1
|
Wegner S, Workman T, Park JJ, Harris S, Wallace J, Stanaway I, Hong S, Hansen B, Griffith WC, Faustman EM. A Dynamic In vitro developing testis model reflects structures and functions of testicular development in vivo. Reprod Toxicol 2023; 118:108362. [PMID: 37011698 DOI: 10.1016/j.reprotox.2023.108362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 03/03/2023] [Accepted: 03/14/2023] [Indexed: 04/03/2023]
Abstract
To better define appropriate applications of our 3-dimensional testicular co-culture as a model for reproductive toxicology, we evaluated the ability of the model to capture structural and functional elements that can be targeted by reproductive toxicants. Testicular co-cultures were prepared from postnatal day 5 male rats and cultured with a Matrigel overlay. Following a 2-day acclimation period, we characterized functional pathway dynamics by evaluating morphology, protein expression, testosterone concentrations, and global gene expression at a range of timepoints from experimental days 0 to 21. Western blotting confirmed expression of Sertoli cell, Leydig cell, and spermatogonial cell-specific protein markers. Testosterone detected in cell culture media indicates active testosterone production. Quantitative pathway analysis identified Gene Ontology biological processes enriched among genes significantly changing over the course of 21 days. Processes enriched among genes significantly increasing through time include general developmental processes (morphogenesis, tissue remodeling, etc.), steroid regulation, Sertoli cell development, immune response, and stress and apoptosis. Processes enriched among genes significantly decreasing over time include several related to male reproductive development (seminiferous tubule development, male gonad development, Leydig cell differentiation, Sertoli cell differentiation), all of which appear to peak in expression between days 1 and 5 before decreasing at later timepoints. This analysis provides a temporal roadmap for specific biological process of interest for reproductive toxicology in the model and anchors the model to sensitive phases of in vivo development, helping to define the relevance of the model for in vivo processes.
Collapse
Affiliation(s)
- Susanna Wegner
- Institute for Risk Analysis and Risk Communication, University of Washington School of Public Health, Seattle, WA, USA
| | - Tomomi Workman
- Institute for Risk Analysis and Risk Communication, University of Washington School of Public Health, Seattle, WA, USA
| | - Julie Juyoung Park
- Institute for Risk Analysis and Risk Communication, University of Washington School of Public Health, Seattle, WA, USA
| | - Sean Harris
- Institute for Risk Analysis and Risk Communication, University of Washington School of Public Health, Seattle, WA, USA
| | - James Wallace
- Institute for Risk Analysis and Risk Communication, University of Washington School of Public Health, Seattle, WA, USA
| | - Ian Stanaway
- Institute for Risk Analysis and Risk Communication, University of Washington School of Public Health, Seattle, WA, USA
| | - Sungwoo Hong
- Institute for Risk Analysis and Risk Communication, University of Washington School of Public Health, Seattle, WA, USA
| | - Brad Hansen
- Institute for Risk Analysis and Risk Communication, University of Washington School of Public Health, Seattle, WA, USA
| | - William C Griffith
- Institute for Risk Analysis and Risk Communication, University of Washington School of Public Health, Seattle, WA, USA
| | - Elaine M Faustman
- Institute for Risk Analysis and Risk Communication, University of Washington School of Public Health, Seattle, WA, USA.
| |
Collapse
|
2
|
Expression Analysis of Circular RNAs in Young and Sexually Mature Boar Testes. Animals (Basel) 2021; 11:ani11051430. [PMID: 34067577 PMCID: PMC8156704 DOI: 10.3390/ani11051430] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/13/2021] [Accepted: 05/14/2021] [Indexed: 12/13/2022] Open
Abstract
Simple Summary Circular RNAs are novel long non-coding RNA involved in the regulation of gene expression. Recently, the expression of circRNAs was characterized in testes of humans and bulls. However, the profiling of circRNAs and their potential biological functions in boar testicular development are yet to be known. In this study we characterized expression and biological roles of circRNAs in piglet (30 d) and adult (210 d) boar testes by high-throughput sequencing. We identified a large number of circRNAs during testicular development, of which 2326 circRNAs exhibited a significantly differential expression. Gene ontology analysis revealed that these differential expressed circRNAs might be involved in regulating spermatogenesis and hormone biosynthesis. Overall, the results indicate that circRNAs are abundantly expressed in boar testes and exhibit dynamic changes during testicular development. These findings will enable the provision of potential molecular markers for both breeding of elite boars and evaluating developmental status of boar testes. Abstract Testicular development is critical for male animals’ reproduction and is tightly regulated by epigenetic factors. Circular RNAs (circRNAs) were recently identified in the testes of humans and bulls. However, the expression profile of circRNAs and their potential biological functions in boar testicular development remain unclear. We identified 34,521 and 31,803 circRNAs in piglet (30 d) and adult (210 d) boar testes by high-throughput sequencing, respectively. Bioinformatics analysis revealed that these circRNAs are widely distributed on autosomes and sex chromosomes. Some of the host genes can generate multiple circRNAs. A total of 2326 differentially expressed circRNAs (DECs) derived from 1526 host genes was found in testicular development, of which 1003 circRNAs were up-regulated in adult boar testes and 1323 circRNAs were down-regulated. Furthermore, gene ontology analysis of host genes of DECs revealed that these circRNAs are mainly involved in regulating spermatogenesis, cilia motility, and hormone biosynthesis. The Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis revealed that the DECs are markedly enriched to stem cell pluripotency regulation, tight junctions, adhesion junctions, and cAMP signaling pathway. These results indicate that circRNAs are abundantly expressed in boar testes and exhibit dynamic changes during testicular development.
Collapse
|
3
|
Crespo M, Damont A, Blanco M, Lastrucci E, Kennani SE, Ialy-Radio C, Khattabi LE, Terrier S, Louwagie M, Kieffer-Jaquinod S, Hesse AM, Bruley C, Chantalat S, Govin J, Fenaille F, Battail C, Cocquet J, Pflieger D. Multi-omic analysis of gametogenesis reveals a novel signature at the promoters and distal enhancers of active genes. Nucleic Acids Res 2020; 48:4115-4138. [PMID: 32182340 PMCID: PMC7192594 DOI: 10.1093/nar/gkaa163] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 01/30/2020] [Accepted: 03/07/2020] [Indexed: 12/17/2022] Open
Abstract
Epigenetic regulation of gene expression is tightly controlled by the dynamic modification of histones by chemical groups, the diversity of which has largely expanded over the past decade with the discovery of lysine acylations, catalyzed from acyl-coenzymes A. We investigated the dynamics of lysine acetylation and crotonylation on histones H3 and H4 during mouse spermatogenesis. Lysine crotonylation appeared to be of significant abundance compared to acetylation, particularly on Lys27 of histone H3 (H3K27cr) that accumulates in sperm in a cleaved form of H3. We identified the genomic localization of H3K27cr and studied its effects on transcription compared to the classical active mark H3K27ac at promoters and distal enhancers. The presence of both marks was strongly associated with highest gene expression. Assessment of their co-localization with transcription regulators (SLY, SOX30) and chromatin-binding proteins (BRD4, BRDT, BORIS and CTCF) indicated systematic highest binding when both active marks were present and different selective binding when present alone at chromatin. H3K27cr and H3K27ac finally mark the building of some sperm super-enhancers. This integrated analysis of omics data provides an unprecedented level of understanding of gene expression regulation by H3K27cr in comparison to H3K27ac, and reveals both synergistic and specific actions of each histone modification.
Collapse
Affiliation(s)
- Marion Crespo
- Univ. Grenoble Alpes, CEA, Inserm, IRIG-BGE, 38000 Grenoble, France
| | - Annelaure Damont
- Service de Pharmacologie et d'Immunoanalyse, Laboratoire d'Etude du Métabolisme des Médicaments, CEA, INRA, Université Paris Saclay, MetaboHUB, 91191 Gif-sur-Yvette, France
| | - Melina Blanco
- Institut Cochin, INSERM U1016, CNRS UMR8104, Université de Paris, 75014 Paris, France
| | | | - Sara El Kennani
- Univ. Grenoble Alpes, CEA, Inserm, IRIG-BGE, 38000 Grenoble, France.,CNRS UMR 5309, Inserm U1209, Université Grenoble Alpes, Institute for Advanced Biosciences, 38000 Grenoble, France
| | - Côme Ialy-Radio
- Institut Cochin, INSERM U1016, CNRS UMR8104, Université de Paris, 75014 Paris, France
| | - Laila El Khattabi
- Institut Cochin, INSERM U1016, CNRS UMR8104, Université de Paris, 75014 Paris, France
| | - Samuel Terrier
- Service de Pharmacologie et d'Immunoanalyse, Laboratoire d'Etude du Métabolisme des Médicaments, CEA, INRA, Université Paris Saclay, MetaboHUB, 91191 Gif-sur-Yvette, France
| | | | | | - Anne-Marie Hesse
- Univ. Grenoble Alpes, CEA, Inserm, IRIG-BGE, 38000 Grenoble, France
| | | | - Sophie Chantalat
- Centre National de Recherche en Génomique Humaine (CNRGH), Institut de Biologie François Jacob, CEA, Université Paris-Saclay, 2 rue Gaston Crémieux, CP 5706, 91057 Evry Cedex, France
| | - Jérôme Govin
- Univ. Grenoble Alpes, CEA, Inserm, IRIG-BGE, 38000 Grenoble, France.,CNRS UMR 5309, Inserm U1209, Université Grenoble Alpes, Institute for Advanced Biosciences, 38000 Grenoble, France
| | - François Fenaille
- Service de Pharmacologie et d'Immunoanalyse, Laboratoire d'Etude du Métabolisme des Médicaments, CEA, INRA, Université Paris Saclay, MetaboHUB, 91191 Gif-sur-Yvette, France
| | - Christophe Battail
- Univ. Grenoble Alpes, CEA, INSERM, Biosciences and Biotechnology Institute of Grenoble, Biology of Cancer and Infection UMR_S 1036, 38000 Grenoble, France
| | - Julie Cocquet
- Institut Cochin, INSERM U1016, CNRS UMR8104, Université de Paris, 75014 Paris, France
| | - Delphine Pflieger
- Univ. Grenoble Alpes, CEA, Inserm, IRIG-BGE, 38000 Grenoble, France.,CNRS, IRIG-BGE, 38000 Grenoble, France
| |
Collapse
|
4
|
Wegner SH, Park JJ, Workman T, Hermsen SAB, Wallace J, Stanaway IB, Kim HY, Griffith WC, Hong S, Faustman EM. Anchoring a dynamic in vitro model of human neuronal differentiation to key processes of early brain development in vivo. Reprod Toxicol 2020; 91:116-130. [PMID: 31740287 PMCID: PMC6980388 DOI: 10.1016/j.reprotox.2019.09.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 09/25/2019] [Accepted: 09/27/2019] [Indexed: 01/04/2023]
Abstract
We characterize temporal pathway dynamics of differentiation in an in vitro neurotoxicity model with the aim of informing design and interpretation of toxicological assays. Human neural progenitor cells (hNPCs) were cultured in differentiation conditions up to 21 days. Genes significantly changed through time were identified and grouped according to temporal dynamics. Quantitative pathway analysis identified gene ontology (GO) terms enriched among significantly changed genes and provided a temporal roadmap of pathway trends in vitro. Gene expression in hNPCs was compared with publicly available gene expression data from developing human brain tissue in vivo. Quantitative pathway analysis of significantly changed genes and targeted analysis of specific pathways of interest identified concordance between in vivo and in vitro expression associated with proliferation, migration, differentiation, synapse formation, and neurotransmission. Our analysis anchors gene expression patterns in vitro to sensitive windows of in vivo development, helping to define appropriate applications of the model.
Collapse
Affiliation(s)
- Susanna H Wegner
- Institute for Risk Analysis and Risk Communication, Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, Seattle, WA, United States
| | - Julie Juyoung Park
- Institute for Risk Analysis and Risk Communication, Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, Seattle, WA, United States
| | - Tomomi Workman
- Institute for Risk Analysis and Risk Communication, Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, Seattle, WA, United States
| | - Sanne A B Hermsen
- Institute for Risk Analysis and Risk Communication, Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, Seattle, WA, United States
| | - Jim Wallace
- Institute for Risk Analysis and Risk Communication, Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, Seattle, WA, United States
| | - Ian B Stanaway
- Institute for Risk Analysis and Risk Communication, Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, Seattle, WA, United States
| | - Hee Yeon Kim
- Institute for Risk Analysis and Risk Communication, Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, Seattle, WA, United States
| | - William C Griffith
- Institute for Risk Analysis and Risk Communication, Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, Seattle, WA, United States
| | - Sungwoo Hong
- Institute for Risk Analysis and Risk Communication, Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, Seattle, WA, United States
| | - Elaine M Faustman
- Institute for Risk Analysis and Risk Communication, Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, Seattle, WA, United States.
| |
Collapse
|
5
|
Knudsen TB, Klieforth B, Slikker W. Programming microphysiological systems for children's health protection. Exp Biol Med (Maywood) 2017; 242:1586-1592. [PMID: 28658972 DOI: 10.1177/1535370217717697] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Microphysiological systems (MPS) and computer simulation models that recapitulate the underlying biology and toxicology of critical developmental transitions are emerging tools for developmental effects assessment of drugs/chemicals. Opportunities and challenges exist for their application to alternative, more public health relevant and efficient chemical toxicity testing methods. This is especially pertinent to children's health research and the evaluation of complex embryological and reproductive impacts of drug/chemical exposure. Scaling these technologies to higher throughput is a key challenge and drives the need for in silico models for quantitative prediction of developmental toxicity to inform safety assessments. One example is cellular agent-based models, constructed from extant embryology, that produce data useful to simulate critical developmental transitions and thereby predict phenotypic consequences of disruption in silico. Biologically inspired MPS models built from human induced pluripotent stem (iPS)-derived cells and synthetic matrices that recapitulate organ-specific physiologies and native tissue architectures are providing exciting new research opportunities to advance the assessment of developmental toxicity and offer the possibility of deriving a full 'human on a chip' system, or a 'Homunculus.' Impact statement This 'commentary' summarizes research needs and opportunities for engineered MPS models for developmental and reproductive toxicity testing. Emerging concepts can be taken forward to a virtual tissue modeling framework for assessing chemical (and non-chemical) stressors on human development. These models will advance children's health research, both basic and translational and new ways to evaluate complex embryological and reproductive impacts of drug and chemical exposures to inform safety assessments.
Collapse
Affiliation(s)
- T B Knudsen
- 1 National Center for Computational Toxicology/EPA, Research Triangle Park, NC 27711, USA
| | - B Klieforth
- 2 National Center for Environmental Research/EPA, Washington, DC 20460, USA
| | - W Slikker
- 3 National Center for Toxicological Research/FDA, Jefferson, AR 72079, USA
| |
Collapse
|