1
|
Mylchreest E, Smiley MA, Ballin JD, Blauth B, Shearer J, Reece J, Ionin B, Savransky V. Developmental and reproductive safety evaluation of AV7909 anthrax vaccine candidate in rats. Birth Defects Res 2020; 113:32-42. [PMID: 33067910 PMCID: PMC7821328 DOI: 10.1002/bdr2.1815] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 07/21/2020] [Accepted: 09/17/2020] [Indexed: 12/01/2022]
Abstract
The AV7909 vaccine, consists of the Anthrax Vaccine Adsorbed (AVA) bulk drug substance and the immunostimulatory Toll‐like receptor 9 agonist oligodeoxynucleotide adjuvant CPG 7909. The purpose of this research was to evaluate the potential maternal, reproductive, and developmental toxicity of AV7909 in rats to support licensure for use in women of childbearing potential. Groups of first generation (F0) female Sprague Dawley rats were dosed by intramuscular injection with water for injection, adjuvant or AV7909 at a volume of 0.5 ml/dose. Each rat received three vaccinations: 14 days prior to start of the mating period, on the first day of the mating period and on gestation day (GD) 7. There was no maternal mortality. Body weights, weight gain, and food consumption were comparable between groups. Findings in F0 females were limited to transient injection site edema and nodules consistent with immunostimulatory effects of the vaccine and adjuvant. Administration of AV7909 did not affect mating, fertility, pregnancy, embryo‐fetal viability, growth, or morphologic development, parturition, maternal care of offspring or postnatal survival, growth, or development. There was no evidence of systemic inflammation in pregnant rats, based on evaluation of serum concentrations of the acute phase proteins alpha‐2‐macroglobulin and alpha‐1‐acid glycoprotein on GD 21. Anthrax lethal toxin‐neutralizing antibodies were detected in AV7909‐vaccinated F0 females. The antibodies were also detected in the sera of fetuses and F1 pups. Exposure of the fetuses and pups to maternally derived anthrax lethal toxin‐neutralizing antibodies was not associated with developmental toxicity.
Collapse
Affiliation(s)
| | | | | | - Bruna Blauth
- Emergent BioSolutions Inc., Gaithersburg, Maryland, USA
| | | | - Joshua Reece
- Emergent BioSolutions Inc., Gaithersburg, Maryland, USA
| | - Boris Ionin
- Emergent BioSolutions Inc., Gaithersburg, Maryland, USA
| | | |
Collapse
|
2
|
Das B, Senapati S. Immunological and functional aspects of MAGEA3 cancer/testis antigen. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2020; 125:121-147. [PMID: 33931137 DOI: 10.1016/bs.apcsb.2020.08.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Identification of ectopic gene activation in cancer cells serves as a basis for both gene signature-guided tumor targeting and unearthing of oncogenic mechanisms to expand the understanding of tumor biology/oncogenic process. Proteins expressed only in germ cells of testis and/or placenta (immunoprivileged organs) and in malignancies are called cancer testis antigens; they are antigenic because of the lack of antigen presentation by those specific cell types (germ cells), which limits the exposure of the proteins to the immune cells. Since the Cancer Testis Antigens (CTAs) are immunogenic and expressed in a wide variety of cancer types, CT antigens have become interesting target for immunotherapy against cancer. Among CT antigens MAGEA family is reported to have 12 members (MAGEA1 to MAGEA12). The current review highlights the studies on MAGEA3 which is a CT antigen and reported in almost all types of cancer. MAGEA3 is well tried for cancer immunotherapy. Recent advances on its functional and immunological aspect warranted much deliberation on effective therapeutic approach, thus making it a more interesting target for cancer therapy.
Collapse
Affiliation(s)
- Biswajit Das
- Tumor Microenvironment and Animal Models Lab, Department of Cancer Biology, Institute of Life Sciences, Bhubaneswar, Odisha, India; Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Shantibhusan Senapati
- Tumor Microenvironment and Animal Models Lab, Department of Cancer Biology, Institute of Life Sciences, Bhubaneswar, Odisha, India.
| |
Collapse
|
3
|
Delannois F, Planty C, Giordano G, Destexhe E, Stanislaus D, Da Silva FT, Stegmann JU, Thacker K, Reynaud L, Garçon N, Segal L. Signal management in pharmacovigilance and human risk assessment of CpG 7909, integrating embryo-fetal and post-natal developmental toxicity studies in rats and rabbits. Reprod Toxicol 2017; 75:110-120. [PMID: 28951173 DOI: 10.1016/j.reprotox.2017.09.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 09/11/2017] [Accepted: 09/18/2017] [Indexed: 01/09/2023]
Abstract
The potential reproductive and developmental toxicity of the synthetic oligodeoxynucleotide (ODN) CpG 7909, a component of GSK's AS15 immunostimulant, was examined in rat and rabbit studies following intermittent intramuscular injections. Previous studies using subcutaneous and intraperitoneal injections in mice, rats and rabbits revealed that CpG ODNs induced developmental effects. To analyze the safety signal, GSK conducted additional animal studies using the intended clinical route of administration. CpG 7909 injections were administered intramuscularly to rats or rabbits 28 and 14days before pairing, on 4 or 5 occasions during gestation, and on lactation day 7. The No Observed Adverse Effect Level for female fertility, embryo-fetal and pre- and post-natal development was 4.2mg/kg in both species, approximately 500-fold higher than the anticipated human dose. In conclusion, the anticipated risk to humans is considered low for sporadic intramuscular exposure to CpG 7909.
Collapse
Affiliation(s)
| | - Camille Planty
- (at the time of study) GSK Vaccines, Rue de l'Institut 89, 1330, Rixensart, Belgium.
| | - Giulia Giordano
- GSK Vaccines, Rue de l'Institut 89, 1330, Rixensart, Belgium
| | - Eric Destexhe
- GSK Vaccines, Rue de l'Institut 89, 1330, Rixensart, Belgium
| | | | | | | | - Karen Thacker
- Envigo CRS Limited Formerly Huntingdon Life Sciences, Eye, Suffolk, UK
| | - Lucie Reynaud
- WIL Research Europe-Lyon Laboratories, 69210, Saint-Germain-Nuelles, France
| | - Nathalie Garçon
- (at the time of study) GSK Vaccines, Rue de l'Institut 89, 1330, Rixensart, Belgium
| | - Lawrence Segal
- (at the time of study) GSK Vaccines, Parc de la Noire Epine, Rue Fleming 20, 1300, Wavre, Belgium
| |
Collapse
|
4
|
Abstract
Cancer is one of the major leading death causes of diseases. Prevention and treatment of cancer is an important way to decrease the incidence of tumorigenesis and prolong patients' lives. Subversive achievements on cancer immunotherapy have recently been paid much attention after many failures in basic and clinical researches. Based on deep analysis of genomics and proteomics of tumor antigens, a variety of cancer vaccines targeting tumor antigens have been tested in preclinical and human clinical trials. Many therapeutic cancer vaccines alone or combination with other conventional treatments for cancer obtained spectacular efficacy, indicating the tremendously potential application in clinic. With the illustration of underlying mechanisms of cancer immune regulation, valid, controllable, and persistent cancer vaccines will play important roles in cancer treatment, survival extension and relapse and cancer prevention. This chapter mainly summarizes the recent progresses and developments on cancer vaccine research and clinical application, thus exploring the existing obstacles in cancer vaccine research and promoting the efficacy of cancer vaccine.
Collapse
|
5
|
Pirlot C, Thiry M, Trussart C, Di Valentin E, Piette J, Habraken Y. Melanoma antigen-D2: A nucleolar protein undergoing delocalization during cell cycle and after cellular stress. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2016; 1863:581-95. [DOI: 10.1016/j.bbamcr.2015.12.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Revised: 12/11/2015] [Accepted: 12/15/2015] [Indexed: 12/25/2022]
|
6
|
Abstract
INTRODUCTION Liposomes are well-known as drug carriers, and are now critical components of two of six types of adjuvants present in licensed vaccines. The liposomal vaccine adjuvant field has long been dynamic and innovative, and research in this area is further examined as new commercial products appear in parallel with new vaccines. In an arena where successful products exist the potential for new types of vaccines with liposomal adjuvants, and alternative liposomal adjuvants that could emerge for new types of vaccines, are discussed. AREAS COVERED Major areas include: virosomes, constructed from phospholipids and proteins from influenza virus particles; liposomes containing natural and synthetic neutral or anionic phospholipids, cholesterol, natural or synthetic monophosphoryl lipid A, and QS21 saponin; non-phospholipid cationic liposomes; and combinations and mixtures of liposomes and immunostimulating ingredients as adjuvants for experimental vaccines. EXPERT OPINION Liposomes containing monophosphoryl lipid A and QS21 have considerable momentum that will result soon in emergence of prophylactic vaccines to malaria and shingles, and possible novel cancer vaccines. The licensed virosome vaccines to influenza and hepatitis A will be replaced with virosome vaccines to other infectious diseases. Alternative liposomal formulations are likely to emerge for difficult diseases such as tuberculosis or HIV-1 infection.
Collapse
Affiliation(s)
- Carl R Alving
- a Laboratory of Adjuvant and Antigen Research , US Military HIV Research Program, Walter Reed Army Institute of Research , Silver Spring , MD , USA
| | - Zoltan Beck
- a Laboratory of Adjuvant and Antigen Research , US Military HIV Research Program, Walter Reed Army Institute of Research , Silver Spring , MD , USA.,b US Military HIV Research Program, Henry M. Jackson Foundation for the Advancement of Military Medicine , Bethesda , MD , USA
| | - Gary R Matyas
- a Laboratory of Adjuvant and Antigen Research , US Military HIV Research Program, Walter Reed Army Institute of Research , Silver Spring , MD , USA
| | - Mangala Rao
- a Laboratory of Adjuvant and Antigen Research , US Military HIV Research Program, Walter Reed Army Institute of Research , Silver Spring , MD , USA
| |
Collapse
|
7
|
A randomized pilot trial testing the safety and immunologic effects of a MAGE-A3 protein plus AS15 immunostimulant administered into muscle or into dermal/subcutaneous sites. Cancer Immunol Immunother 2015; 65:25-36. [PMID: 26581199 DOI: 10.1007/s00262-015-1770-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Accepted: 10/29/2015] [Indexed: 12/24/2022]
Abstract
INTRODUCTION Methods to induce T cell responses to protein vaccines have not been optimized. The immunostimulant AS15 has been administered with the recombinant MAGE-A3 protein (recMAGE-A3) i.m. but not i.d. or s.c. This study tests hypotheses that the i.d./s.c. route is safe and will increase CD4(+) and CD8(+) T cell responses to MAGE-A3. PATIENTS AND METHODS Twenty-five patients with resected stage IIB-IV MAGE-A3(+) melanoma were randomized to immunization with recMAGE-A3 combined with AS15 immunostimulant (MAGE-A3 immunotherapeutic) either i.m. (group A, n = 13) or i.d./s.c. (group B, n = 12). Adverse events were recorded. Ab responses to MAGE-A3 were measured by ELISA. T cell responses to overlapping MAGE-A3 peptides were assessed in PBMC and a sentinel immunized node (SIN) after 1 in vitro stimulation with recMAGE-A3, by IFN-γ ELISPOT assay and by flow cytometry for multifunctional (TNF-α/IFN-γ) responses. RESULTS Both routes of immunization were well tolerated without treatment-related grade 3 adverse events. All patients had durable Ab responses. For all 25 patients, the T cell response rate by ELISPOT assay was 30 % in SIN (7/23) but only 4 % (1/25) in PBMC. By flow cytometry, multifunctional CD8(+) T cell responses were identified in one patient in each group; multifunctional CD4(+) T cell response rates for groups A and B, respectively, were 31 and 64 % in SIN and 31 and 50 % in PBMC. CONCLUSION The MAGE-A3 immunotherapeutic was well tolerated after i.d./s.c. administration, with trends to higher CD4(+) T cell response rates than with i.m. administration. This study supports further study of AS15 by i.d./s.c. administration.
Collapse
|
8
|
Pohl O, Perks D, Rhodes J, Comotto L, Baldrick P, Chollet A. Effects of the Oral Oxytocin Receptor Antagonist Tocolytic OBE001 on Reproduction in Rats. Reprod Sci 2015; 23:439-47. [PMID: 26399985 DOI: 10.1177/1933719115607979] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND OBE001 is a novel, orally active nonpeptide oxytocin receptor antagonist under development for the treatment of preterm labor and improvement in embryo implantation and pregnancy rate in assisted reproductive technology (ART). The reproductive safety of OBE001 was evaluated in customized fertility embryonic development (FER)/early embryonic development (EED) and fetal development (FD) and pre/postnatal development (PPN) studies mimicking clinical exposure scenarios. METHODS Oral OBE001 was evaluated at doses of 37.5, 75, and 125 mg/kg/d in female rats during a FER/EED study (from premating to implantation) and throughout FD during a FD/PPN study. RESULTS No OBE001 effects were observed during the FER/EED study. The FD/PPN study did not result in adverse OBE001 effects in females allowed to litter, their offspring, and second-generation fetuses. Females at 125 mg/kg/d who underwent cesarean section before term had slight reductions in body weights and food consumption, and associated fetuses had slightly delayed ossification of skull bones, which was not adverse in the absence of effects on live offspring. CONCLUSION OBE001 at up to 125 mg/kg/d had no effects on EED and no adverse effects on FD and postnatal development of rats. These results constitute an important step toward the development of OBE001 in preterm labor and ART indications.
Collapse
Affiliation(s)
| | | | - Jon Rhodes
- Covance Laboratories Ltd, Harrogate, United Kingdom
| | - Laura Comotto
- RBM S.p.A., Istituto di Ricerche Biomediche A. Marxer, Colleretto Giacosa, Italy
| | | | | |
Collapse
|
9
|
Hu J, Qiu L, Wang X, Zou X, Lu M, Yin J. Carbohydrate-based vaccine adjuvants - discovery and development. Expert Opin Drug Discov 2015; 10:1133-44. [PMID: 26372693 DOI: 10.1517/17460441.2015.1067198] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
INTRODUCTION The addition of a suitable adjuvant to a vaccine can generate significant effective adaptive immune responses. There is an urgent need for the development of novel po7tent and safe adjuvants for human vaccines. Carbohydrate molecules are promising adjuvants for human vaccines due to their high biocompatibility and good tolerability in vivo. AREAS COVERED The present review covers a few promising carbohydrate-based adjuvants, lipopolysaccharide, trehalose-6,6'-dibehenate, QS-21 and inulin as examples, which have been extensively studied in human vaccines in a number of preclinical and clinical studies. The authors discuss the current status, applications and strategies of development of each adjuvant and different adjuvant formulation systems. This information gives insight regarding the exciting prospect in the field of carbohydrate-based adjuvant research. EXPERT OPINION Carbohydrate-based adjuvants are promising candidates as an alternative to the Alum salts for human vaccines development. Furthermore, combining two or more adjuvants in one formulation is one of the effective strategies in adjuvant development. However, further research efforts are needed to study and develop novel adjuvants systems, which can be more stable, potent and safe. The development of synthetic carbohydrate chemistry can improve the study of carbohydrate-based adjuvants.
Collapse
Affiliation(s)
- Jing Hu
- a 1 Jiangnan University, Wuxi Medical School , Lihu Avenue 1800, 214122, Wuxi, China
| | - Liying Qiu
- a 1 Jiangnan University, Wuxi Medical School , Lihu Avenue 1800, 214122, Wuxi, China
| | - Xiaoli Wang
- b 2 Jiangnan University, The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology , Lihu Avenue 1800, 214122, Wuxi, China +86 51 085 328 229 ; +86 51 085 328 229 ;
| | - Xiaopeng Zou
- b 2 Jiangnan University, The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology , Lihu Avenue 1800, 214122, Wuxi, China +86 51 085 328 229 ; +86 51 085 328 229 ;
| | - Mengji Lu
- c 3 University Hospital Essen, Institute of Virology , Hufelandstr, 55, 45122 Essen, Germany +49 2 017 233 530 ; +49 2 017 235 929 ;
| | - Jian Yin
- b 2 Jiangnan University, The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology , Lihu Avenue 1800, 214122, Wuxi, China +86 51 085 328 229 ; +86 51 085 328 229 ;
| |
Collapse
|
10
|
Garçon N, Silvano J, Kuper CF, Baudson N, Gérard C, Forster R, Segal L. Non-clinical safety evaluation of repeated intramuscular administration of the AS15 immunostimulant combined with various antigens in rabbits and cynomolgus monkeys. J Appl Toxicol 2015; 36:238-56. [PMID: 26032931 PMCID: PMC5033012 DOI: 10.1002/jat.3167] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Revised: 03/11/2015] [Accepted: 04/03/2015] [Indexed: 12/31/2022]
Abstract
Combination of tumor antigens with immunostimulants is a promising approach in cancer immunotherapy. We assessed animal model toxicity of AS15 combined with various tumor antigens: WT1 (rabbits), or p501, dHER2 and recPRAME (cynomolgus monkeys), administered in seven or 20 dose regimens versus a saline control. Clinical and ophthalmological examinations, followed by extensive post‐mortem pathological examinations, were performed on all animals. Blood hematology and biochemistry parameters were also assessed. Antigen‐specific antibody titers were determined by enzyme‐linked immunosorbent assay. Additional assessments in monkeys included electrocardiography and immunohistochemical evaluations of the p501 expression pattern. Transient increases in body temperature were observed 4 h or 24 h after injections of recPRAME + AS15 and dHER2 + AS15. Edema and erythema were observed up to 1 week after most injections of recPRAME + AS15 and all injections of dHER2 + AS15. No treatment‐related effects were observed for electrocardiography parameters. Mean fibrinogen levels were significantly higher in all treated groups compared to controls, but no differences could be observed at the end of the treatment‐free period. Transient but significant differences in biochemistry parameters were observed post‐injection: lower albumin/globulin ratios (p501 + AS15), and higher bilirubin, urea and creatinine (dHER2 + AS15). Pathology examinations revealed significant increases in axillary lymph node mean weights (recPRAME + AS15) compared to controls. A 100% seroconversion rate was observed in all treated groups, but not in controls. p501 protein expression was observed in prostates of all monkeys from studies assessing p501 + AS15. These results suggest a favorable safety profile of the AS15‐containing candidate vaccines, supporting the use of AS15 for clinical development of potential anticancer vaccines. Copyright © 2015 The Authors. Journal of Applied Toxicology Published by John Wiley & Sons Ltd. The aim of the current paper was to assess the safety profile of vaccine candidates containing the AS15 immunostimulant combined with different antigens in two animal models. Several antigens were tested for this purpose: WT1 (rabbits), p501, dHER2 and recPRAME (cynomolgus monkeys). Only transient differences in hematology and biochemical parameters could be observed, while pathology testing revealed no safety concerns. Our findings support the use of AS15 for clinical development of potential immunotherapeutic cancer vaccines.
Collapse
Affiliation(s)
- N Garçon
- GSK Vaccines, 1300, Wavre, Belgium.,Bioaster, 321 Avenue Jean Jaurès, 69007, Lyon, France
| | - J Silvano
- CiToxLAB France, 27005, Evreux, France
| | - C F Kuper
- TNO Quality of Life, 3700, AJ Zeist, the Netherlands
| | - N Baudson
- GSK Vaccines, 1330 Rixensart, 1300, Wavre, Belgium
| | - C Gérard
- GSK Vaccines, 1330 Rixensart, 1300, Wavre, Belgium
| | - R Forster
- CiToxLAB France, 27005, Evreux, France
| | - L Segal
- GSK Vaccines, 1330 Rixensart, 1300, Wavre, Belgium
| |
Collapse
|