1
|
Longoni V, Kandel Gambarte PC, Rueda L, Fuchs JS, Rovedatti MG, Wolansky MJ. Long-lasting developmental effects in rat offspring after maternal exposure to acetamiprid in the drinking water during gestation. Toxicol Sci 2024; 198:61-75. [PMID: 38011675 DOI: 10.1093/toxsci/kfad122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023] Open
Abstract
Neonicotinoids (NNTs) are a class of insecticides proposed to be safe for pest control in urban, suburban, and agricultural applications. However, little is known about their developmental effects after repeated low-dose exposures during gestation. Here, we tested a dose considered subthreshold for maternal toxicity in rats (6 mg/kg/day) by assessing several morphological, biochemical, and neurobehavioral features in preterm fetuses and developing pups after maternal administration of the NTT acetamiprid (ACP) dissolved in the drinking water during gestational days (GD) 2-19. The exploratory evaluation included monitoring maternal body weight gain, fetal viability, body weight and sex ratio, cephalic length, neonatal body weight and sex ratio, metabolic enzymes in the placenta, maternal blood and fetal liver, and anogenital distance and surface righting response during infancy. We also used the circling training test to study the integrity of the associative-spatial-motor response in adolescence. Results showed no consistent findings indicating maternal, reproductive or developmental toxicity. However, we found ACP effects on maternal body weight gain, placental butyrylcholinesterase activity, and neurobehavioral responses, suggestive of a mild toxic action. Thus, our study showed a trend for developmental susceptibility at a dose so far considered subtoxic. Although the ACP concentration in environmental samples of surface water and groundwater has been mostly reported to be much lower than that used in our study, our results suggest that the ACP point of departure used in current guidelines aimed to prevent developmental effects may need to be verified by complementary sensitive multiple-endpoint testing in the offspring.
Collapse
Affiliation(s)
- Victoria Longoni
- Facultad de Ciencias Exactas y Naturales (FCEyN), Universidad de Buenos Aires (UBA), Buenos Aires C1428EGA, Argentina
| | - Paula Cristina Kandel Gambarte
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN-CONICET) and FCEyN, UBA, Buenos Aires C1428EGA, Argentina
| | - Lis Rueda
- FCEyN, Universidad de Buenos Aires, Buenos Aires C1428EGA, Argentina
| | - Julio Silvio Fuchs
- Instituto IQUIBICEN-CONICET and Departamento Química Biológica, FCEyN, UBA, Buenos Aires C1428EGA, Argentina
| | - María Gabriela Rovedatti
- Departamentos Química Biológica and Biodiversidad y Biología Experimental, IQUIBICEN-CONICET, FCEyN, UBA, Buenos Aires C1428EGA, Argentina
| | - Marcelo Javier Wolansky
- Departamento Química Biológica, IQUIBICEN-CONICET, FCEyN, UBA, Buenos Aires C1428EGA, Argentina
| |
Collapse
|
2
|
Cheng Y, Yin J, Yang L, Xu M, Lu X, Huang W, Dai G, Sun G. Ambient air pollutants in the first trimester of pregnancy and birth defects: an observational study. BMJ Open 2023; 13:e063712. [PMID: 36948563 PMCID: PMC10040071 DOI: 10.1136/bmjopen-2022-063712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/24/2023] Open
Abstract
OBJECTIVES As current studies on the relationships between air pollutants exposure during the first trimester and birth defects were not fully elucidated, this study aimed to assess the association between selected air pollutants and birth defects. DESIGN An observational study. PARTICIPANTS We obtained 70 854 singletons with gestational age <20 weeks who were delivered at a large maternal and child healthcare centre in Wuhan, China. OUTCOME MEASURES Birth defects data and daily average concentration of ambient particulate matter ≤10 µm diameter (PM10), PM ≤2.5 µm diameter (PM2.5), sulfur dioxide (SO2) and nitrogen dioxide (NO2) were obtained. Logistic regression analysis was applied to assess the association between maternal air pollutants exposure during first trimester and total birth defects, congenital heart defects (CHDs), limb defects and orofacial clefts with adjustments of potential covariates. RESULTS There were a total of 1352 birth defect cases included in this study, with a prevalence of 19.08‰. Maternal exposed to high concentrations of PM10, PM2.5, NO2 and SO2 in the first trimester were significantly associated with elevated ORs of birth defects (ORs ranged from 1.13 to 1.23). Additionally, for male fetuses, maternal exposed to high PM2.5 concentration was associated with an elevated odd of CHDs (OR 1.27, 95% CI 1.06 to 1.52). In the cold season, the ORs of birth defects were significantly increased among women exposed to PM2.5 (OR 1.64, 95% CI 1.41 to 1.91), NO2 (OR 1.22, 95% CI 1.08 to 1.38) and SO2 (OR 1.26, 95% CI 1.07 to 1.47). CONCLUSIONS This study showed unfavourable effects of air pollutants exposure during the first trimester on birth defects. Especially, the association between maternal PM2.5 exposure and CHDs was only observed among male fetuses, and stronger effects of PM2.5, NO2 and SO2 exposure on birth defects were observed in the cold season.
Collapse
Affiliation(s)
- Yao Cheng
- Obstetrics Department, Maternal and Child Health Hospital of Hubei Province, Wuhan, China
| | - Jieyun Yin
- Department of Epidemiology and Health Statistics, Medical College of Soochow University, Suzhou, China
| | - Lijun Yang
- Obstetrics Department, Maternal and Child Health Hospital of Hubei Province, Wuhan, China
| | - Man Xu
- School of Nursing, Hubei University of Chinese Medicine, Wuhan, China
| | - Xinfeng Lu
- Medical Record Department, Maternal and Child Health Hospital of Hubei Province, Wuhan, China
| | - Wenting Huang
- Science and Education Department, Maternal and Child Health Hospital of Hubei Province, Wuhan, China
| | - Guohong Dai
- Health Care Department, Maternal and Child Health Hospital of Hubei Province, Wuhan, China
| | - Guoqiang Sun
- Obstetrics Department, Maternal and Child Health Hospital of Hubei Province, Wuhan, China
| |
Collapse
|
3
|
Aboaziza E, Feaster K, Hare L, Chantler PD, Olfert IM. Maternal electronic cigarette use during pregnancy affects long-term arterial function in offspring. J Appl Physiol (1985) 2023; 134:59-71. [PMID: 36417201 PMCID: PMC9762967 DOI: 10.1152/japplphysiol.00582.2022] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 11/22/2022] [Accepted: 11/22/2022] [Indexed: 11/24/2022] Open
Abstract
Vaping, or electronic cigarette (ecig) use, is prevalent among pregnant women, although little is known about the effects of perinatal ecig use on cardiovascular health of the progeny (even when using nicotine-free e-liquid). Maternal toxicant inhalation may adversely affect vital conduit vessel development. We tested the hypothesis that perinatal exposure to maternal vaping would lead to a dose-dependent dysfunction that would persist into later life of offspring. Pregnant Sprague-Dawley rats were exposed to either nicotine-free (ecig0) or nicotine-containing ecig aerosol (18 mg/mL, ecig18) starting on gestational day 2 and continued until pups were weaned (postnatal day 21). Pups were never directly exposed. Conduit artery function (stiffness and reactivity) and structure were assessed in 3- and 7-mo-old offspring. At 3 mo, pulse wave velocity (PWV) in the ecig0 and ecig18 offspring was significantly higher than controls in both the 20 puffs/day (6.6 ± 2.1 and 4.8 ± 1.3 vs. 3.2 ± 0.7 m/s, respectively, P < 0.05, means ± SD) and in 60 puffs/day exposure cohort (7.5 ± 2.8 and 7.5 ± 2.5 vs. 3.2 ± 0.5 m/s, respectively, P < 0.01). Wire myography revealed (range of 23%-31%) impaired aortic relaxation in all ecig exposure groups (with or without nicotine). Incubation of vessels with TEMPOL or Febuxostat reversed the aortic dysfunction, implicating the involvement of reactive oxygen species. Nearly identical changes and pattern was seen in vascular outcomes of 7-mo-old offspring. The take-home message from this preclinical study is that maternal vaping during pregnancy, with or without nicotine, leads to maladaptations in vascular (aortic) development that persist into adult life of offspring.NEW & NOTEWORTHY We observe a significant alteration in arterial structure and function in adolescent and adult offspring due to developmental exposure to toxicants resulting from perinatal maternal vaping. Taken together with previous work that described lasting dysfunction in cerebral microvasculature in offspring, these data underscore the adverse consequences of maternal exposure to electronic cigarette aerosol in conduit and resistance vessels alike, irrespective of nicotine content.
Collapse
Affiliation(s)
- Eiman Aboaziza
- West Virginia Clinical and Translational Science Institute, West Virginia University School of Medicine, Morgantown, West Virginia
- WVU Center of Inhalation Toxicology, West Virginia University School of Medicine, Morgantown, West Virginia
| | - Kimberly Feaster
- Department of Pathology, Anatomy and Laboratory Medicine, West Virginia University School of Medicine, Morgantown, West Virginia
| | - Lance Hare
- WVU Center of Inhalation Toxicology, West Virginia University School of Medicine, Morgantown, West Virginia
| | - Paul D Chantler
- West Virginia Clinical and Translational Science Institute, West Virginia University School of Medicine, Morgantown, West Virginia
- WVU Center of Inhalation Toxicology, West Virginia University School of Medicine, Morgantown, West Virginia
- Division of Exercise Physiology, West Virginia University School of Medicine, Morgantown, West Virginia
| | - I Mark Olfert
- West Virginia Clinical and Translational Science Institute, West Virginia University School of Medicine, Morgantown, West Virginia
- WVU Center of Inhalation Toxicology, West Virginia University School of Medicine, Morgantown, West Virginia
- Division of Exercise Physiology, West Virginia University School of Medicine, Morgantown, West Virginia
- Department of Physiology and Pharmacology, West Virginia University School of Medicine, Morgantown, West Virginia
| |
Collapse
|
4
|
Cowell WJ, Brunst KJ, Malin AJ, Coull BA, Gennings C, Kloog I, Lipton L, Wright RO, Enlow MB, Wright RJ. Prenatal Exposure to PM2.5 and Cardiac Vagal Tone during Infancy: Findings from a Multiethnic Birth Cohort. ENVIRONMENTAL HEALTH PERSPECTIVES 2019; 127:107007. [PMID: 31663780 PMCID: PMC6867319 DOI: 10.1289/ehp4434] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 09/19/2019] [Accepted: 09/19/2019] [Indexed: 05/20/2023]
Abstract
BACKGROUND The autonomic nervous system plays a key role in maintaining homeostasis and responding to external stimuli. In adults, exposure to fine particulate matter (PM2.5) has been associated with reduced heart rate variability (HRV), an indicator of cardiac autonomic control. OBJECTIVES Our goal was to investigate the associations of exposure to fine particulate matter (PM2.5) with HRV as an indicator of cardiac autonomic control during early development. METHODS We studied 237 maternal-infant pairs in a Boston-based birth cohort. We estimated daily residential PM2.5 using satellite data in combination with land-use regression predictors. In infants at 6 months of age, we measured parasympathetic nervous system (PNS) activity using continuous electrocardiogram monitoring during the Repeated Still-Face Paradigm, an experimental protocol designed to elicit autonomic reactivity in response to maternal interaction and disengagement. We used multivariable linear regression to examine average PM2.5 exposure across pregnancy in relation to PNS withdrawal and activation, indexed by changes in respiration-corrected respiratory sinus arrhythmia (RSAc)-an established metric of HRV that reflects cardiac vagal tone. We examined interactions with infant sex using cross-product terms. RESULTS In adjusted models we found that a 1-unit increase in PM2.5 (in micrograms per cubic meter) was associated with a 3.53% decrease in baseline RSAc (95% CI: -6.96, 0.02). In models examining RSAc change between episodes, higher PM2.5 was generally associated with reduced PNS withdrawal during stress and reduced PNS activation during recovery; however, these associations were not statistically significant. We did not observe a significant interaction between PM2.5 and sex. DISCUSSION Prenatal exposure to PM2.5 may disrupt cardiac vagal tone during infancy. Future research is needed to replicate these preliminary findings. https://doi.org/10.1289/EHP4434.
Collapse
Affiliation(s)
- Whitney J. Cowell
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Kelly J. Brunst
- Department of Environmental Health, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Ashley J. Malin
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Brent A. Coull
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Chris Gennings
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Itai Kloog
- Department of Geography and Environmental Development, Faculty of Humanities and Social Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Lianna Lipton
- Department of Pediatrics, Kravis Children’s Hospital, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Robert O. Wright
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Michelle Bosquet Enlow
- Department of Psychiatry, Boston Children’s Hospital, Boston, Massachusetts, USA
- Department of Psychiatry, Harvard Medical School, Boston, Massachusetts, USA
| | - Rosalind J. Wright
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Pediatrics, Kravis Children’s Hospital, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|