenesis as micropatterned, 3-D, singularly polarized neural rosette tissues (>9000 per plate). RosetteArrays are seeded from cryopreserved human pluripotent stem cells, cultured over 6-8 days, and immunostained images can be quantified using artificial intelligence-based software. We demonstrate the platform's suitability for screening developmental neurotoxicity and genetic and environmental factors known to cause neural tube defect risk. Given the presence of rosette morphogenesis perturbation in neural organoid models of NDDs and neurodegenerative disorders, the RosetteArray platform could enable quantitative high-throughput screening (qHTS) of human neurodevelopmental risk across regulatory and precision medicine applications.
Collapse
Affiliation(s)
- Brady F. Lundin
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53705, USA
- Medical Scientist Training Program, University of Wisconsin-Madison, School of Medicine and Public Health, Madison, WI, 53705 USA
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI 53715, USA
| | - Gavin T. Knight
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI 53715, USA
- Neurosetta LLC, 330 N. Orchard Street Rm 4140A, Madison, WI 53715 USA
| | | | - Kevin Krucki
- Neurosetta LLC, 330 N. Orchard Street Rm 4140A, Madison, WI 53715 USA
| | - Nisha Iyer
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53705, USA
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI 53715, USA
| | - Jack E. Maher
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI 53715, USA
| | - Nicholas R. Izban
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI 53715, USA
| | - Abilene Roberts
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI 53715, USA
| | - Madeline R. Cicero
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI 53715, USA
| | - Joshua F. Robinson
- Center of Reproductive Sciences, Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Bermans J. Iskandar
- Department of Neurological Surgery, University of Wisconsin-Madison, School of Medicine and Public Health, Madison, WI 53705, USA
| | - Rebecca Willett
- Neurosetta LLC, 330 N. Orchard Street Rm 4140A, Madison, WI 53715 USA
- Departments of Statistics and Computer Science, University of Chicago, Chicago, IL 60637, USA
| | - Randolph S. Ashton
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53705, USA
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI 53715, USA
- Neurosetta LLC, 330 N. Orchard Street Rm 4140A, Madison, WI 53715 USA
| |
Collapse
|
2
|
Piersma AH, Baker NC, Daston GP, Flick B, Fujiwara M, Knudsen TB, Spielmann H, Suzuki N, Tsaioun K, Kojima H. Pluripotent stem cell assays: Modalities and applications for predictive developmental toxicity. Curr Res Toxicol 2022; 3:100074. [PMID: 35633891 PMCID: PMC9130094 DOI: 10.1016/j.crtox.2022.100074] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 04/21/2022] [Accepted: 05/09/2022] [Indexed: 12/02/2022] Open
Abstract
This manuscript provides a review focused on embryonic stem cell-based models and their place within the landscape of alternative developmental toxicity assays. Against the background of the principles of developmental toxicology, the wide diversity of alternative methods using pluripotent stem cells developed in this area over the past half century is reviewed. In order to provide an overview of available models, a systematic scoping review was conducted following a published protocol with inclusion criteria, which were applied to select the assays. Critical aspects including biological domain, readout endpoint, availability of standardized protocols, chemical domain, reproducibility and predictive power of each assay are described in detail, in order to review the applicability and limitations of the platform in general and progress moving forward to implementation. The horizon of innovative routes of promoting regulatory implementation of alternative methods is scanned, and recommendations for further work are given.
Collapse
Affiliation(s)
- Aldert H. Piersma
- Center for Health Protection, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | | | - George P. Daston
- Global Product Stewardship, The Procter & Gamble Company, Cincinnati, OH, USA
| | - Burkhard Flick
- Experimental Toxicology and Ecology, BASF SE, Ludwigshafen am Rhein, Germany
| | - Michio Fujiwara
- Drug Safety Research Labs, Astellas Pharma Inc., Tsukuba-shi, Japan
| | - Thomas B. Knudsen
- Center for Computational Toxicology and Exposure, U.S. Environmental Protection Agency, Research Triangle Park, USA
| | - Horst Spielmann
- Institute for Pharmacy, Faculty of Biology, Chemistry, and Pharmacy, Freie Universität, Berlin, Germany
| | - Noriyuki Suzuki
- Cell Science Group Environmental Health Science Laboratory, Sumitomo Chemical Co., Ltd., Osaka, Japan
| | - Katya Tsaioun
- Evidence-Based Toxicology Collaboration at Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Hajime Kojima
- National Institute of Health Sciences, Kawasaki, Japan
| |
Collapse
|
3
|
Establishment of a developmental toxicity assay based on human iPSC reporter to detect FGF signal disruption. iScience 2022; 25:103770. [PMID: 35146387 PMCID: PMC8819105 DOI: 10.1016/j.isci.2022.103770] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 12/13/2021] [Accepted: 01/11/2022] [Indexed: 12/15/2022] Open
Abstract
The number of man-made chemicals has increased exponentially recently, and exposure to some of them can induce fetal malformations. Because complex and precisely programmed signaling pathways play important roles in developmental processes, their disruption by external chemicals often triggers developmental toxicity. However, highly accurate and high-throughput screening assays for potential developmental toxicants are currently lacking. In this study, we propose a reporter assay that utilizes human-induced pluripotent stem cells (iPSCs) to detect changes in fibroblast growth factor signaling, which is essential for limb morphogenesis. The dynamics of this signaling after exposure to a chemical were integrated to estimate the degree of signaling disruption, which afforded a good prediction of the capacity of chemicals listed in the ECVAM International Validation Study that induce limb malformations. This study presents an initial report of a human iPSC-based signaling disruption assay, which could be useful for the screening of potential developmental toxicants. Human iPSC-based FGF signal disruption reporter system was established FGF signal disruption was a good indicator of limb malformation-related toxicants Integration of dynamic FGF signal disruption results improved assay performance
Collapse
|
4
|
Kanno S, Okubo Y, Kageyama T, Yan L, Fukuda J. Integrated fibroblast growth factor signal disruptions in human iPS cells for prediction of teratogenic toxicity of chemicals. J Biosci Bioeng 2022; 133:291-299. [PMID: 35034848 DOI: 10.1016/j.jbiosc.2021.12.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 12/09/2021] [Accepted: 12/09/2021] [Indexed: 12/17/2022]
Abstract
The number of man-made chemicals has increased rapidly in recent decades, with certain chemicals potentially causing malformations in fetuses. Although the toxicities of chemicals have been tested in animals, chemicals that are not teratogenic in rodents can cause severe malformations in humans, owing to the differences in the susceptibility to the teratogenicity of chemicals among species. One possible cause of such species differences, other than pharmacokinetics, could be the difference in sensitivity to such chemicals at the cellular level. Therefore, a human cell-based high-throughput assay system is needed for detecting potential teratogenic chemicals. In this study, we proposed a signal reporter assay using human induced pluripotent stem cells (iPSCs). Because developmental processes are governed by highly intricate and precisely programmed signaling pathways, external chemical-induced disruption of these pathways often triggers developmental toxicities. The reporter assay using hiPSCs was used to detect changes in the fibroblast growth factor (FGF) signaling pathway, a pathway essential for limb morphogenesis. The method was based on monitoring and time-accumulation of the signal disruption over time, rather than the classical endpoint detection of the signal disruption. This approach was useful for detecting signal disruptions caused by the malformation chemicals listed in the ICH S5 guideline, including thalidomide. The human iPSC-based signal disruption assay could be a promising tool for the initial screening of developmental toxicants.
Collapse
Affiliation(s)
- Seiya Kanno
- Faculty of Engineering, Yokohama National University, 79-5 Tokiwadai, Hodogaya Ward, Yokohama, Kanagawa 240-8501, Japan; TechnoPro, Inc., 6-10-1 Roppongi, Minato City, Tokyo 106-6135, Japan
| | - Yusuke Okubo
- Division of Cellular & Molecular Toxicology, Center for Biological Safety & Research, National Institute of Health Sciences, 3-25-26 Tono-machi, Kawasaki-ku, Kawasaki, Kanagawa 210-9501, Japan
| | - Tatsuto Kageyama
- Faculty of Engineering, Yokohama National University, 79-5 Tokiwadai, Hodogaya Ward, Yokohama, Kanagawa 240-8501, Japan; Kanagawa Institute of Industrial Science and Technology (KISTEC), 3-2-1 Sakado, Takatsu Ward, Kawasaki, Kanagawa 213-0012, Japan
| | - Lei Yan
- Faculty of Engineering, Yokohama National University, 79-5 Tokiwadai, Hodogaya Ward, Yokohama, Kanagawa 240-8501, Japan
| | - Junji Fukuda
- Faculty of Engineering, Yokohama National University, 79-5 Tokiwadai, Hodogaya Ward, Yokohama, Kanagawa 240-8501, Japan; Kanagawa Institute of Industrial Science and Technology (KISTEC), 3-2-1 Sakado, Takatsu Ward, Kawasaki, Kanagawa 213-0012, Japan.
| |
Collapse
|
5
|
Tirumala MG, Anchi P, Raja S, Rachamalla M, Godugu C. Novel Methods and Approaches for Safety Evaluation of Nanoparticle Formulations: A Focus Towards In Vitro Models and Adverse Outcome Pathways. Front Pharmacol 2021; 12:612659. [PMID: 34566630 PMCID: PMC8458898 DOI: 10.3389/fphar.2021.612659] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 08/05/2021] [Indexed: 12/18/2022] Open
Abstract
Nanotoxicology is an emerging field employed in the assessment of unintentional hazardous effects produced by nanoparticles (NPs) impacting human health and the environment. The nanotoxicity affects the range between induction of cellular stress and cytotoxicity. The reasons so far reported for these toxicological effects are due to their variable sizes with high surface areas, shape, charge, and physicochemical properties, which upon interaction with the biological components may influence their functioning and result in adverse outcomes (AO). Thus, understanding the risk produced by these materials now is an important safety concern for the development of nanotechnology and nanomedicine. Since the time nanotoxicology has evolved, the methods employed have been majorly relied on in vitro cell-based evaluations, while these simple methods may not predict the complexity involved in preclinical and clinical conditions concerning pharmacokinetics, organ toxicity, and toxicities evidenced through multiple cellular levels. The safety profiles of nanoscale nanomaterials and nanoformulations in the delivery of drugs and therapeutic applications are of considerable concern. In addition, the safety assessment for new nanomedicine formulas lacks regulatory standards. Though the in vivo studies are greatly needed, the end parameters used for risk assessment are not predicting the possible toxic effects produced by various nanoformulations. On the other side, due to increased restrictions on animal usage and demand for the need for high-throughput assays, there is a need for developing and exploring novel methods to evaluate NPs safety concerns. The progress made in molecular biology and the availability of several modern techniques may offer novel and innovative methods to evaluate the toxicological behavior of different NPs by using single cells, cell population, and whole organisms. This review highlights the recent novel methods developed for the evaluation of the safety impacts of NPs and attempts to solve the problems that come with risk assessment. The relevance of investigating adverse outcome pathways (AOPs) in nanotoxicology has been stressed in particular.
Collapse
Affiliation(s)
- Mounika Gayathri Tirumala
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Pratibha Anchi
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Susmitha Raja
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Mahesh Rachamalla
- Department of Biology, University of Saskatchewan, Saskatoon, SK, Canada
| | - Chandraiah Godugu
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| |
Collapse
|
6
|
Sahni G, Chang S, Meng JTC, Tan JZY, Fatien JJC, Bonnard C, Utami KH, Chan PW, Tan TT, Altunoglu U, Kayserili H, Pouladi M, Reversade B, Toh Y. A Micropatterned Human-Specific Neuroepithelial Tissue for Modeling Gene and Drug-Induced Neurodevelopmental Defects. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2001100. [PMID: 33717833 PMCID: PMC7927627 DOI: 10.1002/advs.202001100] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 09/22/2020] [Indexed: 05/05/2023]
Abstract
The generation of structurally standardized human pluripotent stem cell (hPSC)-derived neural embryonic tissues has the potential to model genetic and environmental mediators of early neurodevelopmental defects. Current neural patterning systems have so far focused on directing cell fate specification spatio-temporally but not morphogenetic processes. Here, the formation of a structurally reproducible and highly-organized neuroepithelium (NE) tissue is directed from hPSCs, which recapitulates morphogenetic cellular processes relevant to early neurulation. These include having a continuous, polarized epithelium and a distinct invagination-like folding, where primitive ectodermal cells undergo E-to-N-cadherin switching and apical constriction as they acquire a NE fate. This is accomplished by spatio-temporal patterning of the mesoendoderm, which guides the development and self-organization of the adjacent primitive ectoderm into the NE. It is uncovered that TGFβ signaling emanating from endodermal cells support tissue folding of the prospective NE. Evaluation of NE tissue structural dysmorphia, which is uniquely achievable in the model, enables the detection of apical constriction and cell adhesion dysfunctions in patient-derived hPSCs as well as differentiating between different classes of neural tube defect-inducing drugs.
Collapse
Affiliation(s)
- Geetika Sahni
- Department of Biomedical EngineeringNational University of SingaporeSingapore117583Singapore
- NUS Tissue Engineering ProgramNational University of SingaporeSingapore119077Singapore
| | - Shu‐Yung Chang
- Department of Biomedical EngineeringNational University of SingaporeSingapore117583Singapore
- Institute for Health Innovation & Technology (iHealthTech)National University of SingaporeSingapore117599Singapore
| | - Jeremy Teo Choon Meng
- Divison of EngineeringNew York UniversityAbu Dhabi129188United Arab Emirates
- Department of Mechanical EngineeringNew York UniversityNew YorkNY11201USA
| | - Jerome Zu Yao Tan
- Department of Biomedical EngineeringNational University of SingaporeSingapore117583Singapore
- NUS Tissue Engineering ProgramNational University of SingaporeSingapore119077Singapore
| | - Jean Jacques Clement Fatien
- Department of Biomedical EngineeringNational University of SingaporeSingapore117583Singapore
- NUS Tissue Engineering ProgramNational University of SingaporeSingapore119077Singapore
| | - Carine Bonnard
- Institute of Medical BiologyHuman Genetics and Embryology LaboratoryA*STARSingapore138648Singapore
| | - Kagistia Hana Utami
- Translational Laboratory in Genetic Medicine (TLGM)Agency for Science, Technology, and Research (A*STAR)Singapore138648Singapore
| | - Puck Wee Chan
- Istanbul Medical FacultyMedical Genetics DepartmentIstanbul34093Turkey
| | - Thong Teck Tan
- Institute of Medical BiologyHuman Genetics and Embryology LaboratoryA*STARSingapore138648Singapore
| | - Umut Altunoglu
- Istanbul Medical FacultyMedical Genetics DepartmentIstanbul34093Turkey
| | - Hülya Kayserili
- Istanbul Medical FacultyMedical Genetics DepartmentIstanbul34093Turkey
- Koç University School of MedicineMedical Genetics DepartmentIstanbul34010Turkey
| | - Mahmoud Pouladi
- Translational Laboratory in Genetic Medicine (TLGM)Agency for Science, Technology, and Research (A*STAR)Singapore138648Singapore
- Department of MedicineNational University of SingaporeSingapore119228Singapore
| | - Bruno Reversade
- Institute of Medical BiologyHuman Genetics and Embryology LaboratoryA*STARSingapore138648Singapore
- Koç University School of MedicineMedical Genetics DepartmentIstanbul34010Turkey
- Institute of Molecular and Cellular BiologyA*STARSingapore138673Singapore
- Amsterdam Reproduction and DevelopmentAcademic Medical Centre and VU University Medical CenterAmsterdam1105the Netherlands
- National University of SingaporeDepartment of PediatricsSingapore119228Singapore
| | - Yi‐Chin Toh
- Department of Biomedical EngineeringNational University of SingaporeSingapore117583Singapore
- NUS Tissue Engineering ProgramNational University of SingaporeSingapore119077Singapore
- Institute for Health Innovation & Technology (iHealthTech)National University of SingaporeSingapore117599Singapore
- The N.1 Institute for HealthNational University of SingaporeSingapore117456Singapore
- School of MechanicalMedical and Process EngineeringQueensland University of TechnologyBrisbaneQueensland4000Australia
- Institute of Health and Biomedical InnovationQueensland University of TechnologyKelvin GroveQueensland4059Australia
| |
Collapse
|
7
|
Kim TW, Che JH, Yun JW. Use of stem cells as alternative methods to animal experimentation in predictive toxicology. Regul Toxicol Pharmacol 2019; 105:15-29. [DOI: 10.1016/j.yrtph.2019.03.016] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Revised: 03/23/2019] [Accepted: 03/25/2019] [Indexed: 12/16/2022]
|
8
|
Luz AL, Tokar EJ. Pluripotent Stem Cells in Developmental Toxicity Testing: A Review of Methodological Advances. Toxicol Sci 2018; 165:31-39. [PMID: 30169765 PMCID: PMC6111785 DOI: 10.1093/toxsci/kfy174] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Millions of children are born each year with a birth defect. Many of these defects are caused by environmental factors, although the underlying etiology is often unknown. In vivo mammalian models are frequently used to determine if a chemical poses a risk to the developing fetus. However, there are over 80 000 chemicals registered for use in the United States, many of which have undergone little safety testing, necessitating the need for higher-throughput methods to assess developmental toxicity. Pluripotent stem cells (PSCs) are an ideal in vitro model to investigate developmental toxicity as they possess the capacity to differentiate into nearly any cell type in the human body. Indeed, a burst of research has occurred in the field of stem cell toxicology over the past decade, which has resulted in numerous methodological advances that utilize both mouse and human PSCs, as well as cutting-edge technology in the fields of metabolomics, transcriptomics, transgenics, and high-throughput imaging. Here, we review the wide array of approaches used to detect developmental toxicants, suggest areas for further research, and highlight critical aspects of stem cell biology that should be considered when utilizing PSCs in developmental toxicity testing.
Collapse
Affiliation(s)
- Anthony L Luz
- Stem Cell Toxicology Group, National Toxicology Program Laboratory, Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina 27709
| | - Erik J Tokar
- Stem Cell Toxicology Group, National Toxicology Program Laboratory, Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina 27709
| |
Collapse
|
9
|
Xing J, Cao Y, Yu Y, Li H, Song Z, Yu H. In Vitro Micropatterned Human Pluripotent Stem Cell Test (µP-hPST) for Morphometric-Based Teratogen Screening. Sci Rep 2017; 7:8491. [PMID: 28819231 PMCID: PMC5561212 DOI: 10.1038/s41598-017-09178-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 07/21/2017] [Indexed: 01/13/2023] Open
Abstract
Exposure to teratogenic chemicals during pregnancy may cause severe birth defects. Due to high inter-species variation of drug responses as well as financial and ethical burdens, despite the widely use of in vivo animal tests, it’s crucial to develop highly predictive human pluripotent stem cell (hPSC)-based in vitro assays to identify potential teratogens. Previously we have shown that the morphological disruption of mesoendoderm patterns formed by geometrically-confined cell differentiation and migration using hPSCs could potentially serve as a sensitive morphological marker in teratogen detection. Here, a micropatterned human pluripotent stem cell test (µP-hPST) assay was developed using 30 pharmaceutical compounds. A simplified morphometric readout was developed to quantify the mesoendoderm pattern changes and a two-step classification rule was generated to identify teratogens. The optimized µP-hPST could classify the 30 compounds with 97% accuracy, 100% specificity and 93% sensitivity. Compared with metabolic biomarker-based hPSC assay by Stemina, the µP-hPST could successfully identify misclassified drugs Bosentan, Diphenylhydantoin and Lovastatin, and show a higher accuracy and sensitivity. This scalable µP-hPST may serve as either an independent assay or a complement assay for existing assays to reduce animal use, accelerate early discovery-phase drug screening and help general chemical screening of human teratogens.
Collapse
Affiliation(s)
- Jiangwa Xing
- Institute of Bioengineering and Nanotechnology, A*STAR, The Nanos, #04-01, 31 Biopolis Way, Singapore, 138669, Singapore.
| | - Yue Cao
- Institute of Bioengineering and Nanotechnology, A*STAR, The Nanos, #04-01, 31 Biopolis Way, Singapore, 138669, Singapore.,Mechanobiology Institute, National University of Singapore, T-Lab, #05-01, 5A Engineering Drive 1, Singapore, 117411, Singapore
| | - Yang Yu
- Institute of Bioengineering and Nanotechnology, A*STAR, The Nanos, #04-01, 31 Biopolis Way, Singapore, 138669, Singapore.,BioSyM, Singapore-MIT Alliance for Research and Technology, Enterprise Wing 04-13/14 and B1, 1 Create Way, Singapore, 138602, Singapore.,Department of Physiology, Yong Loo Lin School of Medicine, MD9-04-11, 2 Medical Drive, Singapore, 117597, Singapore
| | - Huan Li
- Institute of Bioengineering and Nanotechnology, A*STAR, The Nanos, #04-01, 31 Biopolis Way, Singapore, 138669, Singapore
| | - Ziwei Song
- Institute of Bioengineering and Nanotechnology, A*STAR, The Nanos, #04-01, 31 Biopolis Way, Singapore, 138669, Singapore.,Department of Physiology, Yong Loo Lin School of Medicine, MD9-04-11, 2 Medical Drive, Singapore, 117597, Singapore
| | - Hanry Yu
- Institute of Bioengineering and Nanotechnology, A*STAR, The Nanos, #04-01, 31 Biopolis Way, Singapore, 138669, Singapore. .,Mechanobiology Institute, National University of Singapore, T-Lab, #05-01, 5A Engineering Drive 1, Singapore, 117411, Singapore. .,BioSyM, Singapore-MIT Alliance for Research and Technology, Enterprise Wing 04-13/14 and B1, 1 Create Way, Singapore, 138602, Singapore. .,Department of Physiology, Yong Loo Lin School of Medicine, MD9-04-11, 2 Medical Drive, Singapore, 117597, Singapore. .,Gastroenterology Department, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
10
|
|
11
|
Zhu H, Bouhifd M, Kleinstreuer N, Kroese ED, Liu Z, Luechtefeld T, Pamies D, Shen J, Strauss V, Wu S, Hartung T. Supporting read-across using biological data. ALTEX 2016; 33:167-82. [PMID: 26863516 PMCID: PMC4834201 DOI: 10.14573/altex.1601252] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 02/09/2016] [Indexed: 01/08/2023]
Abstract
Read-across, i.e. filling toxicological data gaps by relating to similar chemicals, for which test data are available, is usually done based on chemical similarity. Besides structure and physico-chemical properties, however, biological similarity based on biological data adds extra strength to this process. In the context of developing Good Read-Across Practice guidance, a number of case studies were evaluated to demonstrate the use of biological data to enrich read-across. In the simplest case, chemically similar substances also show similar test results in relevant in vitro assays. This is a well-established method for the read-across of e.g. genotoxicity assays. Larger datasets of biological and toxicological properties of hundreds and thousands of substances become increasingly available enabling big data approaches in read-across studies. Several case studies using various big data sources are described in this paper. An example is given for the US EPA's ToxCast dataset allowing read-across for high quality uterotrophic assays for estrogenic endocrine disruption. Similarly, an example for REACH registration data enhancing read-across for acute toxicity studies is given. A different approach is taken using omics data to establish biological similarity: Examples are given for stem cell models in vitro and short-term repeated dose studies in rats in vivo to support read-across and category formation. These preliminary biological data-driven read-across studies highlight the road to the new generation of read-across approaches that can be applied in chemical safety assessment.
Collapse
Affiliation(s)
- Hao Zhu
- Department of Chemistry, Rutgers University, Camden, NJ, USA; Center for Computational and Integrative Biology, Rutgers University, Camden, NJ, USA
| | - Mounir Bouhifd
- Johns Hopkins Bloomberg School of Public Health, Center for Alternatives to Animal Testing (CAAT), Baltimore, MD, USA
| | - Nicole Kleinstreuer
- National Toxicology Program Interagency Center for the Evaluation of Alternative Toxicological Methods, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - E. Dinant Kroese
- Risk Analysis for Products in Development, TNO Zeist, The Netherlands
| | | | - Thomas Luechtefeld
- Johns Hopkins Bloomberg School of Public Health, Center for Alternatives to Animal Testing (CAAT), Baltimore, MD, USA
| | - David Pamies
- Johns Hopkins Bloomberg School of Public Health, Center for Alternatives to Animal Testing (CAAT), Baltimore, MD, USA
| | - Jie Shen
- Research Institute for Fragrance Materials, Inc. Woodcliff Lake, New Jersey, USA
| | - Volker Strauss
- BASF Aktiengesellschaft, Experimental Toxicology and Ecology, Ludwigshafen, Germany
| | | | - Thomas Hartung
- Johns Hopkins Bloomberg School of Public Health, Center for Alternatives to Animal Testing (CAAT), Baltimore, MD, USA
- University of Konstanz, CAAT-Europe, Konstanz, Germany
| |
Collapse
|
12
|
van der Burg B, Pieterse B, Buist H, Lewin G, van der Linden SC, Man HY, Rorije E, Piersma AH, Mangelsdorf I, Wolterbeek APM, Kroese ED, van Vugt-Lussenburg B. A high throughput screening system for predicting chemically-induced reproductive organ deformities. Reprod Toxicol 2014; 55:95-103. [PMID: 25527862 DOI: 10.1016/j.reprotox.2014.11.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Revised: 11/19/2014] [Accepted: 11/25/2014] [Indexed: 10/24/2022]
Abstract
There is a great need for alternative testing methods for reproductive toxicants that are practical, fast, cost-effective and easy to interpret. Previously we followed a pragmatic approach using readily available tests, which was successful in predicting reproductive toxicity of chemicals [13]. This initial battery still contained apical tests and is fairly complex and low in its throughput. The current study aimed to simplify this screening battery using a mechanistic approach and a panel of high throughput CALUX reporter gene assays. A mechanistic approach was taken to validate this high throughput test battery. To this end it was challenged with two preselected sets of chemicals addressing two major apical effect classes relevant in reproductive toxicity. We found selectivity in this battery in that 82% of the compounds inducing reproductive organ deformities were predicted correctly, while for compounds inducing neural tube defects this was the case in 47% only. This is consistent with the mechanisms of toxicity covered in the battery. The most informative assays in the battery were ERalpha CALUX to measure estrogenicity and the AR-anti CALUX assay to measure androgen receptor antagonism.
Collapse
Affiliation(s)
| | | | | | - Geertje Lewin
- Fraunhofer Institute of Toxicology and Experimental Medicine, Hannover, Germany
| | | | - Hai-yen Man
- BioDetection Systems BV, Amsterdam, The Netherlands
| | - Emiel Rorije
- Center for Health Protection, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Aldert H Piersma
- Center for Health Protection, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Inge Mangelsdorf
- Fraunhofer Institute of Toxicology and Experimental Medicine, Hannover, Germany
| | | | | | | |
Collapse
|