1
|
Collins MD, Scott WJ. Thalidomide-induced limb malformations: an update and reevaluation. Arch Toxicol 2025; 99:1643-1747. [PMID: 40198353 DOI: 10.1007/s00204-024-03930-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 12/05/2024] [Indexed: 04/10/2025]
Abstract
Historically, thalidomide-induced congenital malformations have served as an important example of the enhanced susceptibility of developing embryos to chemical perturbation. The compound produced a wide variety of congenital malformations in humans, which were initially detected by an association with a relatively rare limb defect labeled phocomelia. Although true phocomelia in the most severe form is a transverse defect with intercalary absence of limb regions, it is proposed that thalidomide produces a longitudinal limb phenotype in humans under usual circumstances that can become transverse in severe cases with a preferential sensitivity of forelimb over hindlimb, preaxial over postaxial, and left more impacted than the corresponding non-autopod limb bones on the right. The thalidomide-induced limb phenotype in humans is described and followed by a hierarchical comparison with various laboratory animal species. Mechanistic studies have been hampered by the fact that only non-human primates and rabbits have malformations that are anatomically similar to humans. Included in this review are unpublished data on limb malformations produced by thalidomide in rhesus monkeys from experiments performed more than 50 years ago. The critical period in gestation for the induction of phocomelia may initiate prior to the development of the embryonic limb bud, which contrasts with other chemical and physical agents that are known to produce this phenotype. The importance of toxicokinetic parameters is reviewed including dose, enantiomers, absorption, distribution, and both non-enzymatic and enzymatic biotransformations. The limb embryopathy mechanism that provides a partial explanation of the limb phenotype is that cereblon binds to thalidomide creating a protein complex that ubiquitinates protein substrates (CRL4CRBN) that are not targets for the complex in the absence of the thalidomide. One of these neosubstrates is SALL4 which when mutated causes a syndrome that phenocopies aspects of thalidomide embryopathy. Other candidate neosubstrates for the complex that have been found in non-human species may contribute to an understanding of the limb defect including PLZF, p63, and various zinc finger transcription factors. It is proposed that it is important to consider the species-specificity of the compound when considering potential mechanistic pathways and that some of the more traditional mechanisms for explaining the embryopathy, such as anti-angiogenesis and redox perturbation, may contribute to a full understanding of this teratogen.
Collapse
Affiliation(s)
- Michael D Collins
- Department of Environmental Health Sciences and Molecular Toxicology Interdisciplinary Program, UCLA School of Public Health, CHS 46-078, 650 Charles E. Young Drive South, Los Angeles, CA, 90095, USA.
| | - William J Scott
- Children's Hospital Research Foundation, University of Cincinnati, Cincinnati, OH, 45229, USA
| |
Collapse
|
2
|
Rengel BD, Kowalski TW, Bremm JM, do Amaral Gomes J, Schüler-Faccini L, Vianna FSL, Fraga LR. Genetic evaluation of HAND2 gene and its effects on thalidomide embryopathy. Birth Defects Res 2022; 114:1354-1363. [PMID: 36177858 DOI: 10.1002/bdr2.2092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 07/28/2022] [Accepted: 09/04/2022] [Indexed: 11/08/2022]
Abstract
BACKGROUND HAND2 is a transcription factor important for embryonic development, required for limbs and cardiovascular development. Thalidomide is a drug responsible to a spectrum of congenital anomalies known as Thalidomide Embryopathy (TE), which includes mainly limb and heart defects. It is known that HAND2 interaction with TBX5, an important protein for limbs and heart development, is inhibited by Thalidomide. The aim of this study was to evaluate and characterize HAND2 in the context of TE, and to evaluate its variability in TE individuals. METHODS DNA from 35 TE subjects was extracted from saliva samples and PCR was performed for amplification and Sanger sequencing of HAND2 coding sequence. RESULTS The analysis showed only one variant; a synonymous variant p.P51 (rs59621536) in exon 1 found in three individuals. Further in silico evaluation confirmed highly HAND2 conservation, being the 3'UTR the most polymorphic region of the gene. Additional computational analyses classified the variant as neutral, without alteration in splicing and miRNA sites. In silico predictions pointed to alteration of two CpG islands adjacent to the variant; however, we did not observe any alterations on the methylation pattern of HAND2 gene in our sample. Moreover, alteration of the binding site of MeCP2, a nuclear protein involved in DNA methylation, was predicted along with alteration in HAND2 mRNA structure. CONCLUSIONS Considering HAND2 being a well conserved gene, further studies with a larger sample should be performed to evaluate the role this gene on genetic susceptibility to TE.
Collapse
Affiliation(s)
- Bruna Duarte Rengel
- Laboratory of Medical Genetics and Evolution, Department of Genetics, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Postgraduate Program in Genetics and Molecular Biology, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.,Brazilian Teratogen Information Service (SIAT), Medical Genetics Service of Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil.,Genomic Medicine Laboratory at Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Brazil
| | - Thayne Woycinck Kowalski
- Laboratory of Medical Genetics and Evolution, Department of Genetics, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Postgraduate Program in Genetics and Molecular Biology, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.,Brazilian Teratogen Information Service (SIAT), Medical Genetics Service of Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil.,Genomic Medicine Laboratory at Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Brazil.,National Institute of Population Medical Genetics (INAGEMP), Porto Alegre, Brazil.,Bioinformatics Core, Hospital de Clínicas de Porto Alegre, HCPA, Porto Alegre, Brazil.,Centro Universitário CESUCA, Cachoeirinha, Brazil
| | - João Matheus Bremm
- Postgraduate Program in Genetics and Molecular Biology, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Julia do Amaral Gomes
- Laboratory of Medical Genetics and Evolution, Department of Genetics, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Postgraduate Program in Genetics and Molecular Biology, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.,Brazilian Teratogen Information Service (SIAT), Medical Genetics Service of Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil.,Genomic Medicine Laboratory at Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Brazil.,National Institute of Population Medical Genetics (INAGEMP), Porto Alegre, Brazil
| | - Lavínia Schüler-Faccini
- Laboratory of Medical Genetics and Evolution, Department of Genetics, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Postgraduate Program in Genetics and Molecular Biology, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.,Brazilian Teratogen Information Service (SIAT), Medical Genetics Service of Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil.,National Institute of Population Medical Genetics (INAGEMP), Porto Alegre, Brazil
| | - Fernanda Sales Luiz Vianna
- Laboratory of Medical Genetics and Evolution, Department of Genetics, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Postgraduate Program in Genetics and Molecular Biology, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.,Brazilian Teratogen Information Service (SIAT), Medical Genetics Service of Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil.,Genomic Medicine Laboratory at Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Brazil.,National Institute of Population Medical Genetics (INAGEMP), Porto Alegre, Brazil.,Postgraduate Program in Medical Sciences, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Lucas Rosa Fraga
- Laboratory of Medical Genetics and Evolution, Department of Genetics, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Brazilian Teratogen Information Service (SIAT), Medical Genetics Service of Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil.,Genomic Medicine Laboratory at Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Brazil.,Postgraduate Program in Medical Sciences, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.,Department of Morphological Sciences, Institute of Health Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| |
Collapse
|
3
|
Costa PDSS, Maciel-Fiuza MF, Kowalski TW, Fraga LR, Feira MF, Camargo LMA, Caldoncelli DIDO, Silveira MIDS, Schuler-Faccini L, Vianna FSL. Evaluation of the influence of genetic variants in Cereblon gene on the response to the treatment of erythema nodosum leprosum with thalidomide. Mem Inst Oswaldo Cruz 2022; 117:e220039. [DOI: 10.1590/0074-02760220039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 10/04/2022] [Indexed: 11/13/2022] Open
Affiliation(s)
- Perpétua do Socorro Silva Costa
- Universidade Federal do Rio Grande do Sul, Brazil; Instituto Nacional de Genética Médica Populacional, Brasil; Universidade Federal do Maranhão, Brazil
| | - Miriãn Ferrão Maciel-Fiuza
- Universidade Federal do Rio Grande do Sul, Brazil; Instituto Nacional de Genética Médica Populacional, Brasil; Hospital de Clínicas de Porto Alegre, Brasil; Universidade Federal do Rio Grande do Sul, Brazil
| | - Thayne Woycinck Kowalski
- Universidade Federal do Rio Grande do Sul, Brazil; Instituto Nacional de Genética Médica Populacional, Brasil; Hospital de Clínicas de Porto Alegre, Brasil; Universidade Federal do Rio Grande do Sul, Brazil; Hospital de Clínicas de Porto Alegre, Brasil
| | - Lucas Rosa Fraga
- Hospital de Clínicas de Porto Alegre, Brasil; Universidade Federal do Rio Grande do Sul, Brazil; Hospital de Clínicas de Porto Alegre, Brasil; Universidade Federal do Rio Grande do Sul, Brazil; Universidade Federal do Rio Grande do Sul, Brazil
| | - Mariléa Furtado Feira
- Universidade Federal do Rio Grande do Sul, Brazil; Instituto Nacional de Genética Médica Populacional, Brasil; Hospital de Clínicas de Porto Alegre, Brasil; Universidade Federal do Rio Grande do Sul, Brazil
| | - Luís Marcelo Aranha Camargo
- Universidade de São Paulo, Brazil; Centro de Pesquisa em Medicina Tropical, Brasil; Instituto Nacional de Ciência e Tecnologia de Epidemiologia da Amazônia Ocidental, Brasil; Centro Universitário São Lucas, Brazil
| | | | | | - Lavínia Schuler-Faccini
- Universidade Federal do Rio Grande do Sul, Brazil; Instituto Nacional de Genética Médica Populacional, Brasil; Hospital de Clínicas de Porto Alegre, Brasil
| | - Fernanda Sales Luiz Vianna
- Universidade Federal do Rio Grande do Sul, Brazil; Instituto Nacional de Genética Médica Populacional, Brasil; Hospital de Clínicas de Porto Alegre, Brasil; Universidade Federal do Rio Grande do Sul, Brazil; Hospital de Clínicas de Porto Alegre, Brasil; Universidade Federal do Rio Grande do Sul, Brazil
| |
Collapse
|
4
|
Kowalski TW, Caldas-Garcia GB, Gomes JDA, Fraga LR, Schuler-Faccini L, Recamonde-Mendoza M, Paixão-Côrtes VR, Vianna FSL. Comparative Genomics Identifies Putative Interspecies Mechanisms Underlying Crbn-Sall4-Linked Thalidomide Embryopathy. Front Genet 2021; 12:680217. [PMID: 34249098 PMCID: PMC8262662 DOI: 10.3389/fgene.2021.680217] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Accepted: 05/18/2021] [Indexed: 11/21/2022] Open
Abstract
The identification of thalidomide–Cereblon-induced SALL4 degradation has brought new understanding for thalidomide embryopathy (TE) differences across species. Some questions, however, regarding species variability, still remain. The aim of this study was to detect sequence divergences between species, affected or not by TE, and to evaluate the regulated gene co-expression in a murine model. Here, we performed a comparative analysis of proteins experimentally established as affected by thalidomide exposure, evaluating 14 species. The comparative analysis, regarding synteny, neighborhood, and protein conservation, was performed in 42 selected genes. Differential co-expression analysis was performed, using a publicly available assay, GSE61306, which evaluated mouse embryonic stem cells (mESC) exposed to thalidomide. The comparative analyses evidenced 20 genes in the upstream neighborhood of NOS3, which are different between the species who develop, or not, the classic TE phenotype. Considering protein sequence alignments, RECQL4, SALL4, CDH5, KDR, and NOS2 proteins had the biggest number of variants reported in unaffected species. In co-expression analysis, Crbn was a gene identified as a driver of the co-expression of other genes implicated in genetic, non-teratogenic, limb reduction defects (LRD), such as Tbx5, Esco2, Recql4, and Sall4; Crbn and Sall4 were shown to have a moderate co-expression correlation, which is affected after thalidomide exposure. Hence, even though the classic TE phenotype is not identified in mice, a deregulatory Crbn-induced mechanism is suggested in this animal. Functional studies are necessary, especially evaluating the genes responsible for LRD syndromes and their interaction with thalidomide–Cereblon.
Collapse
Affiliation(s)
- Thayne Woycinck Kowalski
- Post-Graduation Program in Genetics and Molecular Biology, PPGBM, Universidade Federal do Rio Grande do Sul, UFRGS, Porto Alegre, Brazil.,Laboratory of Medical Genetics and Evolution, Genetics Department, Universidade Federal do Rio Grande do Sul, UFRGS, Porto Alegre, Brazil.,Laboratory of Genomic Medicine, Center of Experimental Research, Hospital de Clínicas de Porto Alegre, HCPA, Porto Alegre, Brazil.,National Institute of Medical Population Genetics, INAGEMP, Porto Alegre, Brazil.,Bioinformatics Core, Hospital de Clínicas de Porto Alegre, HCPA, Porto Alegre, Brazil.,Centro Universitário CESUCA, Cachoeirinha, Brazil
| | - Gabriela Barreto Caldas-Garcia
- Post-Graduation Program in Genetics and Molecular Biology, PPGBM, Universidade Federal do Rio Grande do Sul, UFRGS, Porto Alegre, Brazil.,Post-Graduation Program in Biodiversity and Evolution, PPGBioEvo Institute of Biology, Universidade Federal da Bahia, UFBA, Salvador, Brazil
| | - Julia do Amaral Gomes
- Post-Graduation Program in Genetics and Molecular Biology, PPGBM, Universidade Federal do Rio Grande do Sul, UFRGS, Porto Alegre, Brazil.,Laboratory of Medical Genetics and Evolution, Genetics Department, Universidade Federal do Rio Grande do Sul, UFRGS, Porto Alegre, Brazil.,Laboratory of Genomic Medicine, Center of Experimental Research, Hospital de Clínicas de Porto Alegre, HCPA, Porto Alegre, Brazil.,National Institute of Medical Population Genetics, INAGEMP, Porto Alegre, Brazil
| | - Lucas Rosa Fraga
- Laboratory of Genomic Medicine, Center of Experimental Research, Hospital de Clínicas de Porto Alegre, HCPA, Porto Alegre, Brazil.,National Institute of Medical Population Genetics, INAGEMP, Porto Alegre, Brazil.,Department of Morphological Sciences, Institute of Health Sciences, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.,Post-Graduation Program in Medical Science, Universidade Federal do Rio Grande do Sul, UFRGS, Porto Alegre, Brazil.,Teratogen Information System, SIAT, Medical Genetics Service, Hospital de Clínicas de Porto Alegre, HCPA, Porto Alegre, Brazil
| | - Lavínia Schuler-Faccini
- Post-Graduation Program in Genetics and Molecular Biology, PPGBM, Universidade Federal do Rio Grande do Sul, UFRGS, Porto Alegre, Brazil.,Laboratory of Medical Genetics and Evolution, Genetics Department, Universidade Federal do Rio Grande do Sul, UFRGS, Porto Alegre, Brazil.,National Institute of Medical Population Genetics, INAGEMP, Porto Alegre, Brazil.,Teratogen Information System, SIAT, Medical Genetics Service, Hospital de Clínicas de Porto Alegre, HCPA, Porto Alegre, Brazil
| | - Mariana Recamonde-Mendoza
- Bioinformatics Core, Hospital de Clínicas de Porto Alegre, HCPA, Porto Alegre, Brazil.,Institute of Informatics, Universidade Federal do Rio Grande do Sul, UFRGS, Porto Alegre, Brazil
| | - Vanessa Rodrigues Paixão-Côrtes
- Post-Graduation Program in Biodiversity and Evolution, PPGBioEvo Institute of Biology, Universidade Federal da Bahia, UFBA, Salvador, Brazil
| | - Fernanda Sales Luiz Vianna
- Post-Graduation Program in Genetics and Molecular Biology, PPGBM, Universidade Federal do Rio Grande do Sul, UFRGS, Porto Alegre, Brazil.,Laboratory of Medical Genetics and Evolution, Genetics Department, Universidade Federal do Rio Grande do Sul, UFRGS, Porto Alegre, Brazil.,Laboratory of Genomic Medicine, Center of Experimental Research, Hospital de Clínicas de Porto Alegre, HCPA, Porto Alegre, Brazil.,National Institute of Medical Population Genetics, INAGEMP, Porto Alegre, Brazil.,Post-Graduation Program in Medical Science, Universidade Federal do Rio Grande do Sul, UFRGS, Porto Alegre, Brazil.,Teratogen Information System, SIAT, Medical Genetics Service, Hospital de Clínicas de Porto Alegre, HCPA, Porto Alegre, Brazil
| |
Collapse
|
5
|
Gomes JDA, Olstad EW, Kowalski TW, Gervin K, Vianna FSL, Schüler-Faccini L, Nordeng HME. Genetic Susceptibility to Drug Teratogenicity: A Systematic Literature Review. Front Genet 2021; 12:645555. [PMID: 33981330 PMCID: PMC8107476 DOI: 10.3389/fgene.2021.645555] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 03/19/2021] [Indexed: 12/19/2022] Open
Abstract
Since the 1960s, drugs have been known to cause teratogenic effects in humans. Such teratogenicity has been postulated to be influenced by genetics. The aim of this review was to provide an overview of the current knowledge on genetic susceptibility to drug teratogenicity in humans and reflect on future directions within the field of genetic teratology. We focused on 12 drugs and drug classes with evidence of teratogenic action, as well as 29 drugs and drug classes with conflicting evidence of fetal safety in humans. An extensive literature search was performed in the PubMed and EMBASE databases using terms related to the drugs of interest, congenital anomalies and fetal development abnormalities, and genetic variation and susceptibility. A total of 29 studies were included in the final data extraction. The eligible studies were published between 1999 and 2020 in 10 different countries, and comprised 28 candidate gene and 1 whole-exome sequencing studies. The sample sizes ranged from 20 to 9,774 individuals. Several drugs were investigated, including antidepressants (nine studies), thalidomide (seven studies), antiepileptic drugs (five studies), glucocorticoids (four studies), acetaminophen (two studies), and sex hormones (estrogens, one study; 17-alpha hydroxyprogesterone caproate, one study). The main neonatal phenotypic outcomes included perinatal complications, cardiovascular congenital anomalies, and neurodevelopmental outcomes. The review demonstrated that studies on genetic teratology are generally small, heterogeneous, and exhibit inconsistent results. The most convincing findings were genetic variants in SLC6A4, MTHFR, and NR3C1, which were associated with drug teratogenicity by antidepressants, antiepileptics, and glucocorticoids, respectively. Notably, this review demonstrated the large knowledge gap regarding genetic susceptibility to drug teratogenicity, emphasizing the need for further efforts in the field. Future studies may be improved by increasing the sample size and applying genome-wide approaches to promote the interpretation of results. Such studies could support the clinical implementation of genetic screening to provide safer drug use in pregnant women in need of drugs.
Collapse
Affiliation(s)
- Julia do Amaral Gomes
- Programa de Pós-Graduação em Genética e Biologia Molecular (PPGBM), Departamento de Genética, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
- Sistema Nacional de Informação sobre Agentes Teratogênicos (SIAT), Serviço de Genética Médica, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Brazil
- Laboratório de Medicina Genômica, Centro de Pesquisa Experimental, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Brazil
- Instituto Nacional de Genética Médica Populacional (INAGEMP), Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Brazil
| | - Emilie Willoch Olstad
- Pharmacoepidemiology and Drug Safety Research Group, Department of Pharmacy, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
- PharmaTox Strategic Research Initiative, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
| | - Thayne Woycinck Kowalski
- Programa de Pós-Graduação em Genética e Biologia Molecular (PPGBM), Departamento de Genética, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
- Laboratório de Medicina Genômica, Centro de Pesquisa Experimental, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Brazil
- Instituto Nacional de Genética Médica Populacional (INAGEMP), Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Brazil
- Complexo de Ensino Superior de Cachoeirinha (CESUCA), Cachoeirinha, Brazil
| | - Kristina Gervin
- Pharmacoepidemiology and Drug Safety Research Group, Department of Pharmacy, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
- PharmaTox Strategic Research Initiative, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
- Division of Clinical Neuroscience, Department of Research and Innovation, Oslo University Hospital, Oslo, Norway
| | - Fernanda Sales Luiz Vianna
- Programa de Pós-Graduação em Genética e Biologia Molecular (PPGBM), Departamento de Genética, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
- Sistema Nacional de Informação sobre Agentes Teratogênicos (SIAT), Serviço de Genética Médica, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Brazil
- Laboratório de Medicina Genômica, Centro de Pesquisa Experimental, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Brazil
- Instituto Nacional de Genética Médica Populacional (INAGEMP), Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Brazil
| | - Lavínia Schüler-Faccini
- Programa de Pós-Graduação em Genética e Biologia Molecular (PPGBM), Departamento de Genética, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
- Sistema Nacional de Informação sobre Agentes Teratogênicos (SIAT), Serviço de Genética Médica, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Brazil
- Instituto Nacional de Genética Médica Populacional (INAGEMP), Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Brazil
| | - Hedvig Marie Egeland Nordeng
- Pharmacoepidemiology and Drug Safety Research Group, Department of Pharmacy, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
- PharmaTox Strategic Research Initiative, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
- Department of Child Health and Development, Norwegian Institute of Public Health, Oslo, Norway
| |
Collapse
|
6
|
Kowalski TW, Gomes JDA, Garcia GBC, Fraga LR, Paixao-Cortes VR, Recamonde-Mendoza M, Sanseverino MTV, Schuler-Faccini L, Vianna FSL. CRL4-Cereblon complex in Thalidomide Embryopathy: a translational investigation. Sci Rep 2020; 10:851. [PMID: 31964914 PMCID: PMC6972723 DOI: 10.1038/s41598-020-57512-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 12/28/2019] [Indexed: 01/13/2023] Open
Abstract
The Cereblon-CRL4 complex has been studied predominantly with regards to thalidomide treatment of multiple myeloma. Nevertheless, the role of Cereblon-CRL4 in Thalidomide Embryopathy (TE) is still not understood. Not all embryos exposed to thalidomide develop TE, hence here we evaluate the role of the CRL4-Cereblon complex in TE variability and susceptibility. We sequenced CRBN, DDB1, CUL4A, IKZF1, and IKZF3 in individuals with TE. To better interpret the variants, we suggested a score and a heatmap comprising their regulatory effect. Differential gene expression after thalidomide exposure and conservation of the CRL4-Cereblon protein complex were accessed from public repositories. Results suggest a summation effect of Cereblon variants on pre-axial longitudinal limb anomalies, and heatmap scores identify the CUL4A variant rs138961957 as potentially having an effect on TE susceptibility. CRL4-Cereblon gene expression after thalidomide exposure and CLR4-Cereblon protein conservation does not explain the difference in Thalidomide sensitivity between species. In conclusion, we suggest that CRL4-Cereblon variants act through several regulatory mechanisms, which may influence CRL4-Cereblon complex assembly and its ability to bind thalidomide. Human genetic variability must be addressed not only to further understand the susceptibility to TE, but as a crucial element in therapeutics, including in the development of pharmacogenomics strategies.
Collapse
Affiliation(s)
- Thayne Woycinck Kowalski
- Postgraduate Program in Genetics and Molecular Biology, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil. .,Laboratory of Medical and Population Genetics, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil. .,National Institute of Population Medical Genetics (INAGEMP), Porto Alegre, Brazil. .,Genomic Medicine Laboratory, Centro de Pesquisa Experimental, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Brazil. .,National System of Information on Teratogenic Agents (SIAT), Medical Genetics Service, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Brazil. .,Complexo de Ensino Superior de Cachoeirinha (CESUCA), Cachoeirinha, Brazil.
| | - Julia do Amaral Gomes
- Postgraduate Program in Genetics and Molecular Biology, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.,Laboratory of Medical and Population Genetics, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.,National Institute of Population Medical Genetics (INAGEMP), Porto Alegre, Brazil.,Genomic Medicine Laboratory, Centro de Pesquisa Experimental, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Brazil.,National System of Information on Teratogenic Agents (SIAT), Medical Genetics Service, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Brazil
| | - Gabriela Barreto Caldas Garcia
- Postgraduate Program in Genetics and Molecular Biology, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Lucas Rosa Fraga
- Laboratory of Medical and Population Genetics, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.,National Institute of Population Medical Genetics (INAGEMP), Porto Alegre, Brazil.,Genomic Medicine Laboratory, Centro de Pesquisa Experimental, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Brazil.,National System of Information on Teratogenic Agents (SIAT), Medical Genetics Service, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Brazil.,Department of Morphological Sciences, Institute of Health Sciences, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | | | - Mariana Recamonde-Mendoza
- Institute of Informatics, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.,Bioinformatics Core, Centro de Pesquisa Experimental, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Brazil
| | - Maria Teresa Vieira Sanseverino
- Postgraduate Program in Genetics and Molecular Biology, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.,Laboratory of Medical and Population Genetics, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.,National Institute of Population Medical Genetics (INAGEMP), Porto Alegre, Brazil.,National System of Information on Teratogenic Agents (SIAT), Medical Genetics Service, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Brazil.,School of Medicine - Pontificia Universidade Catolica do Rio Grande do Sul, Porto Alegre, Brazil
| | - Lavinia Schuler-Faccini
- Postgraduate Program in Genetics and Molecular Biology, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.,Laboratory of Medical and Population Genetics, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.,National Institute of Population Medical Genetics (INAGEMP), Porto Alegre, Brazil.,National System of Information on Teratogenic Agents (SIAT), Medical Genetics Service, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Brazil
| | - Fernanda Sales Luiz Vianna
- Postgraduate Program in Genetics and Molecular Biology, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil. .,Laboratory of Medical and Population Genetics, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil. .,National Institute of Population Medical Genetics (INAGEMP), Porto Alegre, Brazil. .,Genomic Medicine Laboratory, Centro de Pesquisa Experimental, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Brazil. .,National System of Information on Teratogenic Agents (SIAT), Medical Genetics Service, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Brazil. .,Immunobiology and Immunogenetics Laboratory, Departamento de Genética, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.
| |
Collapse
|
7
|
The role of ESCO2, SALL4 and TBX5 genes in the susceptibility to thalidomide teratogenesis. Sci Rep 2019; 9:11413. [PMID: 31388035 PMCID: PMC6684595 DOI: 10.1038/s41598-019-47739-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 06/24/2019] [Indexed: 01/09/2023] Open
Abstract
Thalidomide is widely used for several diseases; however, it causes malformations in embryos exposed during pregnancy. The complete understanding of the mechanisms by which thalidomide affects the embryo development has not yet been obtained. The phenotypic similarity makes TE a phenocopy of syndromes caused by mutations in ESCO2, SALL4 and TBX5 genes. Recently, SALL4 and TBX5 were demonstrated to be thalidomide targets. To understand if these genes act in the TE development, we sequenced them in 27 individuals with TE; we verified how thalidomide affect them in human pluripotent stem cells (hPSCs) through a differential gene expression (DGE) analysis from GSE63935; and we evaluated how these genes are functionally related through an interaction network analysis. We identified 8 variants in ESCO2, 15 in SALL4 and 15 in TBX5. We compared allelic frequencies with data from ExAC, 1000 Genomes and ABraOM databases; eight variants were significantly different (p < 0.05). Eleven variants in SALL4 and TBX5 were previously associated with cardiac diseases or malformations; however, in TE sample there was no association. Variant effect prediction tools showed 97% of the variants with potential to influence in these genes regulation. DGE analysis showed a significant reduction of ESCO2 in hPSCs after thalidomide exposure.
Collapse
|
8
|
Jha S, Laucis N, Kim L, Malayeri A, Dasgupta A, Papadakis GZ, Karantanas A, Torres M, Bhattacharyya T. CT analysis of anatomical distribution of melorheostosis challenges the sclerotome hypothesis. Bone 2018; 117:31-36. [PMID: 30218789 PMCID: PMC11060331 DOI: 10.1016/j.bone.2018.09.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 08/17/2018] [Accepted: 09/09/2018] [Indexed: 12/29/2022]
Abstract
Melorheostosis (MEL) is a rare disease of high bone mass with patchy skeletal distribution affecting the long bones. We recently reported somatic mosaic mutations in MAP2K1 in 8 of 15 patients with the disease. The unique anatomic distribution of melorheostosis is of great interest. The disease remains limited to medial or lateral side of the extremity with proximo-distal progression. This pattern of distribution has historically been attributed to sclerotomes (area of bone which is innervated by a single spinal nerve level). In a further analysis of our study on MEL, 30 recruited patients underwent whole body CT scans to characterize the anatomic distribution of the disease. Two radiologists independently reviewed these scans and compared it to the proposed map of sclerotomes. We found that the disease distribution conformed to the distribution of a single sclerotome in only 5 patients (17%). In another 12 patients, the lesions spanned parts of contiguous sclerotomes but did not involve the entire extent of the sclerotomes. Our findings raise concerns about the sclerotomal hypothesis being the definitive explanation for the pattern of anatomic distribution in MEL. We believe that the disease distribution can be explained by clonal proliferation of a mutated skeletal progenitor cell along the limb axis. Studies in mice models on clonal proliferation in limb buds mimic the patterns seen in melorheostosis. We also support this hypothesis by the dorso-ventral confinement of melorheostotic lesion in a patient with low allele frequency of MAP2K1-positive osteoblasts and low skeletal burden of the disease. This suggests that the mutation occurred after the formation of dorso-ventral plane. Further studies on limb development are needed to better understand the etiology, pathophysiology and pattern of disease distribution in all patients with MEL.
Collapse
Affiliation(s)
- Smita Jha
- Clinical and Investigative Orthopedics Surgery Unit, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, United States of America; Program in Reproductive and Adult Endocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States of America.
| | - Nicholas Laucis
- Diagnostic Radiology, Henry Ford Health System, Detroit, MI, United States of America
| | - Lauren Kim
- Radiology and Imaging Sciences, National Institutes of Health Clinical Center, Bethesda, MD, United States of America
| | - Ashkan Malayeri
- Radiology and Imaging Sciences, National Institutes of Health Clinical Center, Bethesda, MD, United States of America
| | - Abhijit Dasgupta
- Clinical Trials and Outcomes Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, United States of America
| | - Georgios Z Papadakis
- Foundation for Research and Technology Hellas (FORTH), Institute of Computer Science (ICS), Computational Bio-Medicine Laboratory (CBML), Heraklion, Crete, Greece
| | | | - Miguel Torres
- Programa de Biologia del Desarrollo Cardiovascular, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Instituto de Salud Carlos III, E-28029 Madrid, Spain
| | - Timothy Bhattacharyya
- Clinical and Investigative Orthopedics Surgery Unit, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, United States of America
| |
Collapse
|
9
|
Gomes JDA, Kowalski TW, Fraga LR, Tovo-Rodrigues L, Sanseverino MTV, Schuler-Faccini L, Vianna FSL. Genetic susceptibility to thalidomide embryopathy in humans: Study of candidate development genes. Birth Defects Res 2017; 110:456-461. [PMID: 29193903 DOI: 10.1002/bdr2.1163] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 10/03/2017] [Accepted: 10/25/2017] [Indexed: 12/21/2022]
Abstract
Thalidomide is a drug used worldwide for several indications, but the molecular mechanisms of its teratogenic property are not fully understood. Studies in animal models suggest the oxidative stress, the inhibition of angiogenesis, and the binding to E3-ubiquitin ligase complex as mechanisms by which thalidomide can change the expression of genes important to embryonic development. In this study, seven polymorphisms in genes related to development (FGF8, FGF10, BMP4, SHH, TP53, TP63, and TP73) were analyzed in people with thalidomide embryopathy (TE) and compared to people without malformations. The sample consisted of 36 people with TE and 135 unrelated and nonsyndromic people who had their DNA genotyped by PCR real-time. Although no allelic or genotypic differences were observed between the groups, we hypothesized that other regions in these genes and related genes may play an important role in thalidomide teratogenesis, which is known to have a genetic contribution. Identifying such molecular mechanisms is essential for the development of a molecule that will be analogue to thalidomide but safe enough to avoid the emergence of new cases of TE.
Collapse
Affiliation(s)
- Julia do Amaral Gomes
- Postgraduate Program in Genetics and Molecular Biology, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.,National Institute of Population Medical Genetics (INAGEMP), Porto Alegre, Brazil
| | - Thayne Woycinck Kowalski
- Postgraduate Program in Genetics and Molecular Biology, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.,National Institute of Population Medical Genetics (INAGEMP), Porto Alegre, Brazil
| | - Lucas Rosa Fraga
- Postgraduate Program in Genetics and Molecular Biology, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.,National Institute of Population Medical Genetics (INAGEMP), Porto Alegre, Brazil.,Medical Genetics Service at the Porto Alegre Clinics Hospital, Brazilian Teratogen Information Service (SIAT), Porto Alegre, Brazil
| | - Luciana Tovo-Rodrigues
- Postgraduate Program in Genetics and Molecular Biology, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Maria Teresa Vieira Sanseverino
- Postgraduate Program in Genetics and Molecular Biology, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.,National Institute of Population Medical Genetics (INAGEMP), Porto Alegre, Brazil.,Medical Genetics Service at the Porto Alegre Clinics Hospital, Brazilian Teratogen Information Service (SIAT), Porto Alegre, Brazil
| | - Lavínia Schuler-Faccini
- Postgraduate Program in Genetics and Molecular Biology, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.,National Institute of Population Medical Genetics (INAGEMP), Porto Alegre, Brazil.,Medical Genetics Service at the Porto Alegre Clinics Hospital, Brazilian Teratogen Information Service (SIAT), Porto Alegre, Brazil
| | - Fernanda Sales Luiz Vianna
- Postgraduate Program in Genetics and Molecular Biology, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.,National Institute of Population Medical Genetics (INAGEMP), Porto Alegre, Brazil.,Medical Genetics Service at the Porto Alegre Clinics Hospital, Brazilian Teratogen Information Service (SIAT), Porto Alegre, Brazil.,Genomic Medicine Laboratory at Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Brazil.,Laboratory of Research in Bioethics and Ethics in Research (LAPEBEC), at Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Brazil
| |
Collapse
|