1
|
Fernandes AR, Schächtele A, Malisch R, Zwickel T, Tschiggfrei K, Falandysz J. Prioritising relevant polychlorinated naphthalene (PCN) congeners for human dietary exposure studies. CHEMOSPHERE 2025; 370:144044. [PMID: 39733955 DOI: 10.1016/j.chemosphere.2024.144044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 12/26/2024] [Indexed: 12/31/2024]
Abstract
Following a decline in the production and use of polychlorinated naphthalenes (PCNs) and the restrictions introduced by the Stockholm Convention, dietary intake represents the most significant pathway of human exposure to these dioxin-like contaminants. PCNs occur ubiquitously in foods, originating from the legacy of historical production that is now globally redistributed, as well as from ongoing industrial and domestic combustion sources which have a stronger influence on occurrence patterns in countries where they were not produced. Recent studies have benefited from a wider set of available PCN reference standards, enabling more accurate reporting of a diverse range of congeners. Combining the available information on food occurrence with relative potency (REP) data, an initial selection of twenty PCN congeners are presented here for monitoring of foodstuffs. The selection is expected to provide a good indication of the overall dioxin-like toxic equivalence (TEQ) associated with food occurrence, particularly in industrialised countries and regions where both, historical production and current combustion processes are significant sources. The selection also appears to be representative of the vast majority of PCN TEQ reported in human tissues despite the limited amount of reliable data. Future studies will benefit from the increasing availability of new PCN standards and provide a broader spectrum of occurrence data in foods and human tissues. They will also support toxicological studies on a wider range of congeners and biological effects, enhancing our understanding of PCN-mediated toxicity. Both these information strands will allow refinement and expansion of the proposed selection of congeners, if required.
Collapse
Affiliation(s)
- Alwyn R Fernandes
- School of Environmental Sciences, University of East Anglia, Norwich, NR4 7TJ, UK.
| | - Alexander Schächtele
- European Union Reference Laboratory (EURL) for Halogenated POPs in Feed and Food, Chemisches und Veterinäruntersuchungsamt, Bissierstraße 5, Freiburg, D-79114, Germany
| | - Rainer Malisch
- European Union Reference Laboratory (EURL) for Halogenated POPs in Feed and Food, Chemisches und Veterinäruntersuchungsamt, Bissierstraße 5, Freiburg, D-79114, Germany
| | - Theresa Zwickel
- European Union Reference Laboratory (EURL) for Halogenated POPs in Feed and Food, Chemisches und Veterinäruntersuchungsamt, Bissierstraße 5, Freiburg, D-79114, Germany
| | - Karin Tschiggfrei
- European Union Reference Laboratory (EURL) for Halogenated POPs in Feed and Food, Chemisches und Veterinäruntersuchungsamt, Bissierstraße 5, Freiburg, D-79114, Germany
| | - Jerzy Falandysz
- Medical University of Lodz, Department of Toxicology, 90-151, Lódź, Poland
| |
Collapse
|
2
|
Stragierowicz J, Nasiadek M, Stasikowska-Kanicka O, Kolasa A, Kilanowicz A. An assessment of the (anti)androgenic properties of hexachloronaphthalene (HxCN) in male rats. CHEMOSPHERE 2024; 359:142373. [PMID: 38763395 DOI: 10.1016/j.chemosphere.2024.142373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/26/2024] [Accepted: 05/16/2024] [Indexed: 05/21/2024]
Abstract
The persistent organic pollutants (POPs) defined by the Stockholm Convention include polychlorinated naphthalenes (PCNs); of these, the most toxic, persistent, abundant, dioxin-like congeners found in human tissues are the hexachloronaphthalenes (HxCNs). Recent research also indicates that PCNs may disrupt hormonal homeostasis. The aim of this study was to evaluate the (anti)androgenic action of HxCN. Immature, castrated male Wistar rats were exposed per os to HxCN in corn oil at daily doses ranging from 0.3 to 3.0 mg kg-1 for 10 days. According to the OECD 441 protocol (Hershberger Bioassay), the anti-androgenic assay groups were co-exposed with testosterone propionate (TP), while the androgenic groups were not. TP was used as the reference androgen (subcutaneous daily doses of 0.4 mg kg-1), and flutamide (FLU) as the reference antiandrogen (per os daily doses of 3.0 mg kg-1). Five assessory sex tissues (ASTs) were weighed: ventral prostate, seminal vesicles, levator ani-bulbocavernosus muscle (LABC), Cowper's glands and glans penis. HxCN + TP significantly decreased the weight of the ventral prostate and seminal vesicle indicating an anti-androgenic action via 5α-reductase inhibition. These weight changes were also accompanied by abnormalities in cell morphology and hormonal disturbances: lowered levels of the testosterone and thyroid hormones thyroxine and triiodothyronine. Disturbances were also noted in the lipid profile, viz. total cholesterol, triglycerides and high-density lipoprotein and non-HDL fraction content. However, the direction of these changes differed depending on the size of the HxCN dose. No dose-effect relationship was noted for most of the obtained results; as such, exposure to even small HxCN doses run the risk of anti-androgenic effects in the general population, especially when encountered in combination with other POPs and endocrine-disrupting chemicals in the environment.
Collapse
Affiliation(s)
- Joanna Stragierowicz
- Department of Toxicology, Medical University of Lodz, Muszynskiego 1, 90-151, Lodz, Poland.
| | - Marzenna Nasiadek
- Department of Toxicology, Medical University of Lodz, Muszynskiego 1, 90-151, Lodz, Poland
| | - Olga Stasikowska-Kanicka
- Department of Diagnostic Techniques in Pathomorphology, Medical University of Lodz, Pomorska 251, 92-213, Lodz, Poland
| | - Agnieszka Kolasa
- Department of Histology and Embryology, Pomeranian Medical University (PUM), Powstańców Wielkopolskich. 72, 70-111, Szczecin, Poland
| | - Anna Kilanowicz
- Department of Toxicology, Medical University of Lodz, Muszynskiego 1, 90-151, Lodz, Poland
| |
Collapse
|
3
|
Schrenk D, Bignami M, Bodin L, Chipman JK, del Mazo J, Grasl‐Kraupp B, Hogstrand C, Hoogenboom L(R, Leblanc J, Nebbia CS, Ntzani E, Petersen A, Sand S, Schwerdtle T, Vleminckx C, Wallace H, Falandysz J, Hart A, Rose M, Anastassiadou M, Eskes C, Gergelova P, Innocenti M, Rovesti E, Whitty B, Nielsen E. Risks for animal and human health related to the presence of polychlorinated naphthalenes (PCNs) in feed and food. EFSA J 2024; 22:e8640. [PMID: 38476320 PMCID: PMC10928787 DOI: 10.2903/j.efsa.2024.8640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2024] Open
Abstract
EFSA was asked for a scientific opinion on the risks for animal and human health related to the presence of polychlorinated naphthalenes (PCNs) in feed and food. The assessment focused on hexaCNs due to very limited data on other PCN congeners. For hexaCNs in feed, 217 analytical results were used to estimate dietary exposures for food-producing and non-food-producing animals; however, a risk characterisation could not be performed because none of the toxicological studies allowed identification of reference points. The oral repeated dose toxicity studies performed in rats with a hexaCN mixture containing all 10 hexaCNs indicated that the critical target was the haematological system. A BMDL20 of 0.05 mg/kg body weight (bw) per day was identified for a considerable decrease in the platelet count. For hexaCNs in food, 2317 analytical results were used to estimate dietary exposures across dietary surveys and age groups. The highest exposure ranged from 0.91 to 29.8 pg/kg bw per day in general population and from 220 to 559 pg/kg bw per day for breast-fed infants with the highest consumption of breast milk. Applying a margin of exposure (MOE) approach, the estimated MOEs for the high dietary exposures ranged from 1,700,000 to 55,000,000 for the general population and from 90,000 to 230,000 for breast-fed infants with the highest consumption of breast milk. These MOEs are far above the minimum MOE of 2000 that does not raise a health concern. Taking account of the uncertainties affecting the assessment, the Panel concluded with at least 99% certainty that dietary exposure to hexaCNs does not raise a health concern for any of the population groups considered. Due to major limitations in the available data, no assessment was possible for genotoxic effects or for health risks of PCNs other than hexaCNs.
Collapse
|
4
|
Fernandes AR, Kilanowicz A, Stragierowicz J, Klimczak M, Falandysz J. The toxicological profile of polychlorinated naphthalenes (PCNs). THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 837:155764. [PMID: 35545163 DOI: 10.1016/j.scitotenv.2022.155764] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 04/05/2022] [Accepted: 05/03/2022] [Indexed: 06/15/2023]
Abstract
The legacy of polychlorinated naphthalenes (PCNs) manufactured during the last century continues to persist in the environment, food and humans. Metrological advances have improved characterisation of these occurrences, enabling studies on the effects of exposure to focus on congener groups and individual PCNs. Liver and adipose tissue show the highest retention but significant levels of PCNs are also retained by the brain and nervous system. Molecular configuration appears to influence tissue disposition as well as retention, favouring the higher chlorinated (≥ four chlorines) PCNs while most lower chlorinated molecules readily undergo hydroxylation and excretion through the renal system. Exposure to PCNs reportedly provokes a wide spectrum of adverse effects that range from hepatotoxicity, neurotoxicity and immune response suppression along with endocrine disruption leading to reproductive disorders and embryotoxicity. A number of PCNs, particularly hexachloronaphthalene congeners, elicit AhR mediated responses that are similar to, and occur within similar potency ranges as most dioxin-like polychlorinated biphenyls (PCBs) and some chlorinated dibenzo-p-dioxins and furans (PCDD/Fs), suggesting a relationship based on molecular size and configuration between these contaminants. Most toxicological responses generally appear to be associated with higher chlorinated PCNs. The most profound effects such as serious and sometimes fatal liver disease, chloracne, and wasting syndrome resulted either from earlier episodes of occupational exposure in humans or from acute experimental dosing of animals at levels that reflected these exposures. However, since the restriction of manufacture and controls on inadvertent production (during combustion processes), the principal route of human and animal exposure is likely to be dietary intake. Therefore, further investigations should include the effects of chronic lower level intake of higher chlorinated PCN congeners that persist in the human diet and subsequently in human and animal tissues. PCNs in the diet should be evaluated cumulatively with other similarly occurring dioxin-like contaminants.
Collapse
Affiliation(s)
- Alwyn R Fernandes
- School of Environmental Sciences, University of East Anglia, Norwich NR4 7TJ, UK.
| | - Anna Kilanowicz
- Department of Toxicology, Medical University of Lodz, Muszyńskiego 1, 90-15 Łódź, Poland
| | - Joanna Stragierowicz
- Department of Toxicology, Medical University of Lodz, Muszyńskiego 1, 90-15 Łódź, Poland
| | - Michał Klimczak
- Department of Toxicology, Medical University of Lodz, Muszyńskiego 1, 90-15 Łódź, Poland
| | - Jerzy Falandysz
- Department of Toxicology, Medical University of Lodz, Muszyńskiego 1, 90-15 Łódź, Poland
| |
Collapse
|
5
|
Li X, Gu W, Zhang B, Xin X, Kang Q, Yang M, Chen B, Li Y. Insights into toxicity of polychlorinated naphthalenes to multiple human endocrine receptors: Mechanism and health risk analysis. ENVIRONMENT INTERNATIONAL 2022; 165:107291. [PMID: 35609500 DOI: 10.1016/j.envint.2022.107291] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 05/06/2022] [Accepted: 05/09/2022] [Indexed: 06/15/2023]
Abstract
This study explored the combined disruption mechanism of polychlorinated naphthalenes (PCNs) on the three key receptors (estrogen receptor, thyroid receptor, and adrenoceptor) of the human endocrine system. The intensity of PCN endocrine disruption on these receptors was first determined using a molecular docking method. A comprehensive index of PCN endocrine disruption to human was quantified by analytic hierarchy process and fuzzy analysis. The mode of action between PCNs and the receptors was further identified to screen the molecular characteristics influencing PCN endocrine disruption through molecular docking and fractional factorial design. Quantitative structure-activity relationship (QSAR) models were established to investigate the toxic mechanism due to PCN endocrine disruption. The results showed that the lowest occupied orbital energy (ELUMO) was the most important factor contributing to the toxicity of PCNs on the endocrine receptors, followed by the orbital energy difference (ΔE) and positive Millikan charge (q+). Furthermore, the strategies were formulated through adjusting the nutritious diet to reduce health risk for the workers in PCN contaminated sites and the effectiveness and feasibility were assessed by molecular dynamic simulation. The simulation results indicated that the human health risk caused by PCN endocrine disruption could be effectively decreased by nutritional supplementation. The binding ability between PCNs and endocrine receptors significantly declined (up to -16.45%) with the supplementation of vitamins (A, B2, B12, C, and E) and carotene. This study provided the new insights to reveal the toxic mechanism of PCNs on human endocrine systems and the recommendations on nutritional supplements for health risk reduction. The methodology and findings could serve as valuable references for screening of potential endocrine disruptors and developing appropriate strategies for PCN or other persistent organic pollution control and health risk management.
Collapse
Affiliation(s)
- Xixi Li
- Northern Region Persistent Organic Pollution Control (NRPOP) Laboratory, Faculty of Engineering and Applied Science, Memorial University, St. John's, NL A1B 3X5, Canada.
| | - Wenwen Gu
- Northern Region Persistent Organic Pollution Control (NRPOP) Laboratory, Faculty of Engineering and Applied Science, Memorial University, St. John's, NL A1B 3X5, Canada; MOE Key Laboratory of Resources and Environmental Systems Optimization, North China Electric Power University, Beijing 102206, China.
| | - Baiyu Zhang
- Northern Region Persistent Organic Pollution Control (NRPOP) Laboratory, Faculty of Engineering and Applied Science, Memorial University, St. John's, NL A1B 3X5, Canada.
| | - Xiaying Xin
- Northern Region Persistent Organic Pollution Control (NRPOP) Laboratory, Faculty of Engineering and Applied Science, Memorial University, St. John's, NL A1B 3X5, Canada.
| | - Qiao Kang
- Northern Region Persistent Organic Pollution Control (NRPOP) Laboratory, Faculty of Engineering and Applied Science, Memorial University, St. John's, NL A1B 3X5, Canada.
| | - Min Yang
- Northern Region Persistent Organic Pollution Control (NRPOP) Laboratory, Faculty of Engineering and Applied Science, Memorial University, St. John's, NL A1B 3X5, Canada.
| | - Bing Chen
- Northern Region Persistent Organic Pollution Control (NRPOP) Laboratory, Faculty of Engineering and Applied Science, Memorial University, St. John's, NL A1B 3X5, Canada.
| | - Yu Li
- MOE Key Laboratory of Resources and Environmental Systems Optimization, North China Electric Power University, Beijing 102206, China.
| |
Collapse
|
6
|
Zhang W, Xie HQ, Li Y, Zhou M, Zhou Z, Wang R, Hahn ME, Zhao B. The aryl hydrocarbon receptor: A predominant mediator for the toxicity of emerging dioxin-like compounds. JOURNAL OF HAZARDOUS MATERIALS 2022; 426:128084. [PMID: 34952507 PMCID: PMC9039345 DOI: 10.1016/j.jhazmat.2021.128084] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/29/2021] [Accepted: 12/12/2021] [Indexed: 06/01/2023]
Abstract
The aryl hydrocarbon receptor (AHR) is a member of the basic helix-loop-helix/Per-ARNT-Sim (bHLH-PAS) family of transcription factors and has broad biological functions. Early after the identification of the AHR, most studies focused on its roles in regulating the expression of drug-metabolizing enzymes and mediating the toxicity of dioxins and dioxin-like compounds (DLCs). Currently, more diverse functions of AHR have been identified, indicating that AHR is not just a dioxin receptor. Dioxins and DLCs occur ubiquitously and have diverse health/ecological risks. Additional research is required to identify both shared and compound-specific mechanisms, especially for emerging DLCs such as polyhalogenated carbazoles (PHCZs), polychlorinated diphenyl sulfides (PCDPSs), and others, of which only a few investigations have been performed at present. Many of the toxic effects of emerging DLCs were observed to be predominantly mediated by the AHR because of their structural similarity as dioxins, and the in vitro TCDD-relative potencies of certain emerging DLC congeners are comparable to or even greater than the WHO-TEFs of OctaCDD, OctaCDF, and most coplanar PCBs. Due to the close relationship between AHR biology and environmental science, this review begins by providing novel insights into AHR signaling (canonical and non-canonical), AHR's biochemical properties (AHR structure, AHR-ligand interaction, AHR-DNA binding), and the variations during AHR transactivation. Then, AHR ligand classification and the corresponding mechanisms are discussed, especially the shared and compound-specific, AHR-mediated effects and mechanisms of emerging DLCs. Accordingly, a series of in vivo and in vitro toxicity evaluation methods based on the AHR signaling pathway are reviewed. In light of current advances, future research on traditional and emerging DLCs will enhance our understanding of their mechanisms, toxicity, potency, and ecological impacts.
Collapse
Affiliation(s)
- Wanglong Zhang
- College of Life Sciences, Qufu Normal University, Qufu, Shandong 273165, China
| | - Heidi Qunhui Xie
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yunping Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mingxi Zhou
- Biology Centre of the Czech Academy of Sciences v.v.i, Institute of Plant Molecular Biology, Branišovská 31, 370 05 České Budějovice, Czech Republic
| | - Zhiguang Zhou
- State Environmental Protection Key Laboratory of Dioxin Pollution Control, National Research Center for Environmental Analysis and Measurement, Beijing 100029, China
| | - Renjun Wang
- College of Life Sciences, Qufu Normal University, Qufu, Shandong 273165, China
| | - Mark E Hahn
- Biology Department, Woods Hole Oceanographic Institution (WHOI), Woods Hole, MA 02543, USA; Boston University Superfund Research Program, Boston University, Boston, MA 02118, USA
| | - Bin Zhao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
7
|
Lisek M, Boczek T, Stragierowicz J, Wawrzyniak J, Guo F, Klimczak M, Kilanowicz A, Zylinska L. Hexachloronaphthalene (HxCN) impairs the dopamine pathway in an in vitro model of PC12 cells. CHEMOSPHERE 2022; 287:132284. [PMID: 34563782 DOI: 10.1016/j.chemosphere.2021.132284] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 09/07/2021] [Accepted: 09/16/2021] [Indexed: 06/13/2023]
Abstract
Among polychlorinated naphthalenes (PCNs), listed by the Stockholm convention as Persistent Organic Pollutants (POPs), hexachloronaphthalenes are considered the most toxic and raise the highest concern. Of these, 1,2,3,5,6,7-hexachloronaphthalanene (PCN67) is considered the main congener affecting human health due to its hepatotoxicity and its ability to disturb the reproductive, endocrine, and hematological systems. It is also prevalent in human serum/plasma, milk, and adipose tissue. However, little is known about its neurotoxicity, despite the fact that anorectic effects have been observed in workers occupationally exposed to PCNs and in animal research on PCN67. Since dopamine is involved in many aspects of food intake, the aim of this study was to confirm whether PCN67 affects dopamine synthesis in differentiated PC12 cells, a widely used model of neurosecretion. Our results show that exposure to PCN67 resulted in diminished dopamine content and release. Moreover, PCN67 also affected the expression of tyrosine hydroxylase and lowered the expression of vesicular monoamine transporter 1 (VMAT1). In addition, significantly lower expression of antioxidant enzymes, including catalase, glutathione peroxidase and copper/zinc superoxide dismutase, was observed in comparison to the vehicle. In conclusion, PCN67 appears to disturb dopaminergic transmission by altering tyrosine hydroxylation, reducing VMAT1 expression and impairing antioxidant protection. Our study provides a potential mechanism for how PCN67 may cause dopamine deficiency and contribute to neuronal death by affecting cellular antioxidant potency; however, this conclusion requires further research.
Collapse
Affiliation(s)
- Malwina Lisek
- Department of Molecular Neurochemistry, Medical University of Lodz, 92-215, Lodz, Poland.
| | - Tomasz Boczek
- Department of Molecular Neurochemistry, Medical University of Lodz, 92-215, Lodz, Poland.
| | | | - Julia Wawrzyniak
- Department of Molecular Neurochemistry, Medical University of Lodz, 92-215, Lodz, Poland.
| | - Feng Guo
- Department of Pharmaceutical Toxicology, China Medical University, Shenyang, 110122, Liaoning province, China.
| | - Michał Klimczak
- Department of Toxicology, Medical University of Lodz, 90-151, Lodz, Poland.
| | - Anna Kilanowicz
- Department of Toxicology, Medical University of Lodz, 90-151, Lodz, Poland.
| | - Ludmila Zylinska
- Department of Molecular Neurochemistry, Medical University of Lodz, 92-215, Lodz, Poland.
| |
Collapse
|
8
|
Stragierowicz J, Stypuła-Trębas S, Radko L, Posyniak A, Nasiadek M, Klimczak M, Kilanowicz A. An assessment of the estrogenic and androgenic properties of tetra- and hexachloronaphthalene by YES/YAS in vitro assays. CHEMOSPHERE 2021; 263:128006. [PMID: 33297039 DOI: 10.1016/j.chemosphere.2020.128006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 07/31/2020] [Accepted: 08/13/2020] [Indexed: 06/12/2023]
Abstract
Many persistent organic pollutants (POPs) exhibit endocrine disrupting activity but studies on some POPs, e.g., polychlorinated naphthalenes (PCNs), are very scarce. The present study investigates the (anti)estrogenic and (anti)androgenic activities of 1,2,3,5,6,7-hexachloronaphthalane (PCN67) and 1,3,5,8-tetrachloronaphthalene (PCN43) using the yeast estrogen and androgen reporter bioassays. Among the tested substances, antiestrogenic response was only shown by PCN67. The strongest inhibition of estrogenic activity (up to 17.4%) was observed in the low concentration ranges (5 pM - 0.5 nM) in the presence of 1.5 nM 17β-estradiol. Both tested compounds showed partial estrogenic activity with a hormetic-type response. However, both studied chemicals showed strong antiandrogenic effects: their potency in the presence of 100 nM 17β-testosterone for PCN43 (IC50 = 2.59 μM) and PCN67 (IC50 = 3.14 μM) was approximately twice that of the reference antiandrogen flutamide (IC50 = 6.14 μM). It cannot be excluded that exposure to PCNs, together with other endocrine disrupting chemicals (EDCs), may contribute to the deregulation of sex steroid hormone signaling.
Collapse
Affiliation(s)
- Joanna Stragierowicz
- Department of Toxicology, Medical University of Lodz, Muszynskiego 1, 90-151, Lodz, Poland
| | - Sylwia Stypuła-Trębas
- Department of Pharmacology and Toxicology, National Veterinary Research Institute, Al. Partyzantow 57, 24-100, Pulawy, Poland
| | - Lidia Radko
- Department of Pharmacology and Toxicology, National Veterinary Research Institute, Al. Partyzantow 57, 24-100, Pulawy, Poland
| | - Andrzej Posyniak
- Department of Pharmacology and Toxicology, National Veterinary Research Institute, Al. Partyzantow 57, 24-100, Pulawy, Poland
| | - Marzenna Nasiadek
- Department of Toxicology, Medical University of Lodz, Muszynskiego 1, 90-151, Lodz, Poland
| | - Michał Klimczak
- Department of Toxicology, Medical University of Lodz, Muszynskiego 1, 90-151, Lodz, Poland
| | - Anna Kilanowicz
- Department of Toxicology, Medical University of Lodz, Muszynskiego 1, 90-151, Lodz, Poland.
| |
Collapse
|
9
|
Stipp MC, Acco A. Involvement of cytochrome P450 enzymes in inflammation and cancer: a review. Cancer Chemother Pharmacol 2020; 87:295-309. [PMID: 33112969 DOI: 10.1007/s00280-020-04181-2] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 10/14/2020] [Indexed: 02/06/2023]
Abstract
Cytochrome P450 (CYP) enzymes are responsible for the biotransformation of drugs, xenobiotics, and endogenous substances. This enzymatic activity can be modulated by intrinsic and extrinsic factors, modifying the organism's response to medications. Among the factors that are responsible for enzyme inhibition or induction is the release of proinflammatory cytokines, such as interleukin-1 (IL-1), IL-6, tumor necrosis factor α (TNF-α), and interferon-γ (IFN-γ), from macrophages, lymphocytes, and neutrophils. These cells are also present in the tumor microenvironment, participating in the development of cancer, a disease that is characterized by cellular mutations that favor cell survival and proliferation. Mutations also occur in CYP enzymes, resulting in enzymatic polymorphisms and modulation of their activity. Therefore, the inhibition or induction of CYP enzymes by proinflammatory cytokines in the tumor microenvironment can promote carcinogenesis and affect chemotherapy, resulting in adverse effects, toxicity, or therapeutic failure. This review discusses the relevance of CYPs in hepatocarcinoma, breast cancer, lung cancer, and chemotherapy by reviewing in vitro, in vivo, and clinical studies. We also discuss the importance of elucidating the relationships between inflammation, CYPs, and cancer to predict drug interactions and therapeutic efficacy.
Collapse
Affiliation(s)
- Maria Carolina Stipp
- Department of Pharmacology, Federal University of Paraná, PO Box 19031, CuritibaCuritiba, PR, 81531-980, Brazil.
| | - Alexandra Acco
- Department of Pharmacology, Federal University of Paraná, PO Box 19031, CuritibaCuritiba, PR, 81531-980, Brazil.
| |
Collapse
|
10
|
Hexachloronaphthalene Induces Mitochondrial-Dependent Neurotoxicity via a Mechanism of Enhanced Production of Reactive Oxygen Species. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:2479234. [PMID: 32685088 PMCID: PMC7335409 DOI: 10.1155/2020/2479234] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 06/09/2020] [Indexed: 12/30/2022]
Abstract
Hexachloronaphthalene (PCN67) is one of the most toxic among polychlorinated naphthalenes. Despite the known high bioaccumulation and persistence of PCN67 in the environment, it is still unclear to what extent exposure to these substances may interfere with normal neuronal physiology and lead to neurotoxicity. Therefore, the primary goal of this study was to assess the effect of PCN67 in neuronal in vitro models. Neuronal death was assessed upon PCN67 treatment using differentiated PC12 cells and primary hippocampal neurons. At 72 h postexposure, cell viability assays showed an IC50 value of 0.35 μg/ml and dose-dependent damage of neurites and concomitant downregulation of neurofilaments L and M. Moreover, we found that younger primary neurons (DIV4) were much more sensitive to PCN67 toxicity than mature cultures (DIV14). Our comprehensive analysis indicated that the application of PCN67 at the IC50 concentration caused necrosis, which was reflected by an increase in LDH release, HMGB1 protein export to the cytosol, nuclear swelling, and loss of homeostatic control of energy balance. The blockage of mitochondrial calcium uniporter partially rescued the cell viability, loss of mitochondrial membrane potential (ΔΨm), and the overproduction of reactive oxygen species, suggesting that the underlying mechanism of neurotoxicity involved mitochondrial calcium accumulation. Increased lipid peroxidation as a consequence of oxidative stress was additionally seen for 0.1 μg/ml of PCN67, while this concentration did not affect ΔΨm and plasma membrane permeability. Our results show for the first time that neuronal mitochondria act as a target for PCN67 and indicate that exposure to this drug may result in neuron loss via mitochondrial-dependent mechanisms.
Collapse
|
11
|
Falandysz J, Fernandes AR. Compositional profiles, persistency and toxicity of polychlorinated naphthalene (PCN) congeners in edible cod liver products from 1972 to 2017. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 260:114035. [PMID: 32041023 DOI: 10.1016/j.envpol.2020.114035] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 12/17/2019] [Accepted: 01/21/2020] [Indexed: 06/10/2023]
Abstract
Edible cod liver products including cod liver oil and canned cod liver, sampled over the last five decades from the North Atlantic region, including the Baltic Sea were analysed for a set of persistent and toxicologically significant polychlorinated naphthalene (PCN) congeners with some of the highest relative potencies (dioxin-like toxicity) among PCNs. The targeted congeners showed a near-universality of occurrence in all samples apart from the most recent sample of cod liver oil which was assumed to be highly purified, as cod livers from the same period and location showed appreciable amounts of PCNs. The majority of dominant congeners in legacy technical PCN mixtures were absent or occurred in low concentrations, raising the possibility that congeners arising from combustion related sources may be acquiring a greater significance following the decline and elimination of PCN production. The apparent appreciation in the relative amounts of PCN#70 in the last three to four decades may provide support for this view. The PCN contribution to dioxin-like toxic equivalence (TEQ) that was estimated for these samples (range 1.2-15.9 pg TEQ g-1) was significant in comparison to the EU regulated value of 1.75 pg TEQ g-1 for dioxins in fish oils. Most of the TEQ was associated with PCNs 66/67, 64/68, 69 and 73. Although metabolic processes are likely to influence this distribution, the profile is a little different to that observed in the tissues of higher order animals where PCNs #66/67 and #73 may contribute approximately 90% to the summed TEQ.
Collapse
Affiliation(s)
- Jerzy Falandysz
- University of Gdańsk, Environmental Chemistry and Ecotoxicology, 80-308, Gdańsk, Poland; Environmental and Computational Chemistry Group, School of Pharmaceutical Sciences, Zaragocilla Campus, University of Cartagena, 130015, Cartagena, Colombia(1).
| | - Alwyn R Fernandes
- School of Environmental Sciences, University of East Anglia, Norwich, NR4 7TJ, UK
| |
Collapse
|
12
|
Furukawa S, Tsuji N, Hayashi S, Kuroda Y, Kimura M, Hayakawa C, Takeuchi K, Sugiyama A. The effects of β-naphthoflavone on rat placental development. J Toxicol Pathol 2019; 32:275-282. [PMID: 31719754 PMCID: PMC6831496 DOI: 10.1293/tox.2019-0047] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 07/23/2019] [Indexed: 01/21/2023] Open
Abstract
The morphological effects of β-naphthoflavone (β-NF) on placental development in
pregnant rats were examined. β-NF, administered to pregnant rats intraperitoneally at 15
mg/kg bw from gestation day (GD) 9 to GD 14, had no effect on maternal body weight gain,
mortality, or clinical sign. In the β-NF-exposed rats, intrauterine growth retardation
(IUGR) rates increased on GDs 17 and 21, although there was no effect on fetal mortality
rate, fetal or placental weight, or external fetal abnormality. Histopathologically, β-NF
induced apoptosis and inhibition of cell proliferation of the trophoblastic septa in the
labyrinth zone, resulting in its poor development. In the basal zone, β-NF induced
spongiotrophoblast apoptosis and delayed glycogen islet regression, resulting in their
cystic degeneration. β-NF-induced CYP1A1 expression was detected in the endothelial cells
of the fetal capillaries in the labyrinth zone and in the endothelial cells of the spiral
arteries in the metrial gland, but not in any trophoblasts. This indicates that CYP1A1 is
inducible in the endothelial cells of the fetal capillaries in the labyrinth zone, and
that these cells have an important role in metabolizing CYP1A1 inducers crossing the
placental barrier.
Collapse
Affiliation(s)
- Satoshi Furukawa
- Biological Research Laboratories, Nissan Chemical Corporation, 1470 Shiraoka, Shiraoka-shi, Saitama 349-0294, Japan
| | - Naho Tsuji
- Biological Research Laboratories, Nissan Chemical Corporation, 1470 Shiraoka, Shiraoka-shi, Saitama 349-0294, Japan
| | - Seigo Hayashi
- Biological Research Laboratories, Nissan Chemical Corporation, 1470 Shiraoka, Shiraoka-shi, Saitama 349-0294, Japan
| | - Yusuke Kuroda
- Biological Research Laboratories, Nissan Chemical Corporation, 1470 Shiraoka, Shiraoka-shi, Saitama 349-0294, Japan
| | - Masayuki Kimura
- Biological Research Laboratories, Nissan Chemical Corporation, 1470 Shiraoka, Shiraoka-shi, Saitama 349-0294, Japan
| | - Chisato Hayakawa
- Biological Research Laboratories, Nissan Chemical Corporation, 1470 Shiraoka, Shiraoka-shi, Saitama 349-0294, Japan
| | - Kazuya Takeuchi
- Biological Research Laboratories, Nissan Chemical Corporation, 1470 Shiraoka, Shiraoka-shi, Saitama 349-0294, Japan
| | - Akihiko Sugiyama
- Veterinary Clinical Pathology, Faculty of Veterinary Medicine Okayama University of Science, 1-3 Ikoinooka, Imabari, Ehime 794-8555, Japan
| |
Collapse
|
13
|
Xu SF, Hu AL, Xie L, Liu JJ, Wu Q, Liu J. Age-associated changes of cytochrome P450 and related phase-2 gene/proteins in livers of rats. PeerJ 2019; 7:e7429. [PMID: 31396457 PMCID: PMC6681801 DOI: 10.7717/peerj.7429] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 07/07/2019] [Indexed: 12/16/2022] Open
Abstract
Cytochrome P450s (CYPs) are phase-I metabolic enzymes playing important roles in drug metabolism, dietary chemicals and endogenous molecules. Age is a key factor influencing P450s expression. Thus, age-related changes of CYP 1–4 families and bile acid homeostasis-related CYPs, the corresponding nuclear receptors and a few phase-II genes were examined. Livers from male Sprague-Dawley rats at fetus (−2 d), neonates (1, 7, and 14 d), weanling (21 d), puberty (28 and 35 d), adulthood (60 and 180 d), and aging (540 and 800 d) were collected and subjected to qPCR analysis. Liver proteins from 14, 28, 60, 180, 540 and 800 days of age were also extracted for selected protein analysis by western blot. In general, there were three patterns of their expression: Some of the drug-metabolizing enzymes and related nuclear receptors were low in fetal and neonatal stage, increased with liver maturation and decreased quickly at aging (AhR, Cyp1a1, Cyp2b1, Cyp2b2, Cyp3a1, Cyp3a2, Ugt1a2); the majority of P450s (Cyp1a2, Cyp2c6, Cyp2c11, Cyp2d2, Cyp2e1, CAR, PXR, FXR, Cyp7a1, Cyp7b1. Cyp8b1, Cyp27a1, Ugt1a1, Sult1a1, Sult1a2) maintained relatively high levels throughout the adulthood, and decreased at 800 days of age; and some had an early peak between 7 and 14 days (CAR, PXR, PPARα, Cyp4a1, Ugt1a2). The protein expression of CYP1A2, CYP2B1, CYP2E1, CYP3A1, CYP4A1, and CYP7A1 corresponded the trend of mRNA changes. In summary, this study characterized three expression patterns of 16 CYPs, five nuclear receptors, and four phase-II genes during development and aging in rat liver, adding to our understanding of age-related CYP expression changes and age-related disorders.
Collapse
Affiliation(s)
- Shang-Fu Xu
- Key Lab for Basic Pharmacology of Ministry of Education, Zunyi Medical University, Zunyi, China
| | - An-Ling Hu
- Key Lab for Basic Pharmacology of Ministry of Education, Zunyi Medical University, Zunyi, China
| | - Lu Xie
- Key Lab for Basic Pharmacology of Ministry of Education, Zunyi Medical University, Zunyi, China
| | - Jia-Jia Liu
- Key Lab for Basic Pharmacology of Ministry of Education, Zunyi Medical University, Zunyi, China
| | - Qin Wu
- Key Lab for Basic Pharmacology of Ministry of Education, Zunyi Medical University, Zunyi, China
| | - Jie Liu
- Key Lab for Basic Pharmacology of Ministry of Education, Zunyi Medical University, Zunyi, China
| |
Collapse
|
14
|
Kilanowicz A, Markowicz-Piasecka M, Klimczak M, Stragierowicz J, Sikora J. Hexachloronaphthalene as a hemostasis disturbing factor in female Wistar rats - A pilot study. CHEMOSPHERE 2019; 228:577-585. [PMID: 31075638 DOI: 10.1016/j.chemosphere.2019.04.147] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 04/17/2019] [Accepted: 04/19/2019] [Indexed: 06/09/2023]
Abstract
Although Persistent Organic Pollutants (POPs) are some of the most dangerous environmental toxicants, data on their impact on hemostasis are virtually limited. 1,2,3,5,6,7-hexachloronaphthalene (PCN67) seems to be one of the most toxic congeners of polychlorinated naphthalenes (PCNs), which have recently been listed as POPs. The toxic effects of PCNs are similar to other chlorinated aromatics, e.g. polychlorinated dibenzo-p-dioxins (PCDDs), so an impact on hemostasis could not be excluded. Therefore, this study examines, for the first time, if short-term (two and four weeks) exposure of a mixture of hexachloronaphthalene congeners with a PCN67 as a predominant component to female Wistar rats may have an impact on selected hemostasis parameters, such as overall potential and kinetic parameters of clot formation and fibrinolysis; hematology and basic coagulology parameters. It also examines the influence of PCN67 on the stability of erythrocyte membranes. Obtained results indicate that PCN67 may be an important disturbing factor regarding both coagulation and fibrinolysis processes, as well as platelet count. Exposure to PCN67 significantly affected clot formation and lysis processes and diminished fibrinogen concentration after both administration periods. After two weeks of administration, an increased activated partial thromboplastin time (APTT) was noted; after four weeks - decreased platelet count with concomitant increased in mean platelet volume. Moreover, PCN67 may exert adverse effects on the red blood cells membrane stability, which were manifested by a statistically significant increase of red blood cells lysis.
Collapse
Affiliation(s)
- Anna Kilanowicz
- Department of Toxicology, Medical University of Lodz, Muszynskiego 1, 90-151, Lodz, Poland.
| | - Magdalena Markowicz-Piasecka
- Laboratory of Bioanalysis, Department of Pharmaceutical Chemistry, Drug Analysis and Radiopharmacy, Medical University of Lodz, Muszynskiego 1, 90-151, Lodz, Poland.
| | - Michał Klimczak
- Department of Toxicology, Medical University of Lodz, Muszynskiego 1, 90-151, Lodz, Poland.
| | - Joanna Stragierowicz
- Department of Toxicology, Medical University of Lodz, Muszynskiego 1, 90-151, Lodz, Poland.
| | - Joanna Sikora
- Laboratory of Bioanalysis, Department of Pharmaceutical Chemistry, Drug Analysis and Radiopharmacy, Medical University of Lodz, Muszynskiego 1, 90-151, Lodz, Poland.
| |
Collapse
|
15
|
Kilanowicz A, Sitarek K, Stragierowicz J, Klimczak M, Bruchajzer E. Prenatal toxicity and maternal-fetal distribution of 1,3,5,8-tetrachloronaphthalene (1,3,5,8-TeCN) in Wistar rats. CHEMOSPHERE 2019; 226:75-84. [PMID: 30921639 DOI: 10.1016/j.chemosphere.2019.03.107] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 03/05/2019] [Accepted: 03/15/2019] [Indexed: 06/09/2023]
Abstract
1,3,5,8-tetrachloronaphthalene (1,3,5,8-TeCN) is a Persistent Organic Pollutant (POP) that belongs to the group of polychlorinated naphthalenes (PCNs). The aim of the study was to investigate the maternal-fetal distribution and prenatal toxicity of 1,3,5,8-TeCN after its administration to pregnant Wistar rats during organogenesis. Radiolabeled 1,3,5,8-tetrachloronaphthalene-[ring-U-3H] was given by gavage at a dose of 0.3 mg per dam to evaluate its tissue distribution, and that of unlabeled 1,3,5,8-TeCN, at daily doses of 0.3, 1.0 or 3.0 mg kg b.w.-1 to assess prenatal toxicity. After a single administration of 1,3,5,8-TeCN, the highest concentration was detected in maternal adipose tissue. The concentration in the brain, uterus, kidneys, adrenals, ovaries, lungs and liver established in dams were two to nine times higher than in the maternal blood. 1,3,5,8-TeCN penetrated the blood-brain-barrier and the placenta. The results obtained from developmental toxicity indicate that 1,3,5,8-TeCN did not cause maternal toxicity and was not embryotoxic or teratogenic. However, fetotoxic effects were observed after non-toxic doses for dams (1.0 and 3.0 mg∙b.w.-1·day-1). 1,3,5,8-TeCN did not induce congenital skeletal defects but increased the number of fetuses with sternum ossification delay. After a dose of 3.0 mg kg b.w.-1·day-1, significantly more fetuses were found with enlargement of the renal pelvis: unilateral in female offspring and bilateral in male offspring. At the doses used, 1,3,5,8-TeCN, unlike hexachloronaphthalene, was not a CYP1A1 inducer.
Collapse
Affiliation(s)
- Anna Kilanowicz
- Department of Toxicology, Medical University of Lodz, Muszynskiego 1, 90-151 Lodz, Poland.
| | - Krystyna Sitarek
- Department of Toxicology and Carcinogenesis, Nofer Institute of Occupational Medicine, Lodz, Sw. Teresy od Dzieciatka Jezus 8, 91-348 Lodz, Poland.
| | - Joanna Stragierowicz
- Department of Toxicology, Medical University of Lodz, Muszynskiego 1, 90-151 Lodz, Poland.
| | - Michał Klimczak
- Department of Toxicology, Medical University of Lodz, Muszynskiego 1, 90-151 Lodz, Poland.
| | - Elżbieta Bruchajzer
- Department of Toxicology, Medical University of Lodz, Muszynskiego 1, 90-151 Lodz, Poland.
| |
Collapse
|
16
|
Stragierowicz J, Bruchajzer E, Daragó A, Nasiadek M, Kilanowicz A. Hexachloronaphthalene (HxCN) as a potential endocrine disruptor in female rats. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 243:1026-1035. [PMID: 30253293 DOI: 10.1016/j.envpol.2018.09.045] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 09/05/2018] [Accepted: 09/07/2018] [Indexed: 06/08/2023]
Abstract
Hexachloronaphthalene (HxCN) is one of the most toxic and most bioaccumulative congeners of polychlorinated naphthalenes (PCNs) known to be present in animal and human adipose tissue. Unfortunately, little data is available regarding the negative effect of PCNs on endocrine function. The aim of the study was to investigate the direct influence of subacute (two and four-week) and subchronic (13-week) daily oral exposure of female rats to 30, 100 and 300 μg kg b.w.-1 HxCN on ovarian, thyroid function and neurotransmitters level. The levels of selected sex hormones (progesterone: P and estradiol: E2) in the serum and uterus, regularity of estrous cycle, levels of thyroid hormones (fT3 and fT4), TSH, γ-aminobutyric acid and glutamate levels in selected brain areas and the activity of CYP1A1 and CYP2B in the liver were examined. Estrogenic action (elevated E2 concentration in the uterus and serum) was observed only after subacute exposure, and antiestrogenic activity (decreased E2 level and uterus weight) after 13 weeks administration of 300 μg kg b.w.-1 day-1. Subchronic administration of HxCN significantly lengthens the estrous cycle, by up to almost 50%, and increases the number of irregular cycles. In addition, increased TSH and decreased fT4 serum levels were observed after all doses and durations of exposure to HxCN. Only subacute exposure led to a significant decrease in the level of examined neurotransmitters in all analyzed structures. Additionally, exposure to low doses of HxCN appears to lead to strong induction of CYP1A1 in a liver. It can be hypothesized that HxCN produces effects which are very similar to those caused by 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and dioxin-like compounds (DLCs), particularly concerning endocrine and estrous cyclicity disorders. Therefore, HxCN exposure may exert unexpected effects on female fecundity among the general population.
Collapse
Affiliation(s)
- Joanna Stragierowicz
- Department of Toxicology, Faculty of Pharmacy, Medical University, Muszynskiego 1, 90-151, Lodz, Poland.
| | - Elżbieta Bruchajzer
- Department of Toxicology, Faculty of Pharmacy, Medical University, Muszynskiego 1, 90-151, Lodz, Poland.
| | - Adam Daragó
- Department of Toxicology, Faculty of Pharmacy, Medical University, Muszynskiego 1, 90-151, Lodz, Poland.
| | - Marzenna Nasiadek
- Department of Toxicology, Faculty of Pharmacy, Medical University, Muszynskiego 1, 90-151, Lodz, Poland.
| | - Anna Kilanowicz
- Department of Toxicology, Faculty of Pharmacy, Medical University, Muszynskiego 1, 90-151, Lodz, Poland.
| |
Collapse
|
17
|
Klimczak M, Darago A, Bruchajzer E, Domeradzka-Gajda K, Stepnik M, Kuzajska K, Kilanowicz A. The effects of hexachloronaphthalene on selected parameters of heme biosynthesis and systemic toxicity in female wistar rats after 90-day oral exposure. ENVIRONMENTAL TOXICOLOGY 2018; 33:695-705. [PMID: 29663608 DOI: 10.1002/tox.22558] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 03/19/2018] [Accepted: 03/25/2018] [Indexed: 06/08/2023]
Abstract
Hexachloronaphthalenes (HxCNs) are the most toxic congeners of polychlorinated naphthalenes, a group of compounds lately included into the list of persistent organic pollutants (POPs). This study presents the effects of 90-day intragastric administration of HxCN to female Wistar rats at doses of 0.03, 0.1, and 0.3 mg/kg body weight. The study examined selected parameters of the heme synthesis pathway, oxidative stress, hepatic cytochromes level, and basic hematology indicators. A micronucleus test was also performed. The subchronic exposure of rats to HxCN resulted in disruption of heme biosynthesis, hematological disturbances, and hepatotoxicity. The highest dose of HxCN inhibited aminolevulinic acid dehydratase (ALA-D) and uroporphyrinogen decarboxylase (URO-D). Accumulation of higher carboxylated porphyrins in the liver and increased excretion of 5-aminolevulinic acid in the urine was observed after a dose of 0.1 mg/kg body weight. The most sensitive effect of HxCN in rats was very strong induction of hepatic CYP1A1 activity, which was observed after the lowest dose. The highest dose of HxCN induced significant thrombocytopenia, thymic atrophy and hepatotoxicity, expressed as hepatomegaly and hepatic steatosis.
Collapse
Affiliation(s)
- Michal Klimczak
- Department of Toxicology, Faculty of Pharmacy, Medical University of Lodz, Muszynskiego 1, Lodz, 90-151, Poland
| | - Adam Darago
- Department of Toxicology, Faculty of Pharmacy, Medical University of Lodz, Muszynskiego 1, Lodz, 90-151, Poland
| | - Elzbieta Bruchajzer
- Department of Toxicology, Faculty of Pharmacy, Medical University of Lodz, Muszynskiego 1, Lodz, 90-151, Poland
| | - Katarzyna Domeradzka-Gajda
- Department of Toxicology and Carcinogenesis, Nofer Institute of Occupational Medicine, Sw. Teresy 8, Lodz, 91-348, Poland
| | - Maciej Stepnik
- Department of Toxicology and Carcinogenesis, Nofer Institute of Occupational Medicine, Sw. Teresy 8, Lodz, 91-348, Poland
| | - Katarzyna Kuzajska
- Department of Toxicology, Faculty of Pharmacy, Medical University of Lodz, Muszynskiego 1, Lodz, 90-151, Poland
| | - Anna Kilanowicz
- Department of Toxicology, Faculty of Pharmacy, Medical University of Lodz, Muszynskiego 1, Lodz, 90-151, Poland
| |
Collapse
|
18
|
Fernandes A, Rose M, Falandysz J. Polychlorinated naphthalenes (PCNs) in food and humans. ENVIRONMENT INTERNATIONAL 2017; 104:1-13. [PMID: 28391007 DOI: 10.1016/j.envint.2017.02.015] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 01/26/2017] [Accepted: 02/02/2017] [Indexed: 06/07/2023]
Abstract
Polychlorinated naphthalenes (PCNs) are legacy contaminants that are listed by the Stockholm convention, initially for reduction of inadvertent production and ultimately, for elimination. They originate through releases from older electrical equipment, inadvertent contamination in industrial chemicals and from combustion processes such as incineration. Recent advances in measurement techniques have allowed a greater characterisation of PCN occurrence, yielding more specific data including individual PCN congener concentrations. Emerging data on food shows widespread occurrence in most commonly consumed foods from different parts of the world. Concurrently, toxicological studies have also allowed a greater insight into the potencies of some congeners, a number of which are known to elicit potent, aryl hydrocarbon receptor (AhR) mediated responses, often referred to as dioxin-like toxicity. The dietary pathway is widely recognised as the most likely route to non-occupational human exposure. This paper reviews some of the more recent findings on PCN occurrence in food, biota, and human tissues, and discusses the use of relative potencies to express PCN toxicity in foods.
Collapse
Affiliation(s)
| | - Martin Rose
- Fera Science Ltd., Sand Hutton, York, YO41 1LZ, UK
| | - Jerzy Falandysz
- Laboratory of Environmental Chemistry & Ecotoxicology, Gdańsk University, Gdańsk, Poland
| |
Collapse
|