1
|
Zeng WJ, Yang HJ, Gu YJ, Yang MN, Sun MR, Cheng SK, Hou YY, Gu W. High taurocholic acid concentration induces ferroptosis by downregulating FTH1 expression in intrahepatic cholestasis of pregnancy. BMC Pregnancy Childbirth 2025; 25:21. [PMID: 39789492 PMCID: PMC11715977 DOI: 10.1186/s12884-025-07143-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 01/02/2025] [Indexed: 01/12/2025] Open
Abstract
BACKGROUND Intrahepatic cholestasis of pregnancy (ICP) is the most common liver disorder associated with pregnancy and is usually diagnosed based on high serum bile acid. However, the pathogenesis of ICP is unclear. Ferroptosis has been reported as an iron-dependent mechanism of cell death. Although the role of Ferritin Heavy Chain 1 (FTH1) in ferroptosis has been extensively studied in various diseases, its mechanism in ICP through ferroptosis is yet to be analyzed. METHODS Placental tissues from patients with ICP and healthy controls were employed to verify the expression of FTH1. Taurocholic acid (TCA)-induced HTR-8/SVneo cells were established as an in vitro model for ICP, and ferroptosis-related experiments were performed. In particular, HTR-8/SVneo cells with or without overexpressing FTH1 and HTR-8/SVneo cells with or without TCA induction were investigated to explore the relationship between FTH1 and ferroptosis during ICP in vitro, respectively. RESULTS FTH1 was significantly downregulated in the ICP group compared with the control group. Furthermore, FTH1 and ferroptosis-related protein levels were downregulated, while the intracellular iron, reactive oxygen species, and lipid peroxidation levels were upregulated in the TCA-induced HTR-8/SVneo cells. In contrast, ferroptosis was inhibited by overexpression of FTH1 in TCA-induced HTR-8/SVneo cells. CONCLUSIONS A high concentration of TCA in HTR-8/SVneo cells decreased the expression of FTH1. Overexpression of FTH1 could prevent cell death from ferroptosis induced by TCA. Thus, inhibiting the downregulation of FTH1 could be a potential therapeutic target for ICP treatment.
Collapse
Affiliation(s)
- Wei-Jian Zeng
- School of Medicine, The International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University, Shanghai, 200030, China
- Shanghai Municipal Key Clinical Specialty, Shanghai, 200030, China
| | - Hua-Jing Yang
- School of Medicine, The International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University, Shanghai, 200030, China
- Shanghai Municipal Key Clinical Specialty, Shanghai, 200030, China
| | - Ying-Jie Gu
- School of Medicine, The International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University, Shanghai, 200030, China
- Shanghai Municipal Key Clinical Specialty, Shanghai, 200030, China
| | - Meng-Nan Yang
- School of Medicine, The International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University, Shanghai, 200030, China
- Shanghai Municipal Key Clinical Specialty, Shanghai, 200030, China
| | - Meng-Ru Sun
- School of Medicine, The International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University, Shanghai, 200030, China
- Shanghai Municipal Key Clinical Specialty, Shanghai, 200030, China
| | - Sheng-Kai Cheng
- School of Medicine, The International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University, Shanghai, 200030, China
- Shanghai Municipal Key Clinical Specialty, Shanghai, 200030, China
| | - Yan-Yan Hou
- School of Medicine, The International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University, Shanghai, 200030, China.
- Shanghai Municipal Key Clinical Specialty, Shanghai, 200030, China.
| | - Wei Gu
- School of Medicine, The International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University, Shanghai, 200030, China.
- Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, 200030, China.
- Shanghai Municipal Key Clinical Specialty, Shanghai, 200030, China.
| |
Collapse
|
2
|
Xie Y, Fang X, Wang A, Xu S, Li Y, Xia W. Association of cord plasma metabolites with birth weight: results from metabolomic and lipidomic studies of discovery and validation cohorts. ULTRASOUND IN OBSTETRICS & GYNECOLOGY : THE OFFICIAL JOURNAL OF THE INTERNATIONAL SOCIETY OF ULTRASOUND IN OBSTETRICS AND GYNECOLOGY 2024; 64:87-96. [PMID: 38243991 DOI: 10.1002/uog.27591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 11/29/2023] [Accepted: 01/15/2024] [Indexed: 01/22/2024]
Abstract
OBJECTIVE Birth weight is a good predictor of fetal intrauterine growth and long-term health, and several studies have evaluated the relationship between metabolites and birth weight. The aim of this study was to investigate the association of cord blood metabolomics and lipidomics with birth weight, using a two-stage discovery and validation approach. METHODS Firstly, a pseudotargeted metabolomics approach was applied to detect metabolites in 504 cord blood samples in the discovery set enrolled from the Wuhan Healthy Baby Cohort, China. Metabolome-wide association scan analysis and pathway enrichment were applied to identify metabolites and metabolic pathways that were significantly associated with birth weight adjusted for gestational age Z-score (BW Z-score). Logistic regression models were used to analyze the association of metabolites in the most significantly associated pathways with small-for-gestational age (SGA) at delivery and low birth weight (LBW). Subsequently, 350 cord blood samples in a validation cohort were subjected to targeted analysis to validate the metabolites identified by screening in the discovery cohort. RESULTS In the discovery set, of 2566 metabolites detected, 2418 metabolites were retained for subsequent analysis after data preprocessing. Of these, 513 metabolites were significantly associated with BW Z-score (P-value adjusted for false discovery rate (PFDR) < 0.05), of which 298 Kyoto Encyclopedia of Genes and Genomes (KEGG)-annotated metabolites were included in the pathway analysis. The primary bile acid biosynthesis pathway was the most relevant metabolic pathway associated with BW Z-score. Elevated cord plasma primary bile acids were associated with lower BW Z-score and higher risk of SGA or LBW in the discovery and validation cohorts. In the validation set, a 2-fold increase in taurochenodeoxycholic acid (TCDCA) and in taurocholic acid (TCA) was associated with a decrease in BW Z-score (estimated β coefficient, -0.10 (95% CI, -0.20 to 0.00) and -0.18 (95% CI, -0.31 to -0.04), respectively), after adjusting for covariates. In addition, a 2-fold increase in cord plasma TCDCA and of cord plasma TCA was associated with an increased risk of SGA (adjusted odds ratio (OR), 1.52 (95% CI, 1.00-2.30) and 1.77 (95% CI, 1.05-2.98), respectively). The adjusted OR for LBW, for a 2-fold increase in TCDCA and TCA concentration, were 2.39 (95% CI, 1.00-5.71) and 3.21 (95% CI, 0.96-10.74), respectively. CONCLUSIONS These results indicate a significant association of elevated primary bile acids, particularly TCDCA and TCA, in cord blood with lower BW Z-score, as well as increased risk of SGA and LBW. Abnormalities of primary bile acid metabolism may play an important role in restricted fetal development. © 2024 International Society of Ultrasound in Obstetrics and Gynecology.
Collapse
Affiliation(s)
- Y Xie
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - X Fang
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - A Wang
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - S Xu
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- School of Environmental Science and Engineering, Hainan University, Haikou, Hainan, China
| | - Y Li
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - W Xia
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
3
|
Zhang Y, Liu Y, Huo W, He L, Li B, Wang H, Meng F, Duan C, Zhou B, Wu J, Chen R, Xing J, Wan Y. The Role of miRNA and Long Noncoding RNA in Cholestatic Liver Diseases. THE AMERICAN JOURNAL OF PATHOLOGY 2024; 194:879-893. [PMID: 38417698 DOI: 10.1016/j.ajpath.2024.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 02/05/2024] [Accepted: 02/16/2024] [Indexed: 03/01/2024]
Abstract
Cholestatic liver diseases encompass a range of organic damages, metabolic disorders, and dysfunctions within the hepatobiliary system, arising from various pathogenic causes. These factors contribute to disruptions in bile production, secretion, and excretion. Cholestatic liver diseases can be classified into intrahepatic and extrahepatic cholestasis, according to the location of occurrence. The etiology of cholestatic liver diseases is complex, and includes drugs, poisons, viruses, parasites, bacteria, autoimmune responses, tumors, and genetic metabolism. The pathogenesis of cholelstatic liver disease is not completely clarified, and effective therapy is lacking. Clarifying its mechanism to find more effective therapeutic targets and drugs is an unmet need. Increasing evidence demonstrates that miRNA and long noncoding RNA are involved in the progression of cholestatic liver diseases. This review provides a comprehensive summary of the research progress on the roles of miRNA and long noncoding RNA in cholestatic liver diseases. The aim of the review is to enhance the understanding of their potential diagnostic, therapeutic, and prognostic value for patients with cholestasis.
Collapse
Affiliation(s)
- Yudian Zhang
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
| | - Ying Liu
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
| | - Wen Huo
- Functional Experiment Center, College of Basic and Legal Medicine, North Sichuan Medical College, Nanchong, China
| | - Longfei He
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
| | - Bowen Li
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
| | - Hui Wang
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
| | - Fanyin Meng
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana; Richard L. Roudebush VA Medical Center, Indianapolis, Indiana
| | - Chenggang Duan
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
| | - Bingru Zhou
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
| | - Jinbo Wu
- Department of Otolaryngology-Head and Neck Surgery, Luzhou Maternal and Child Health Hospital (Luzhou Second People's Hospital), Luzhou, China
| | - Rong Chen
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
| | - Juan Xing
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, China.
| | - Ying Wan
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, China.
| |
Collapse
|
4
|
Xiong L, Tang M, Xing S, Yang X. The role of noncoding RNA and its diagnostic potential in intrahepatic cholestasis of pregnancy: a research update. Front Genet 2023; 14:1239693. [PMID: 37900174 PMCID: PMC10611463 DOI: 10.3389/fgene.2023.1239693] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 09/27/2023] [Indexed: 10/31/2023] Open
Abstract
Intrahepatic cholestasis of pregnancy (ICP) is a common liver disorder that generally occurs during the second or third trimester of pregnancy. It rarely causes any harm to the mother; however, it can result in short- and long-term complications in the offspring. Therefore, it is crucial to diagnose and treat this condition to avoid poor pregnancy outcomes. The identification of novel markers with potential diagnostic, prognostic, and therapeutic utility in ICP has gained attention. Noncoding RNAs (ncRNAs), including microRNA, long noncoding RNA, and circular RNA, are a type of transcripts that are not translated into proteins. They possess vital biological functions, including transcriptional and translational regulation and DNA, RNA, and protein interactions. The pathogenesis of ICP is related to the aberrant expression of several circulating or placenta-related ncRNAs. In this review, we summarized all recent findings on ncRNAs and ICP and outlined the concepts that form the basis for the early diagnosis and targeted treatment of ICP.
Collapse
Affiliation(s)
- Liling Xiong
- Obstetrics Department, Chengdu Women’s and Children’s Center Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Mi Tang
- GCP Institution, Chengdu Women’s and Children’s Center Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Shasha Xing
- GCP Institution, Chengdu Women’s and Children’s Center Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Xiao Yang
- Obstetrics Department, Chengdu Women’s and Children’s Center Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
5
|
Kong Y, Zhan Y, Chen D, Deng X, Liu X, Xu T, Wang X. Unique microRNA expression profiles in plasmic exosomes from intrahepatic cholestasis of pregnancy. BMC Pregnancy Childbirth 2023; 23:147. [PMID: 36882772 PMCID: PMC9990296 DOI: 10.1186/s12884-023-05456-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 02/20/2023] [Indexed: 03/09/2023] Open
Abstract
BACKGROUND Intrahepatic cholestasis of pregnancy (ICP) is strongly associated with an increased risk of adverse perinatal outcomes. Total bile acid (TBA) levels in the late second or third trimester are a major factor in the diagnosis. Here, we sought to establish the miRNA expression profile of plasm exosomes of ICP and identify possible biomarkers for the diagnosis of ICP. METHODS This case-control study involved 14 ICP patients as the experimental group and 14 healthy pregnant women as the control group. Electron microscopy was used to observe the presence of exosomes in plasma. Nanosight and Western blotting of CD63 was used to assess exosome quality. Among them, three ICP patients and three controls were used for isolation plasmic exosome and preliminary miRNA array analysis. The Agilent miRNA array was utilized to dynamically monitor the miRNA expression in plasmic exosomes of included patients in the first trimester(T1), second trimester (T2), third trimester (T3), and delivery (T4). Then, Quantitative real-time Polymerase chain reaction was used to identify and validate differentially expressed miRNAs in plasma-derived exosomes. RESULTS The expression levels of hsa-miR-940, hsa-miR-636, and hsa-miR-767-3p in plasma-derived exosomes of ICP patients were significantly higher than those of healthy pregnant women. Besides, these three miRNAs were also significantly up-regulated at the plasma, placental, and cellular levels (P < 0.05). The diagnostic accuracy of hsa-miR-940, hsa-miR-636, and hsa-miR-767-3p was further evaluated by the ROC curve, the area under the curve (AUC) values for each were 0.7591, 0.7727, and 0.8955, respectively. CONCLUSIONS We identified three differentially expressed miRNAs in the plasma exosomes of ICP patients. Hence, hsa-miR-940, hsa-miR-636, and hsa-miR-767-3p may be potential biomarkers for enhancing the diagnosis and prognosis of ICP.
Collapse
Affiliation(s)
- Yao Kong
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, Sichuan province, China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Sichuan, 610041, China
| | - Yongchi Zhan
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, Sichuan province, China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Sichuan, 610041, China
| | - Daijuan Chen
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, Sichuan province, China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Sichuan, 610041, China
| | - Xixi Deng
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, Sichuan province, China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Sichuan, 610041, China
| | - Xinghui Liu
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, Sichuan province, China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Sichuan, 610041, China
| | - Tingting Xu
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, Sichuan province, China. .,Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Sichuan, 610041, China.
| | - Xiaodong Wang
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, Sichuan province, China. .,Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Sichuan, 610041, China.
| |
Collapse
|
6
|
Feng F, Lei L, Liao J, Huang X, Shao Y. Circ_0060731 mediated miR-21–5p-PDCD4/ESR1 pathway to induce apoptosis of placental trophoblasts in intrahepatic cholestasis of pregnancy. Tissue Cell 2022; 76:101771. [DOI: 10.1016/j.tice.2022.101771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 02/28/2022] [Accepted: 02/28/2022] [Indexed: 11/16/2022]
|
7
|
Žarković M, Hufsky F, Markert UR, Marz M. The Role of Non-Coding RNAs in the Human Placenta. Cells 2022; 11:1588. [PMID: 35563893 PMCID: PMC9104507 DOI: 10.3390/cells11091588] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 05/01/2022] [Accepted: 05/03/2022] [Indexed: 12/11/2022] Open
Abstract
Non-coding RNAs (ncRNAs) play a central and regulatory role in almost all cells, organs, and species, which has been broadly recognized since the human ENCODE project and several other genome projects. Nevertheless, a small fraction of ncRNAs have been identified, and in the placenta they have been investigated very marginally. To date, most examples of ncRNAs which have been identified to be specific for fetal tissues, including placenta, are members of the group of microRNAs (miRNAs). Due to their quantity, it can be expected that the fairly larger group of other ncRNAs exerts far stronger effects than miRNAs. The syncytiotrophoblast of fetal origin forms the interface between fetus and mother, and releases permanently extracellular vesicles (EVs) into the maternal circulation which contain fetal proteins and RNA, including ncRNA, for communication with neighboring and distant maternal cells. Disorders of ncRNA in placental tissue, especially in trophoblast cells, and in EVs seem to be involved in pregnancy disorders, potentially as a cause or consequence. This review summarizes the current knowledge on placental ncRNA, their transport in EVs, and their involvement and pregnancy pathologies, as well as their potential for novel diagnostic tools.
Collapse
Affiliation(s)
- Milena Žarković
- RNA Bioinformatics and High-Throughput Analysis, Friedrich Schiller University Jena, Leutragraben 1, 07743 Jena, Germany; (M.Ž.); (F.H.)
- European Virus Bioinformatics Center, Leutragraben 1, 07743 Jena, Germany
- Placenta Lab, Department of Obstetrics, University Hospital Jena, Am Klinikum 1, 07747 Jena, Germany;
| | - Franziska Hufsky
- RNA Bioinformatics and High-Throughput Analysis, Friedrich Schiller University Jena, Leutragraben 1, 07743 Jena, Germany; (M.Ž.); (F.H.)
- European Virus Bioinformatics Center, Leutragraben 1, 07743 Jena, Germany
| | - Udo R. Markert
- Placenta Lab, Department of Obstetrics, University Hospital Jena, Am Klinikum 1, 07747 Jena, Germany;
| | - Manja Marz
- RNA Bioinformatics and High-Throughput Analysis, Friedrich Schiller University Jena, Leutragraben 1, 07743 Jena, Germany; (M.Ž.); (F.H.)
- European Virus Bioinformatics Center, Leutragraben 1, 07743 Jena, Germany
- FLI Leibniz Institute for Age Research, Beutenbergstraße 11, 07745 Jena, Germany
- Aging Research Center (ARC), 07745 Jena, Germany
| |
Collapse
|
8
|
Pennisi G, Pipitone RM, Cabibi D, Enea M, Romero-Gomez M, Viganò M, Bugianesi E, Wong VWS, Fracanzani AL, Sebastiani G, Berzigotti A, Di Salvo F, Giannone AG, La Mantia C, Lupo G, Porcasi R, Vernuccio F, Zito R, Di Marco V, Cammà C, Craxì A, de Ledinghen V, Grimaudo S, Petta S. A cholestatic pattern predicts major liver-related outcomes in patients with non-alcoholic fatty liver disease. Liver Int 2022; 42:1037-1048. [PMID: 35246921 DOI: 10.1111/liv.15232] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 02/08/2022] [Accepted: 02/16/2022] [Indexed: 02/13/2023]
Abstract
BACKGROUND & AIMS NAFLD patients usually have an increase in AST/ALT levels, but cholestasis can also be observed. We aimed to assess in subjects with NAFLD the impact of the (cholestatic) C pattern on the likelihood of developing major liver-related outcomes (MALO). METHODS Five hundred and eighty-two consecutive patients with biopsy-proven NAFLD or a clinical diagnosis of NAFLD-related compensated cirrhosis were classified as hepatocellular (H), C and mixed (M) patterns, by using the formula (ALT/ALT Upper Limit of Normal-ULN)/(ALP/ALP ULN). MALO were recorded during follow-up. An external cohort of 1281 biopsy-proven NAFLD patients was enrolled as validation set. RESULTS H, M and C patterns were found in 153 (26.3%), 272 (46.7%) and 157 (27%) patients respectively. During a median follow-up of 78 months, only 1 (0.6%) patient with H pattern experienced MALO, whilst 15 (5.5%) and 38 (24.2%) patients in M and C groups had MALO. At multivariate Cox regression analysis, age >55 years (HR 2.55, 95% CI 1.17-5.54; p = .01), platelets <150 000/mmc (HR 0.14, 95% CI 0.06-0.32; p < .001), albumin <4 g/L(HR 0.62, 95% CI 0.35-1.08; p = .09), C versus M pattern (HR 7.86, 95% CI 1.03-60.1; p = .04), C versus H pattern(HR 12.1, 95% CI 1.61-90.9; p = .01) and fibrosis F3-F4(HR 35.8, 95% CI 4.65-275.2; p < .001) were independent risk factors for MALO occurrence. C versus M pattern(HR 14.3, 95% CI 1.90-105.6; p = .008) and C versus H pattern (HR 15.6, 95% CI 2.10-115.1; p = .0068) were confirmed independently associated with MALO occurrence in the validation set. The immunohistochemical analysis found a significantly higher prevalence of moderate-high-grade ductular metaplasia combined with low-grade ductular proliferation in C pattern when compared with the biochemical H pattern. Gene expression analysis showed a lower expression of NR1H3, RXRα and VCAM1 in patients with the C pattern. CONCLUSIONS The presence of a cholestatic pattern in patients with NAFLD predicts a higher risk of MALO independently from other features of liver disease.
Collapse
Affiliation(s)
- Grazia Pennisi
- Section of Gastroenterology and Hepatology, Dipartimento Di Promozione Della Salute, Materno Infantile, Medicina Interna e Specialistica Di Eccellenza (PROMISE), University of Palermo, Palermo, Italy
| | - Rosaria Maria Pipitone
- Section of Gastroenterology and Hepatology, Dipartimento Di Promozione Della Salute, Materno Infantile, Medicina Interna e Specialistica Di Eccellenza (PROMISE), University of Palermo, Palermo, Italy
| | - Daniela Cabibi
- Dipartimento Di Promozione Della Salute, Materno Infantile, Medicina Interna e Specialistica Di Eccellenza (PROMISE), Palermo, Italy
| | - Marco Enea
- Dipartimento Di Promozione Della Salute, Materno Infantile, Medicina Interna e Specialistica Di Eccellenza (PROMISE), Palermo, Italy
| | - Manuel Romero-Gomez
- Digestive Diseases Unit, Hospital Universitario Virgen del Rocío, Biomedical Research Networking Center in Hepatic and Digestive Diseases, Instituto de Biomedicina de Sevilla, University of Seville, Seville, Spain
| | - Mauro Viganò
- Hepatology Unit, Ospedale San Giuseppe, University of Milan, Milan, Italy
| | - Elisabetta Bugianesi
- Division of Gastroenterology, Department of Medical Sciences, University of Torino, Turin, Italy
| | - Vincent Wai-Sun Wong
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong City, Hong Kong
| | - Anna Ludovica Fracanzani
- Department of Pathophysiology and Transplantation, Ca' Granda IRCCS Foundation, Policlinico Hospital, University of Milan, Milan, Italy
| | - Giada Sebastiani
- Division of Gastroenterology and Hepatology, McGill University Health Centre, Quebec, Canada
| | - Annalisa Berzigotti
- Hepatology Group, University Clinic for Visceral Surgery and Medicine, Inselspital, Department for Biomedical Research, University of Bern, Bern, Switzerland
| | - Francesca Di Salvo
- Department of Agricultural, Food and Forest Sciences, University of Palermo, Palermo, Italy
| | - Antonino Giulio Giannone
- Dipartimento Di Promozione Della Salute, Materno Infantile, Medicina Interna e Specialistica Di Eccellenza (PROMISE), Palermo, Italy
| | - Claudia La Mantia
- Section of Gastroenterology and Hepatology, Dipartimento Di Promozione Della Salute, Materno Infantile, Medicina Interna e Specialistica Di Eccellenza (PROMISE), University of Palermo, Palermo, Italy
| | - Giulia Lupo
- Section of Gastroenterology and Hepatology, Dipartimento Di Promozione Della Salute, Materno Infantile, Medicina Interna e Specialistica Di Eccellenza (PROMISE), University of Palermo, Palermo, Italy
| | - Rossana Porcasi
- Dipartimento Di Promozione Della Salute, Materno Infantile, Medicina Interna e Specialistica Di Eccellenza (PROMISE), Palermo, Italy
| | - Federica Vernuccio
- Dipartimento di Biomedicina, Neuroscienze e Diagnostica avanzata (BIND), University of Palermo, Palermo, Italy
| | - Rossella Zito
- Dipartimento Di Promozione Della Salute, Materno Infantile, Medicina Interna e Specialistica Di Eccellenza (PROMISE), Palermo, Italy
| | - Vito Di Marco
- Section of Gastroenterology and Hepatology, Dipartimento Di Promozione Della Salute, Materno Infantile, Medicina Interna e Specialistica Di Eccellenza (PROMISE), University of Palermo, Palermo, Italy
| | - Calogero Cammà
- Section of Gastroenterology and Hepatology, Dipartimento Di Promozione Della Salute, Materno Infantile, Medicina Interna e Specialistica Di Eccellenza (PROMISE), University of Palermo, Palermo, Italy
| | - Antonio Craxì
- Section of Gastroenterology and Hepatology, Dipartimento Di Promozione Della Salute, Materno Infantile, Medicina Interna e Specialistica Di Eccellenza (PROMISE), University of Palermo, Palermo, Italy
| | - Victor de Ledinghen
- Centre d'Investigation de la Fibrose Hépatique, Hôpital Haut-Lévêque, Bordeaux University Hospital, Pessac, & INSERM U1053, Université de Bordeaux, Pessac, France
| | - Stefania Grimaudo
- Section of Gastroenterology and Hepatology, Dipartimento Di Promozione Della Salute, Materno Infantile, Medicina Interna e Specialistica Di Eccellenza (PROMISE), University of Palermo, Palermo, Italy
| | - Salvatore Petta
- Section of Gastroenterology and Hepatology, Dipartimento Di Promozione Della Salute, Materno Infantile, Medicina Interna e Specialistica Di Eccellenza (PROMISE), University of Palermo, Palermo, Italy
| |
Collapse
|
9
|
Molecular Pathogenesis of Intrahepatic Cholestasis of Pregnancy. Can J Gastroenterol Hepatol 2021; 2021:6679322. [PMID: 34195157 PMCID: PMC8181114 DOI: 10.1155/2021/6679322] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Accepted: 05/22/2021] [Indexed: 12/12/2022] Open
Abstract
Intrahepatic cholestasis of pregnancy (ICP) is a pregnancy-specific liver disease. The maternal symptoms are characterized by skin pruritus and elevated bile acids, causing several adverse outcomes for fetuses, including an increased risk of preterm birth, meconium-stained amniotic fluid, neonatal depression, respiratory distress syndrome, and stillbirth. Genetic, hormonal, immunological, and environmental factors contribute to the pathogenesis of ICP, and the estrogen-bile acid axis is thought to play a dominant role. The advances in the past 10 years uncover more details of this axis. Moreover, dysregulation of extracellular matrix and oxygen supply, organelle dysfunction, and epigenetic changes are also found to cause ICP, illuminating more potential drug targets for interfering with. Here, we summarize the molecular pathogenesis of ICP with an emphasis on the advancement in the past 10 years, aiming to give an updated full view of this field.
Collapse
|
10
|
Zou M, Wang A, Wei J, Cai H, Yu Z, Zhang L, Wang X. An insight into the mechanism and molecular basis of dysfunctional immune response involved in cholestasis. Int Immunopharmacol 2021; 92:107328. [PMID: 33412394 DOI: 10.1016/j.intimp.2020.107328] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 12/12/2020] [Accepted: 12/19/2020] [Indexed: 02/07/2023]
Abstract
Cholestasis is one of the most common clinical symptom of liver diseases. If patients do not receive effective treatment, cholestasis can evolve into liver fibrosis, cirrhosis and ultimately liver failure requiring liver transplantation. Currently, only ursodeoxycholic acid, obeticholic acid and bezafibrate are FDA-approved drugs, thereby requiring a breakthrough in new mechanisms and therapeutic development. Inflammation is one of the common complications of cholestasis. Hepatic accumulation of toxic hydrophobic bile acids is a highly immunogenic process involving both resident and immigrating immune cells. And the resulting inflammation may further aggravate hepatocyte injury. Though, great investigations have been made in the immune responses during cholestasis, the relationship between immune responses and cholestasis remains unclear. Moreover, scarce reviews summarize the immune responses during cholestasis and the efficacy of therapies on immune response. The main purpose of this paper is to review the existing literature on dysfunctional immune response during cholestasis and the effect of treatment on immune response which may provide an insight for researchers and drug development.
Collapse
Affiliation(s)
- Mengzhi Zou
- New drug screening center, Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing 210009, PR China
| | - Aizhen Wang
- The Affiliated Huai'an Hospital of Xuzhou Medical University and The Second People's Hospital of Huai'an, Huaian 223002, PR China
| | - Jiajie Wei
- Department of Nursing, School of Medicine, Jiangsu University, Zhenjiang 212013, PR China
| | - Heng Cai
- New drug screening center, Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing 210009, PR China
| | - Zixun Yu
- New drug screening center, Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing 210009, PR China
| | - Luyong Zhang
- New drug screening center, Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing 210009, PR China; Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou 510006, PR China.
| | - Xinzhi Wang
- New drug screening center, Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing 210009, PR China.
| |
Collapse
|
11
|
Wei H, Wang L, An Z, Xie H, Liu W, Du Q, Guo Y, Wu X, Li S, Shi Y, Zhang X, Liu H. QiDiTangShen granules modulated the gut microbiome composition and improved bile acid profiles in a mouse model of diabetic nephropathy. Biomed Pharmacother 2020; 133:111061. [PMID: 33378964 DOI: 10.1016/j.biopha.2020.111061] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 11/19/2020] [Accepted: 11/20/2020] [Indexed: 12/11/2022] Open
Abstract
QiDiTangShen granules (QDTS), a traditional Chinese herbal medicine, have been used in clinical practice for treating diabetic kidney disease for several years. In our previous study, we have demonstrated that QDTS displayed good efficacy on reducing proteinuria in mice with diabetic nephropathy (DN). However, the exact mechanism by which QDTS exerts its reno-protection remains largely unknown. To ascertain whether QDTS could target the gut microbiota-bile acid axis, the db/db mice were adopted as a mouse model of DN. After a 12-week of treatment, we found that QDTS significantly reduced urinary albumin excretion (UAE), and attenuated the pathological injuries of kidney in the db/db mice, while the body weight and blood glucose levels of those mice were not affected. In addition, we found that QDTS significantly altered the gut microbiota composition, and decreased serum levels of total bile acid (TBA) and BA profiles such as β-muricholic acid (β-MCA), taurocholic acid (TCA), tauro β-muricholic acid (Tβ-MCA) and deoxycholic acid (DCA). These BAs are associated with the activation of farnesoid X receptor (FXR), which is highly expressed in kidney. However, there was no significant difference between QDTS-treated and -untreated db/db mice regarding the renal expression of FXR, indicating that other mechanisms may be involved. Conclusively, our study revealed that QDTS significantly alleviated renal injuries in mice with DN. The gut microbiota-bile acid axis may be an important target for the reno-protection of QDTS in DN, but the specific mechanism merits further study.
Collapse
Affiliation(s)
- Huili Wei
- Department of Endocrinology and Nephrology, Renal Research Institute of Beijing University of Chinese Medicine, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Haiyuncang Road No. 5, Beijing, 100700, China
| | - Lin Wang
- Department of Endocrinology and Nephrology, Renal Research Institute of Beijing University of Chinese Medicine, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Haiyuncang Road No. 5, Beijing, 100700, China
| | - Zhichao An
- Department of Endocrinology and Nephrology, Renal Research Institute of Beijing University of Chinese Medicine, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Haiyuncang Road No. 5, Beijing, 100700, China
| | - Huidi Xie
- Department of Endocrinology and Nephrology, Renal Research Institute of Beijing University of Chinese Medicine, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Haiyuncang Road No. 5, Beijing, 100700, China
| | - Weijing Liu
- Department of Endocrinology and Nephrology, Renal Research Institute of Beijing University of Chinese Medicine, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Haiyuncang Road No. 5, Beijing, 100700, China; Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Haiyuncang Road No. 5, Beijing, 100700, China
| | - Qing Du
- Department of Endocrinology and Nephrology, Renal Research Institute of Beijing University of Chinese Medicine, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Haiyuncang Road No. 5, Beijing, 100700, China
| | - Yan Guo
- Department of Endocrinology and Nephrology, Renal Research Institute of Beijing University of Chinese Medicine, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Haiyuncang Road No. 5, Beijing, 100700, China
| | - Xi Wu
- Department of Endocrinology and Nephrology, Renal Research Institute of Beijing University of Chinese Medicine, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Haiyuncang Road No. 5, Beijing, 100700, China
| | - Sicheng Li
- Department of Endocrinology and Nephrology, Renal Research Institute of Beijing University of Chinese Medicine, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Haiyuncang Road No. 5, Beijing, 100700, China
| | - Yang Shi
- Department of Endocrinology and Nephrology, Renal Research Institute of Beijing University of Chinese Medicine, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Haiyuncang Road No. 5, Beijing, 100700, China
| | - Xianhui Zhang
- Department of Endocrinology and Nephrology, Renal Research Institute of Beijing University of Chinese Medicine, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Haiyuncang Road No. 5, Beijing, 100700, China; Health Management Center, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Dongsibei Road No. 279, Dongcheng District, Beijing, 100700, China.
| | - Hongfang Liu
- Department of Endocrinology and Nephrology, Renal Research Institute of Beijing University of Chinese Medicine, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Haiyuncang Road No. 5, Beijing, 100700, China; Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Haiyuncang Road No. 5, Beijing, 100700, China.
| |
Collapse
|
12
|
Huo Z, Kong Y, Meng M, Cao Z, Zhou Q. Atorvastatin enhances endothelial adherens junctions through promoting VE-PTP gene transcription and reducing VE-cadherin-Y731 phosphorylation. Vascul Pharmacol 2019; 117:7-14. [PMID: 29894844 DOI: 10.1016/j.vph.2018.06.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 06/03/2018] [Accepted: 06/03/2018] [Indexed: 12/17/2022]
Abstract
Vascular endothelial protein tyrosine phosphatase (VE-PTP) is essential for endothelial cells (ECs) adherens junction and vascular homeostasis; however, the regulatory mechanism of VE-PTP transcription is unknown, and a drug able to promote VE-PTP expression in ECs has not yet been reported in the literature. In this study, we used human ECs as a model to explore small molecule compounds able to promote VE-PTP expression, and found that atorvastatin, a HMG-CoA reductase inhibitor widely used in the clinic to treat hypercholesterolemia-related cardiovascular diseases, strongly promoted VE-PTP transcription in ECs through activating the VE-PTP promoter and upregulating the expression of the transcription factor, specificity protein 1 (SP1). Additionally, atorvastatin markedly reduced VE-cadherin-Y731 phosphorylation induced by cigarette smoke extract and significantly enhanced stability of endothelial adherens junctions. Together, our findings reveal that atorvastatin up-regulates VE-PTP expression, increases VE-cadherin protein levels, and decreases VE-cadherin-Y731 phosphorylation to strengthen EC adherens junctions and maintain vascular cell monolayer integrity, offering a new mechanism of atorvastatin against CSE-induced disruption of vascular integrity and relevant cardio-cerebrovascular disease.
Collapse
Affiliation(s)
- Zihe Huo
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, State Key Laboratory of Radiation Medicine; 2011 Collaborative Innovation Center of Hematology, Soochow University, Suzhou, Jiangsu 215123, China
| | - Ying Kong
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, State Key Laboratory of Radiation Medicine; 2011 Collaborative Innovation Center of Hematology, Soochow University, Suzhou, Jiangsu 215123, China
| | - Mei Meng
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, State Key Laboratory of Radiation Medicine; 2011 Collaborative Innovation Center of Hematology, Soochow University, Suzhou, Jiangsu 215123, China
| | - Zhifei Cao
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, State Key Laboratory of Radiation Medicine; 2011 Collaborative Innovation Center of Hematology, Soochow University, Suzhou, Jiangsu 215123, China
| | - Quansheng Zhou
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, State Key Laboratory of Radiation Medicine; 2011 Collaborative Innovation Center of Hematology, Soochow University, Suzhou, Jiangsu 215123, China.
| |
Collapse
|