1
|
Zhang S, Wu Q, He W, Zhu H, Wang Z, Liang H, Ni X, Yuan W, Lu D. Bisphenol A alters JUN promoter methylation, impairing steroid metabolism in placental cells and linking to sub-representative phenotypes. Gene 2025; 941:149210. [PMID: 39755265 DOI: 10.1016/j.gene.2024.149210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 12/18/2024] [Accepted: 12/31/2024] [Indexed: 01/06/2025]
Abstract
Bisphenol A (BPA) is a widely used industrial compound commonly found in various everyday plastic products. Known for its endocrine-disrupting properties, BPA can enter the human body through multiple pathways. Prenatal exposure to BPA not only disrupts placental structure and function but also interferes with normal steroid metabolism. This study investigates the epigenetic regulatory mechanisms by which BPA influences steroid metabolism in the placenta. Using BPA-treated JEG3 cells, we analyzed hormone levels, gene promoter DNA methylation, and gene expression, further validating our findings in placental samples. Additionally, we explored the role of epigenetic modifications in regulating steroid metabolism at the cellular level and assessed related phenotypes in cohort samples. The results demonstrated that BPA significantly reduced the levels of progesterone, estradiol, and testosterone, and notably affected the promoter methylation and expression levels of 63 genes. Enrichment analysis highlighted PLA2G4F, JUN, MRAS, ERBB4, DUSP1, and GADD45G as being primarily enriched in the MAPK signaling pathway. Further studies revealed that the methylation level of the JUN promoter regulates its expression, impacting hormone levels by modulating downstream signaling pathways. In placental samples, male offspring in the hypermethylated JUN promoter group had shorter anogenital distance (AGD) compared to those in the hypomethylated group. These findings suggest that BPA reduces the expression of steroid metabolism genes via the epigenetic regulation of the JUN gene, thereby decreasing progesterone, estradiol, and testosterone levels and leading to shortened AGD in offspring.
Collapse
Affiliation(s)
- Sufen Zhang
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai 200237, China; School of Life Sciences, Fudan University, Shanghai 200433, China
| | - Qihan Wu
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai 200237, China
| | - Wanhong He
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai 200237, China
| | - Haijun Zhu
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai 200237, China
| | - Ziliang Wang
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai 200237, China
| | - Hong Liang
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai 200237, China
| | - Xiaohua Ni
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai 200237, China
| | - Wei Yuan
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai 200237, China.
| | - Daru Lu
- School of Life Sciences, Fudan University, Shanghai 200433, China; MOE Engineering Research Center of Gene Technology, School of Life Sciences, Obstetrics and Gynecology Hospital, Fudan University, Shanghai 200433, China.
| |
Collapse
|
2
|
Huang YS, Chang AA, Yang ZJ, Chen JA, Lin CK, Lan HC. Long-term subculture induces syncytialization and influent the response to bisphenol A (BPA) of placental JEG-3 cells. Reprod Toxicol 2024; 130:108738. [PMID: 39477191 DOI: 10.1016/j.reprotox.2024.108738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 10/23/2024] [Accepted: 10/25/2024] [Indexed: 11/03/2024]
Abstract
The placenta is a temporary organ that exists only during pregnancy, responsible for connecting the mother and the fetus. During placental development, the cytotrophoblast cells differentiate into multinucleated, syncytialized cells that envelop the chorionic villi, a process known as syncytialization. These syncytiotrophoblast cells serve as a barrier between maternal circulation and the fetus and secrete important hormones such as human chorionic gonadotropin (hCG), estrogen, and progesterone. Proper regulation of trophoblast differentiation and hormone secretion is crucial throughout pregnancy, as disruption of these processes can lead to pregnancy failure. Previous studies showed that Bisphenol A (BPA), an endocrine-disrupting chemical (EDC), negatively impacts pregnancy. It affects placental development, tissue morphology, hormone secretion, and probably increase the risk of pregnancy complications. Furthermore, some compounds like hCG and forskolin induce the cell differentiation and affecting hormone secretion in trophoblast. In this study, we found that long-term subculture of JEG-3 cells indicates an increase in cell differentiation, alterations in physiological properties, and changes in hormone secretion profiles. Our results also demonstrate distinct responses in JEG-3 cells to BPA stimulation in later passages, suggesting that long-term subculture alters cell characteristics and elicits varied responses to stimuli. This implies potential harm from BPA exposure at different stages of pregnancy, albeit through different mechanisms.
Collapse
Affiliation(s)
- Yu-Shiuan Huang
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan; Department of Obstetrics and Gynecology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Ai-An Chang
- Institute of Biology and Anatomy, National Defense Medical Center, Taipei, Taiwan
| | - Zhi-Jie Yang
- Institute of Biology and Anatomy, National Defense Medical Center, Taipei, Taiwan
| | - Jung-An Chen
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan
| | - Chi-Kang Lin
- Department of Obstetrics and Gynecology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Hsin-Chieh Lan
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan; Institute of Biology and Anatomy, National Defense Medical Center, Taipei, Taiwan.
| |
Collapse
|
3
|
Palacios-Valladares JR, Martinez-Jimenez YI, Morillon-Torres V, Rivera-Maya OB, Gómez R, Calderon-Aranda ES. Bisphenol A and Its Emergent Substitutes: State of the Art of the Impact of These Plasticizers on Oxidative Stress and Its Role in Vascular Dysfunction. Antioxidants (Basel) 2024; 13:1468. [PMID: 39765797 PMCID: PMC11673293 DOI: 10.3390/antiox13121468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 11/21/2024] [Accepted: 11/25/2024] [Indexed: 01/03/2025] Open
Abstract
The "One Health approach" has evidenced the significant impact of xenobiotic exposure to health, and humans are a relevant target for their toxic effects. Bisphenol A (BPA) exerts a ubiquitous exposure source in all ecosystems. Given its endocrine-disrupting and harmful consequences on health, several countries have enforced new regulations to reduce exposure to BPA. Cardiovascular diseases (CVDs) are complex conditions that lead to higher mortality worldwide, where family history, lifestyle, and environmental factors, like BPA exposure, have a remarkable contribution. This chemical compound is the most widely used in plastic and epoxy resin manufacturing and has been associated with effects on human health. Therefore, new-generation bisphenols (NGBs) are replacing BPA use, arguing that they do not harm health. Nonetheless, the knowledge about whether NGBs are secure options is scanty. Although BPA's effects on several organs and systems have been documented, the role of BPA and NGBs in CVDs has yet to be explored. This review's goals are focused on the processes of endothelial activation (EA)-endothelial dysfunction (ED), a cornerstone of CVDs development, bisphenols' (BPs) effects on these processes through oxidant and antioxidant system alteration. Despite the scarce evidence on pro-oxidant effects associated with NGBs, our review demonstrated a comparable harmful effect on BPA. The results from the present review suggest that the biological mechanisms to explain BPs cardiotoxic effects are the oxidant stress ↔ inflammatory response ↔ EA ↔ ED → atherosclerotic plate → coagulation promotion. Other effects contributing to CVD development include altered lipid metabolism, ionic channels, and the activation of different intracellular pathways, which contribute to ED perpetuation in a concerted manner.
Collapse
Affiliation(s)
| | | | | | | | - Rocio Gómez
- Department of Toxicology, Center for Research and Advanced Studies of the National Polytechnic Institute, Mexico City 07360, Mexico; (J.R.P.-V.); (Y.I.M.-J.); (V.M.-T.); (O.B.R.-M.)
| | - Emma S. Calderon-Aranda
- Department of Toxicology, Center for Research and Advanced Studies of the National Polytechnic Institute, Mexico City 07360, Mexico; (J.R.P.-V.); (Y.I.M.-J.); (V.M.-T.); (O.B.R.-M.)
| |
Collapse
|
4
|
Yesildemir O, Celik MN. Association between pre- and postnatal exposure to endocrine-disrupting chemicals and birth and neurodevelopmental outcomes: an extensive review. Clin Exp Pediatr 2024; 67:328-346. [PMID: 37986566 PMCID: PMC11222910 DOI: 10.3345/cep.2023.00941] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 07/13/2023] [Accepted: 08/14/2023] [Indexed: 11/22/2023] Open
Abstract
Endocrine-disrupting chemicals (EDCs) are natural or synthetic chemicals that mimic, block, or interfere with the hormones in the body. The most common and well- studied EDCs are bisphenol A, phthalates, and persistent organic pollutants including polychlorinated biphenyls, polybrominated diphenyl ethers, per- and polyfluoroalkyl substances, other brominated flame retardants, organochlorine pesticides, dioxins, and furans. Starting in embryonic life, humans are constantly exposed to EDCs through air, diet, skin, and water. Fetuses and newborns undergo crucial developmental processes that allow adaptation to the environment throughout life. As developing organisms, they are extremely sensitive to low doses of EDCs. Many EDCs can cross the placental barrier and reach the developing fetal organs. In addition, newborns can be exposed to EDCs through breastfeeding or formula feeding. Pre- and postnatal exposure to EDCs may increase the risk of childhood diseases by disrupting the hormone-mediated processes critical for growth and development during gestation and infancy. This review discusses evidence of the relationship between pre- and postnatal exposure to several EDCs, childbirth, and neurodevelopmental outcomes. Available evidence suggests that pre- and postnatal exposure to certain EDCs causes fetal growth restriction, preterm birth, low birth weight, and neurodevelopmental problems through various mechanisms of action. Given the adverse effects of EDCs on child development, further studies are required to clarify the overall associations.
Collapse
Affiliation(s)
- Ozge Yesildemir
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Bursa Uludag University, Bursa, Turkey
| | - Mensure Nur Celik
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Ondokuz Mayıs University, Samsun, Turkey
| |
Collapse
|
5
|
Kek T, Geršak K, Virant-Klun I. Exposure to endocrine disrupting chemicals (bisphenols, parabens, and triclosan) and their associations with preterm birth in humans. Reprod Toxicol 2024; 125:108580. [PMID: 38522559 DOI: 10.1016/j.reprotox.2024.108580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 03/11/2024] [Accepted: 03/20/2024] [Indexed: 03/26/2024]
Abstract
Preterm birth in humans (PTB), defined as birth prior to 37 weeks of gestation, is one of the most important causes of neonatal morbidity and mortality and is associated with adverse health outcomes later in life. Attributed to many different etiological factors, estimated 15.1 million or 11.1% of births each year are preterm, which is more than 1 per 10 livebirths globally. Environmental pollution is a well-established risk factor that could influence the pathogenesis of PTB. Increasing evidence has shown an association between maternal exposure to endocrine disrupting chemicals (EDCs) and PTB. This scoping review aims to summarize current research on the association between EDC exposure and PTB in humans. Database PubMed was used to identify articles discussing the effect of selected EDCs, namely bisphenol A, bisphenol S, bisphenol F, parabens, and triclosan, found in plastics, cosmetics and other personal care products, on PTB occurrence. Regardless of some inconsistences in the findings across studies, the reviewed studies suggest a potential association between involuntary exposure to reviewed EDCs and the risk of PTB. However, further studies are needed to delineate exact correlations and mechanisms through which EDC exposure causes PTB so that efficient preventative measures could be implemented. Until then, health care providers should inform women about possible EDC exposure thus empowering them to make healthy choices and at the same time decrease the EDC negative effects.
Collapse
Affiliation(s)
- Tina Kek
- Clinical Research Centre, University Medical Centre Ljubljana, Zaloška cesta 2, Ljubljana 1000, Slovenia.
| | - Ksenija Geršak
- Medical Faculty, University of Ljubljana, Vrazov trg 2, Ljubljana 1000, Slovenia; Division of Gynaecology and Obstetrics, University Medical Centre Ljubljana, Šlajmerjeva 3, Ljubljana 1000, Slovenia
| | - Irma Virant-Klun
- Clinical Research Centre, University Medical Centre Ljubljana, Zaloška cesta 2, Ljubljana 1000, Slovenia
| |
Collapse
|
6
|
Merrill AK, Sobolewski M, Susiarjo M. Exposure to endocrine disrupting chemicals impacts immunological and metabolic status of women during pregnancy. Mol Cell Endocrinol 2023; 577:112031. [PMID: 37506868 PMCID: PMC10592265 DOI: 10.1016/j.mce.2023.112031] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/12/2023] [Accepted: 07/24/2023] [Indexed: 07/30/2023]
Affiliation(s)
- Alyssa K Merrill
- Department of Environmental Medicine, University of Rochester School of Medicine, Rochester, NY, USA
| | - Marissa Sobolewski
- Department of Environmental Medicine, University of Rochester School of Medicine, Rochester, NY, USA
| | - Martha Susiarjo
- Department of Environmental Medicine, University of Rochester School of Medicine, Rochester, NY, USA.
| |
Collapse
|
7
|
Basak S, Varma S, Duttaroy AK. Modulation of fetoplacental growth, development and reproductive function by endocrine disrupters. Front Endocrinol (Lausanne) 2023; 14:1215353. [PMID: 37854189 PMCID: PMC10579913 DOI: 10.3389/fendo.2023.1215353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 09/14/2023] [Indexed: 10/20/2023] Open
Abstract
Maternal endocrine homeostasis is vital to a successful pregnancy, regulated by several hormones such as human chorionic gonadotropin, estrogen, leptin, glucocorticoid, insulin, prostaglandin, and others. Endocrine stress during pregnancy can modulate nutrient availability from mother to fetus, alter fetoplacental growth and reproductive functions. Endocrine disrupters such as bisphenols (BPs) and phthalates are exposed in our daily life's highest volume. Therefore, they are extensively scrutinized for their effects on metabolism, steroidogenesis, insulin signaling, and inflammation involving obesity, diabetes, and the reproductive system. BPs have their structural similarity to 17-β estradiol and their ability to bind as an agonist or antagonist to estrogen receptors to elicit an adverse response to the function of the endocrine and reproductive system. While adults can negate the adverse effects of these endocrine-disrupting chemicals (EDCs), fetuses do not equip themselves with enzymatic machinery to catabolize their conjugates. Therefore, EDC exposure makes the fetoplacental developmental window vulnerable to programming in utero. On the one hand prenatal BPs and phthalates exposure can impair the structure and function of the ovary and uterus, resulting in placental vascular defects, inappropriate placental expression of angiogenic growth factors due to altered hypothalamic response, expression of nutrient transporters, and epigenetic changes associated with maternal endocrine stress. On the other, their exposure during pregnancy can affect the offspring's metabolic, endocrine and reproductive functions by altering fetoplacental programming. This review highlights the latest development in maternal metabolic and endocrine modulations from exposure to estrogenic mimic chemicals on subcellular and transgenerational changes in placental development and its effects on fetal growth, size, and metabolic & reproductive functions.
Collapse
Affiliation(s)
- Sanjay Basak
- Molecular Biology Division, ICMR-National Institute of Nutrition, Indian Council of Medical Research, Hyderabad, India
| | - Saikanth Varma
- Molecular Biology Division, ICMR-National Institute of Nutrition, Indian Council of Medical Research, Hyderabad, India
| | - Asim K. Duttaroy
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
8
|
Khan NG, Tungekar B, Adiga D, Chakrabarty S, Rai PS, Kabekkodu SP. Alterations induced by Bisphenol A on cellular organelles and potential relevance on human health. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2023; 1870:119505. [PMID: 37286138 DOI: 10.1016/j.bbamcr.2023.119505] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 04/29/2023] [Accepted: 05/26/2023] [Indexed: 06/09/2023]
Abstract
Bisphenol A (BPA) is a chemical partially soluble in water and exists in a solid state. Its structural similarity with estrogen makes it an endocrine-disrupting chemical. BPA can disrupt signaling pathways at very low doses and may cause organellar stress. According to in vitro and in vivo studies, BPA interacts with various cell surface receptors to cause organellar stress, producing free radicals, cellular toxicity, structural changes, DNA damage, mitochondrial dysfunction, cytoskeleton remodeling, centriole duplication, and aberrant changes in several cell signaling pathways. The current review summarizes the impact of BPA exposure on the structural and functional aspects of subcellular components of cells such as the nucleus, mitochondria, endoplasmic reticulum, lysosome, ribosome, Golgi apparatus, and microtubules and its consequent impact on human health.
Collapse
Affiliation(s)
- Nadeem G Khan
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Bushra Tungekar
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Divya Adiga
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Sanjiban Chakrabarty
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India; Center for DNA Repair and Genome Stability (CDRGS), Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Padmalatha S Rai
- Department of Biotechnology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Shama Prasada Kabekkodu
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India; Center for DNA Repair and Genome Stability (CDRGS), Manipal Academy of Higher Education, Manipal, Karnataka 576104, India.
| |
Collapse
|
9
|
Capriati M, Hao C, D'Cruz SC, Monfort C, Chevrier C, Warembourg C, Smagulova F. Genome-wide analysis of sex-specific differences in the mother-child PELAGIE cohort exposed to organophosphate metabolites. Sci Rep 2023; 13:8003. [PMID: 37198424 DOI: 10.1038/s41598-023-35113-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 05/12/2023] [Indexed: 05/19/2023] Open
Abstract
In recent decades, the detrimental effects of environmental contaminants on human health have become a serious public concern. Organophosphate (OP) pesticides are widely used in agriculture, and the negative impacts of OP and its metabolites on human health have been demonstrated. We hypothesized that exposure to OPs during pregnancy could impose damaging effects on the fetus by affecting various processes. We analyzed sex-specific epigenetic responses in the placenta samples obtained from the mother-child PELAGIE cohort. We assayed the telomere length and mitochondrial copy numbers using genomic DNA. We analyzed H3K4me3 by using chromatin immunoprecipitation followed by qPCR (ChIP‒qPCR) and high-throughput sequencing (ChIP-seq). The human study was confirmed with mouse placenta tissue analysis. Our study revealed a higher susceptibility of male placentas to OP exposure. Specifically, we observed telomere length shortening and an increase in γH2AX levels, a DNA damage marker. We detected lower histone H3K9me3 occupancy at telomeres in diethylphosphate (DE)-exposed male placentas than in nonexposed placentas. We found an increase in H3K4me3 occupancy at the promoters of thyroid hormone receptor alpha (THRA), 8-oxoguanine DNA glycosylase (OGG1) and insulin-like growth factor (IGF2) in DE-exposed female placentas. H3K4me3 occupancy at PPARG was increased in both male and female placentas exposed to dimethylphosphate (DM). The genome-wide sequencing of selected samples revealed sex-specific differences induced by DE exposure. Specifically, we found alterations in H3K4me3 in genes related to the immune system in female placenta samples. In DE-exposed male placentas, a decrease in H3K4me3 occupancy at development-related, collagen and angiogenesis-related genes was observed. Finally, we observed a high number of NANOG and PRDM6 binding sites in regions with altered histone occupancy, suggesting that the effects were possibly mediated via these factors. Our data suggest that in utero exposure to organophosphate metabolites affects normal placental development and could potentially impact late childhood.
Collapse
Affiliation(s)
- Martina Capriati
- Univ. Rennes, EHESP, Inserm, Irset (Institut de Recherche en Santé, Environnement et Travail) - UMR_S 1085, 35000, Rennes, France
| | - Chunxiang Hao
- School of Medicine, Linyi University, Linyi, 276000, China
| | - Shereen Cynthia D'Cruz
- Univ. Rennes, EHESP, Inserm, Irset (Institut de Recherche en Santé, Environnement et Travail) - UMR_S 1085, 35000, Rennes, France
| | - Christine Monfort
- Univ. Rennes, EHESP, Inserm, Irset (Institut de Recherche en Santé, Environnement et Travail) - UMR_S 1085, 35000, Rennes, France
| | - Cecile Chevrier
- Univ. Rennes, EHESP, Inserm, Irset (Institut de Recherche en Santé, Environnement et Travail) - UMR_S 1085, 35000, Rennes, France
| | - Charline Warembourg
- Univ. Rennes, EHESP, Inserm, Irset (Institut de Recherche en Santé, Environnement et Travail) - UMR_S 1085, 35000, Rennes, France
| | - Fatima Smagulova
- Univ. Rennes, EHESP, Inserm, Irset (Institut de Recherche en Santé, Environnement et Travail) - UMR_S 1085, 35000, Rennes, France.
| |
Collapse
|
10
|
Cowell W, Jacobson MH, Long SE, Wang Y, Kahn LG, Ghassabian A, Naidu M, Torshizi GD, Afanasyeva Y, Liu M, Mehta-Lee SS, Brubaker SG, Kannan K, Trasande L. Maternal urinary bisphenols and phthalates in relation to estimated fetal weight across mid to late pregnancy. ENVIRONMENT INTERNATIONAL 2023; 174:107922. [PMID: 37075581 PMCID: PMC10165618 DOI: 10.1016/j.envint.2023.107922] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 04/03/2023] [Accepted: 04/04/2023] [Indexed: 05/03/2023]
Abstract
BACKGROUND Bisphenols and phthalates are high production volume chemicals used as additives in a variety of plastic consumer products leading to near ubiquitous human exposure. These chemicals have established endocrine disrupting properties and have been linked to a range of adverse reproductive and developmental outcomes. Here, we investigated exposure in relation to fetal growth. METHODS Participants included 855 mother-fetal pairs enrolled in the population-based New York University Children's Health and Environment Study (NYU CHES). Bisphenols and phthalates were measured in maternal urine collected repeatedly during pregnancy. Analyses included 15 phthalate metabolites and 2 bisphenols that were detected in 50 % of participants or more. Fetal biometry data were extracted from electronic ultrasonography records and estimated fetal weight (EFW) was predicted for all fetuses at 20, 30, and 36 weeks gestation. We used quantile regression adjusted for covariates to model exposure-outcome relations across percentiles of fetal weight at each gestational timepoint. We examined sex differences using stratified models. RESULTS Few statistically significant associations were observed across chemicals, gestational time periods, percentiles, and sexes. However, within gestational timepoints, we found that among females, the molar sums of the phthalates DiNP and DnOP were generally associated with decreases in EFW among smaller babies and increases in EFW among larger babies. Among males, the opposite trend was observed. However, confidence intervals were generally wide at the tails of the distribution. CONCLUSION In this sample, exposure to bisphenols and phthalates was associated with small sex-specific shifts in fetal growth; however, few associations were observed at the median of fetal weight and confidence intervals in the tails were wide. Findings were strongest for DiNP and DnOP, which are increasingly used as replacements for DEHP, supporting the need for future research on these contaminants.
Collapse
Affiliation(s)
- Whitney Cowell
- Department of Pediatrics, NYU Grossman School of Medicine, New York, NY, United States; Department of Population Health, NYU Grossman School of Medicine, New York, NY, United States.
| | - Melanie H Jacobson
- Department of Pediatrics, NYU Grossman School of Medicine, New York, NY, United States
| | - Sara E Long
- Department of Pediatrics, NYU Grossman School of Medicine, New York, NY, United States
| | - Yuyan Wang
- Department of Population Health, NYU Grossman School of Medicine, New York, NY, United States
| | - Linda G Kahn
- Department of Pediatrics, NYU Grossman School of Medicine, New York, NY, United States; Department of Population Health, NYU Grossman School of Medicine, New York, NY, United States
| | - Akhgar Ghassabian
- Department of Pediatrics, NYU Grossman School of Medicine, New York, NY, United States; Department of Population Health, NYU Grossman School of Medicine, New York, NY, United States
| | - Mrudula Naidu
- Department of Pediatrics, NYU Grossman School of Medicine, New York, NY, United States
| | | | - Yelena Afanasyeva
- Department of Pediatrics, NYU Grossman School of Medicine, New York, NY, United States
| | - Mengling Liu
- Department of Population Health, NYU Grossman School of Medicine, New York, NY, United States
| | - Shilpi S Mehta-Lee
- Department of Obstetrics and Gynecology, NYU Langone Health, New York, NY, United States
| | - Sara G Brubaker
- Department of Obstetrics and Gynecology, NYU Langone Health, New York, NY, United States
| | - Kurunthachalam Kannan
- Department of Pediatrics, NYU Grossman School of Medicine, New York, NY, United States
| | - Leonardo Trasande
- Department of Pediatrics, NYU Grossman School of Medicine, New York, NY, United States; Department of Population Health, NYU Grossman School of Medicine, New York, NY, United States; NYU Wagner School of Public Service, New York, NY, United States; NYU College of Global Public Health, New York, NY, United States
| |
Collapse
|
11
|
Varma S, Molangiri A, Kona SR, Ibrahim A, Duttaroy AK, Basak S. Fetal Exposure to Endocrine Disrupting-Bisphenol A (BPA) Alters Testicular Fatty Acid Metabolism in the Adult Offspring: Relevance to Sperm Maturation and Quality. Int J Mol Sci 2023; 24:ijms24043769. [PMID: 36835180 PMCID: PMC9958878 DOI: 10.3390/ijms24043769] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 02/08/2023] [Accepted: 02/10/2023] [Indexed: 02/16/2023] Open
Abstract
Daily exposure to bisphenols can affect reproductive functions due to their pseudo-estrogenic and/or anti-androgenic effects. Testicular lipids contain high levels of polyunsaturated fatty acids necessary for sperm maturity, motility, and spermatogenesis. Whether prenatal exposure to bisphenols alters testicular fatty acid metabolism in adult offspring is unknown. Pregnant Wistar rats were gavaged from gestational day 4 to 21 with BPA and BPS (0.0, 0.4, 4.0, 40.0 μg/kg bw/day). Despite increased body and testis weight, the total testicular cholesterol, triglyceride, and plasma fatty acids were unaffected in the offspring. Lipogenesis was upregulated by increased SCD-1, SCD-2, and expression of lipid storage (ADRP) and trafficking protein (FABP4). The arachidonic acid, 20:4 n-6 (ARA) and docosapentaenoic acid, 22:5 n-6 (DPA) levels were decreased in the BPA-exposed testis, while BPS exposure had no effects. The expression of PPARα, PPARγ proteins, and CATSPER2 mRNA were decreased, which are important for energy dissipation and the motility of the sperm in the testis. The endogenous conversion of linoleic acid,18:2 n-6 (LA), to ARA was impaired by a reduced ARA/LA ratio and decreased FADS1 expression in BPA-exposed testis. Collectively, fetal BPA exposure affected endogenous long-chain fatty acid metabolism and steroidogenesis in the adult testis, which might dysregulate sperm maturation and quality.
Collapse
Affiliation(s)
- Saikanth Varma
- Molecular Biology Division, ICMR-National Institute of Nutrition, Indian Council of Medical Research, Hyderabad 500007, India
| | - Archana Molangiri
- Molecular Biology Division, ICMR-National Institute of Nutrition, Indian Council of Medical Research, Hyderabad 500007, India
| | - Suryam Reddy Kona
- Lipid Chemistry Division, ICMR-National Institute of Nutrition, Indian Council of Medical Research, Hyderabad 500007, India
| | - Ahamed Ibrahim
- Lipid Chemistry Division, ICMR-National Institute of Nutrition, Indian Council of Medical Research, Hyderabad 500007, India
| | - Asim K. Duttaroy
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, 0316 Oslo, Norway
| | - Sanjay Basak
- Molecular Biology Division, ICMR-National Institute of Nutrition, Indian Council of Medical Research, Hyderabad 500007, India
- Correspondence: ; Tel./Fax: +91-40-27197336
| |
Collapse
|
12
|
Yan Y, Guo F, Liu K, Ding R, Wang Y. The effect of endocrine-disrupting chemicals on placental development. Front Endocrinol (Lausanne) 2023; 14:1059854. [PMID: 36896182 PMCID: PMC9989293 DOI: 10.3389/fendo.2023.1059854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Accepted: 02/03/2023] [Indexed: 02/25/2023] Open
Abstract
Endocrine-disrupting chemicals (EDCs) or endocrine disruptors are substances that are either naturally occurring or artificial and are released into the natural environment. Humans are exposed to EDCs through ingestion, inhalation, and skin contact. Many everyday household items, such as plastic bottles and containers, the liners of metal food cans, detergents, flame retardants, food, gadgets, cosmetics, and pesticides, contain endocrine disruptors. Each hormone has a unique chemical makeup and structural attributes. The way that endocrine hormones connect to receptors is described as a "lock and key" mechanism, with each hormone serving as the key (lock). This mechanism is enabled by the complementary shape of receptors to their hormone, which allows the hormone to activate the receptors. EDCs are described as exogenous chemicals or compounds that have a negative impact on organisms' health by interacting with the functioning of the endocrine system. EDCs are associated with cancer, cardiovascular risk, behavioural disorders, autoimmune abnormalities, and reproductive disorders. EDCs exposure in humans is highly harmful during critical life stages. Nonetheless, the effect of EDCs on the placenta is often underestimated. The placenta is especially sensitive to EDCs due to its abundance of hormone receptors. In this review, we evaluated the most recent data on the effects of EDCs on placental development and function, including heavy metals, plasticizers, pesticides, flame retardants, UV filters and preservatives. The EDCs under evaluation have evidence from human biomonitoring and are found in nature. Additionally, this study indicates important knowledge gaps that will direct future research on the topic.
Collapse
Affiliation(s)
- Yan Yan
- Department of Endocrinology, The Second Hospital of Jilin University, Changchun, China
| | - Fengjun Guo
- Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun, China
| | - Kexin Liu
- Department of Gastrointestinal Colorectal Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Rixin Ding
- Department of Cardiovascular Medicine, Changchun Central Hospital, Changchun, China
| | - Yichao Wang
- Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun, China
- *Correspondence: Yichao Wang,
| |
Collapse
|
13
|
Molangiri A, Varma S, M S, Kambham S, Duttaroy AK, Basak S. Prenatal exposure to bisphenol S and bisphenol A differentially affects male reproductive system in the adult offspring. Food Chem Toxicol 2022; 167:113292. [PMID: 35842007 DOI: 10.1016/j.fct.2022.113292] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 07/07/2022] [Accepted: 07/10/2022] [Indexed: 11/24/2022]
Abstract
Early exposure to bisphenol may result in adverse reproductive health in later life. The use of bisphenol S (BPS) has increased considerably after bisphenol A (BPA) is regulated worldwide. However, little is known about the fetal exposure to BPS compared with BPA and its effects on the reproductive system in the adult male offspring. Here, we investigated the effects of orally administered BPS and BPA (0.4, 4.0, 40.0 μg/kg bw/d) during gestation (gD4-21) on testicular development by evaluating the sperm DNA damage & methylation and testicular functions in the 90 d Wistar rats. Male offspring prenatally exposed to BPS (0.4 μg/kg) had higher plasma testosterone than BPA and control. The testis histology reveals thickened membrane by producing a wide interstitial gap between seminiferous tubules, increased testicular inflammation, oxidative stress, TIMP-1 expression, and decreased VCAM-1 expression. BPS promotes apoptosis by up-regulating IL-6, cleaved caspases, and a spike in sperm DNA fragmentation. Prenatal BPS exposure reduces sperm motility mediated via impaired PI3K-AKT signaling and increases testicular TEX11 expression in the offspring. Exposure of the fetus to BPS interferes developmental programming of the male reproductive system in the offspring. BPS could be an equally potent endocrine disruptor affecting male reproductive functions.
Collapse
Affiliation(s)
- Archana Molangiri
- National Institute of Nutrition, Indian Council of Medical Research, Hyderabad, India
| | - Saikanth Varma
- National Institute of Nutrition, Indian Council of Medical Research, Hyderabad, India
| | - Satyavani M
- National Institute of Nutrition, Indian Council of Medical Research, Hyderabad, India
| | - Saikrishna Kambham
- National Institute of Nutrition, Indian Council of Medical Research, Hyderabad, India
| | - Asim K Duttaroy
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Norway
| | - Sanjay Basak
- National Institute of Nutrition, Indian Council of Medical Research, Hyderabad, India.
| |
Collapse
|
14
|
Endocrine-Disrupting Effects of Bisphenol A on the Cardiovascular System: A Review. J Xenobiot 2022; 12:181-213. [PMID: 35893265 PMCID: PMC9326625 DOI: 10.3390/jox12030015] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/10/2022] [Accepted: 07/11/2022] [Indexed: 11/21/2022] Open
Abstract
Currently, the plastic monomer and plasticizer bisphenol A (BPA) is one of the most widely used chemicals. BPA is present in polycarbonate plastics and epoxy resins, commonly used in food storage and industrial or medical products. However, the use of this synthetic compound is a growing concern, as BPA is an endocrine-disrupting compound and can bind mainly to estrogen receptors, interfering with different functions at the cardiovascular level. Several studies have investigated the disruptive effects of BPA; however, its cardiotoxicity remains unclear. Therefore, this review’s purpose is to address the most recent studies on the implications of BPA on the cardiovascular system. Our findings suggest that BPA impairs cardiac excitability through intracellular mechanisms, involving the inhibition of the main ion channels, changes in Ca2+ handling, the induction of oxidative stress, and epigenetic modifications. Our data support that BPA exposure increases the risk of developing cardiovascular diseases (CVDs) including atherosclerosis and its risk factors such as hypertension and diabetes. Furthermore, BPA exposure is also particularly harmful in pregnancy, promoting the development of hypertensive disorders during pregnancy. In summary, BPA exposure compromises human health, promoting the development and progression of CVDs and risk factors. Further studies are needed to clarify the human health effects of BPA-induced cardiotoxicity.
Collapse
|
15
|
Zou Z, Harris LK, Forbes K, Heazell AEP. Sex-specific effects of Bisphenol a on the signalling pathway of ESRRG in the human placenta. Biol Reprod 2022; 106:1278-1291. [PMID: 35220427 PMCID: PMC9198953 DOI: 10.1093/biolre/ioac044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 01/17/2022] [Accepted: 02/16/2022] [Indexed: 11/17/2022] Open
Abstract
Bisphenol A (BPA) exposure during pregnancy is associated with low fetal weight, particularly in male fetuses. The expression of estrogen-related receptor gamma (ESRRG), a receptor for BPA in the human placenta, is reduced in fetal growth restriction. This study sought to explore whether ESRRG signaling mediates BPA-induced placental dysfunction and determine whether changes in the ESRRG signaling pathway are sex-specific. Placental villous explants from 18 normal term pregnancies were cultured with a range of BPA concentrations (1 nM–1 μM). Baseline BPA concentrations in the placental tissue used for explant culture ranged from 0.04 to 5.1 nM (average 2.3 ±1.9 nM; n = 6). Expression of ESRRG signaling pathway constituents and cell turnover were quantified. BPA (1 μM) increased ESRRG mRNA expression after 24 h in both sexes. ESRRG mRNA and protein expression was increased in female placentas treated with 1 μM BPA for 24 h but was decreased in male placentas treated with 1 nM or 1 μM for 48 h. Levels of 17β-hydroxysteroid dehydrogenase type 1 (HSD17B1) and placenta specific-1 (PLAC1), genes downstream of ESRRG, were also affected. HSD17B1 mRNA expression was increased in female placentas by 1 μM BPA; however, 1 nM BPA reduced HSD17B1 and PLAC1 expression in male placentas at 48 h. BPA treatment did not affect rates of proliferation, apoptosis, or syncytiotrophoblast differentiation in cultured villous explants. This study has demonstrated that BPA affects the ESRRG signaling pathway in a sex-specific manner in human placentas and a possible biological mechanism to explain the differential effects of BPA exposure on male and female fetuses observed in epidemiological studies.
Collapse
Affiliation(s)
- Zhiyong Zou
- Maternal and Fetal Health Research Centre, University of Manchester, 5th floor (Research), St Mary's Hospital, Oxford Road, Manchester, UK, M13 9WL
| | - Lynda K Harris
- Maternal and Fetal Health Research Centre, University of Manchester, 5th floor (Research), St Mary's Hospital, Oxford Road, Manchester, UK, M13 9WL
- Division of Pharmacy and Optometry, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PL, UK
| | - Karen Forbes
- Maternal and Fetal Health Research Centre, University of Manchester, 5th floor (Research), St Mary's Hospital, Oxford Road, Manchester, UK, M13 9WL
- Leeds Institute of Cardiovascular and Metabolic Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, LS2 9JT, UK
| | - Alexander E P Heazell
- Maternal and Fetal Health Research Centre, University of Manchester, 5th floor (Research), St Mary's Hospital, Oxford Road, Manchester, UK, M13 9WL
- St Mary’s Hospital, Manchester Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| |
Collapse
|
16
|
Vidal MS, Menon R, Yu GFB, Amosco MD. Actions of Bisphenol A on Different Feto-Maternal Compartments Contributing to Preterm Birth. Int J Mol Sci 2022; 23:ijms23052411. [PMID: 35269554 PMCID: PMC8910111 DOI: 10.3390/ijms23052411] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 02/07/2022] [Accepted: 02/10/2022] [Indexed: 12/19/2022] Open
Abstract
Preterm birth remains to be one of the most prevalent obstetric complications worldwide. Since there are multiple etiological factors associated with this disease process, an integrative literature search in PubMed and Scopus databases on possible mechanism of action and effect of bisphenols on exposure on human or animal placental samples in preterm birth was conducted. From 2332 articles on initial literature search, 63 studies were included for full data extraction. Altogether, several pathways were shown to be possibly affected by bisphenols, leading to dysregulations in structural and endocrine foundation in the placenta, potential induction of senescence and failure of decidualization in the decidua, and possible propagation of inflammation in the fetal membranes. Combined, these actions may eventually counteract bisphenol-induced relaxation of the myometrium and promote contractility alongside fetal membrane weakening. In totality, these individual impairments in gestation-critical processes may lead to failure of maintenance of pregnancy, and thus effecting preterm birth.
Collapse
Affiliation(s)
- Manuel S. Vidal
- College of Medicine, University of the Philippines Manila, Manila 1000, Philippines
- Correspondence:
| | - Ramkumar Menon
- Division of Basic Science and Translational Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA;
| | - Gracia Fe B. Yu
- Department of Biochemistry and Molecular Biology, University of the Philippines Manila, Manila 1000, Philippines;
| | - Melissa D. Amosco
- Department of Obstetrics and Gynecology, Philippine General Hospital, University of the Philippines Manila, Manila 1000, Philippines;
| |
Collapse
|
17
|
Li J, Quan X, Lei S, Chen G, Hong J, Huang Z, Wang Q, Song W, Yang X. LncRNA MEG3 alleviates PFOS induced placental cell growth inhibition through its derived miR-770 targeting PTX3. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 293:118542. [PMID: 34801623 DOI: 10.1016/j.envpol.2021.118542] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 10/14/2021] [Accepted: 11/15/2021] [Indexed: 06/13/2023]
Abstract
Perfluorooctane sulfonic acid (PFOS) is a persistent environmental pollutant. Exposure to PFOS has been associated with abnormal fetal development. The long non-coding RNA (lncRNA) has been showed to play a role in fetal growth restriction (FGR), preeclampsia (PE) and other pregnancy complications. Whether the lncRNA contributes to PFOS-induced toxicity in the placenta remains unknown. In this study, we investigated the function of lncRNA MEG3 and its derived miR-770 in PFOS-induced placental toxicity. Pregnant mice received gavage administration of different concentrations of PFOS (0.5, 2.5, and 12.5 mg/kg/day) from GD0 to GD17, and HTR-8/SVneo cells were treated with PFOS in the concentrations of 0, 10-1, 1, 10 μM. We found that expression levels of miR-770 and its host gene MEG3 were reduced in mice placentas and HTR-8/SVneo cells with exposure of PFOS. A significant hypermethylation was observed at MEG3 promoter in placentas of mice gestational-treated with PFOS. We also confirmed that MEG3 and miR-770 overexpression alleviated the cell growth inhibition induced by PFOS. Furthermore, PTX3 (Pentraxin 3) was identified as the direct target of miR-770 and it was enhanced after PFOS exposure. In summary, our results suggested that MEG3 alleviate PFOS-induced placental cell inhibition through MEG3/miR-770/PTX3 axis.
Collapse
Affiliation(s)
- Jing Li
- School of Public Health, Xuzhou Medical University, 209 Tong-Shan Road, Xuzhou, Jiangsu, 221002, China.
| | - Xiaojie Quan
- School of Public Health, Xuzhou Medical University, 209 Tong-Shan Road, Xuzhou, Jiangsu, 221002, China
| | - Saifei Lei
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Gang Chen
- School of Public Health, Xuzhou Medical University, 209 Tong-Shan Road, Xuzhou, Jiangsu, 221002, China
| | - Jiawei Hong
- School of Public Health, Xuzhou Medical University, 209 Tong-Shan Road, Xuzhou, Jiangsu, 221002, China
| | - Zhenyao Huang
- School of Public Health, Xuzhou Medical University, 209 Tong-Shan Road, Xuzhou, Jiangsu, 221002, China
| | - Qi Wang
- School of Public Health, Xuzhou Medical University, 209 Tong-Shan Road, Xuzhou, Jiangsu, 221002, China
| | - Weiyi Song
- School of Public Health, Xuzhou Medical University, 209 Tong-Shan Road, Xuzhou, Jiangsu, 221002, China
| | - Xinxin Yang
- School of Public Health, Xuzhou Medical University, 209 Tong-Shan Road, Xuzhou, Jiangsu, 221002, China
| |
Collapse
|
18
|
Adu-Gyamfi EA, Rosenfeld CS, Tuteja G. The impact of bisphenol a (BPA) on the placenta. Biol Reprod 2022; 106:826-834. [PMID: 35020819 DOI: 10.1093/biolre/ioac001] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/28/2021] [Accepted: 12/29/2021] [Indexed: 11/14/2022] Open
Abstract
Bisphenol A (BPA) is an endocrine-disrupting chemical (EDC) that is used in a wide-variety of plastic and common house-hold items. Therefore, there is potential continual exposure to this compound. BPA exposure has been linked to certain placenta-associated obstetric complications such as preeclampsia, fetal growth restriction, miscarriage, and preterm birth. However, how BPA exposure results in these disorders remains uncertain. Hence, we have herein summarized the reported impact of BPA on the morphology and metabolic state of the placenta and have proposed mechanisms by which BPA affects placentation, potentially leading to obstetric complications. Current findings suggest that BPA induces pathological changes in the placenta and disrupts its metabolic activities. Based on exposure concentrations, BPA can elicit apoptotic or anti-apoptotic signals in the trophoblasts; and can exaggerate trophoblast fusion while inhibiting trophoblast migration and invasion to affect pregnancy. Accordingly, the usage of BPA products by pregnant women should be minimized and less harmful alternative chemicals should be explored and employed where possible.
Collapse
Affiliation(s)
| | - Cheryl S Rosenfeld
- Department of Biomedical Sciences, University of Missouri, Columbia, MO, USA
- Data Science and Informatics Institute, University of Missouri, Columbia, MO, USA
- Thompson Center for Autism and Neurobehavioral Disorders, University of Missouri, Columbia, MO, USA
| | - Geetu Tuteja
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, USA
| |
Collapse
|
19
|
Ticiani E, Pu Y, Gingrich J, Veiga-Lopez A. Bisphenol S Impairs Invasion and Proliferation of Extravillous Trophoblasts Cells by Interfering with Epidermal Growth Factor Receptor Signaling. Int J Mol Sci 2022; 23:671. [PMID: 35054855 PMCID: PMC8776214 DOI: 10.3390/ijms23020671] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 01/03/2022] [Accepted: 01/03/2022] [Indexed: 12/19/2022] Open
Abstract
The placenta supports fetal growth and is vulnerable to exogenous chemical exposures. We have previously demonstrated that exposure to the emerging chemical bisphenol S (BPS) can alter placental endocrine function. Mechanistically, we have demonstrated that BPS interferes with epidermal growth factor receptor (EGFR) signaling, reducing placenta cell fusion. Extravillous trophoblasts (EVTs), a placenta cell type that aids with vascular remodeling, require EGF to invade into the maternal endometrium. We hypothesized that BPS would impair EGF-mediated invasion and proliferation in EVTs. Using human EVTs (HTR-8/SVneo cells), we tested whether BPS could inhibit the EGF response by blocking EGFR activation. We also evaluated functional endpoints of EGFR signaling, including EGF endocytosis, cell invasion and proliferation, and endovascular differentiation. We demonstrated that BPS blocked EGF-induced phosphorylation of EGFR by acting as a competitive antagonist to EGFR. Transwell assay and a three-dimensional microfluidic chip invasion assay revealed that BPS exposure can block EGF-mediated cell invasion. BPS also blocked EGF-mediated proliferation and endovascular differentiation. In conclusion, BPS can prevent EGF-mediated EVT proliferation and invasion through EGFR antagonism. Given the role of EGFR in trophoblast proliferation and differentiation during placental development, our findings suggest that maternal exposure to BPS may contribute to placental dysfunction via EGFR-mediated mechanisms.
Collapse
Affiliation(s)
- Elvis Ticiani
- Department of Pathology, University of Illinois at Chicago, Chicago, IL 60612, USA; (E.T.); (Y.P.)
| | - Yong Pu
- Department of Pathology, University of Illinois at Chicago, Chicago, IL 60612, USA; (E.T.); (Y.P.)
| | - Jeremy Gingrich
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI 48824, USA;
| | - Almudena Veiga-Lopez
- Department of Pathology, University of Illinois at Chicago, Chicago, IL 60612, USA; (E.T.); (Y.P.)
- The Chicago Center for Health and the Environment, University of Illinois at Chicago, Chicago, IL 60612, USA
| |
Collapse
|
20
|
Lorigo M, Cairrao E. Fetoplacental vasculature as a model to study human cardiovascular endocrine disruption. Mol Aspects Med 2021; 87:101054. [PMID: 34839931 DOI: 10.1016/j.mam.2021.101054] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 10/15/2021] [Accepted: 11/18/2021] [Indexed: 12/11/2022]
Abstract
Increasing evidence has associated the exposure of endocrine-disrupting chemicals (EDCs) with the cardiovascular (CV) system. This exposure is particularly problematic in a sensitive window of development, pregnancy. Pregnancy exposome can affect the overall health of the pregnancy by dramatic changes in vascular physiology and endocrine activity, increasing maternal susceptibility. Moreover, fetoplacental vascular function is generally altered, increasing the risk of developing pregnancy complications (including cardiovascular diseases, CVD) and predisposing the foetus to adverse health risks later in life. Thus, our review summarizes the existing literature on exposures to EDCs during pregnancy and adverse maternal health outcomes, focusing on the human placenta, vein, and umbilical artery associated with pregnancy complications. The purpose of this review is to highlight the role of fetoplacental vasculature as a model for the study of human cardiovascular endocrine disruption. Therefore, we emphasize that the placenta, together with the umbilical arteries and veins, allows a better characterization of the pregnant woman's exposome. Consequently, it contributes to the protection of the mother and foetus against CV disorders in life.
Collapse
Affiliation(s)
- Margarida Lorigo
- CICS-UBI, Health Sciences Research Centre, University of Beira Interior, 6200-506, Covilhã, Portugal; FCS - UBI, Faculty of Health Sciences, University of Beira Interior, Covilhã, Portugal
| | - Elisa Cairrao
- CICS-UBI, Health Sciences Research Centre, University of Beira Interior, 6200-506, Covilhã, Portugal; FCS - UBI, Faculty of Health Sciences, University of Beira Interior, Covilhã, Portugal.
| |
Collapse
|
21
|
Song X, Wang Z, Zhang Z, Miao M, Liu J, Luan M, Du J, Liang H, Yuan W. Differential methylation of genes in the human placenta associated with bisphenol A exposure. ENVIRONMENTAL RESEARCH 2021; 200:111389. [PMID: 34089743 DOI: 10.1016/j.envres.2021.111389] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 04/23/2021] [Accepted: 05/20/2021] [Indexed: 06/12/2023]
Abstract
Prenatal exposure to bisphenol A (BPA) is associated with numerous adverse health outcomes among offspring. Although DNA methylation is considered one of the underlying causes of these associations, few studies have focused on the association between prenatal BPA exposure and DNA methylation in the human placenta. In this study, we examined the association between prenatal BPA exposure and DNA methylation in the placenta of 146 mother-infant pairs from the Shanghai-Minhang Birth Cohort Study. BPA concentrations in maternal urine samples were measured using high-performance liquid chromatography. Six placenta samples were selected for whole-genome methylation analysis using Infinium Human Methylation 450K Beadchip, followed by pyrosequencing-based methylation analysis of three selected genes in 146 placentas. Among 282 differentially methylated CpGs, representing 208 genes, 127 were hypermethylated, and 155 were hypomethylated in the BPA exposure group. Prenatal BPA exposure was associated with a higher methylation level of HLA-DRB6 in individuals as determined using pyrosequencing, which was consistent with the whole-genome methylation analysis results. Compared with that subjects with low BPA exposure, the methylation level (ln-transformed) of HLA-DRB6 in placentas from those with high BPA exposure increased by 0.29% (95% confidence interval[CI]: 0.02%, 0.56%) at the CpG2 site, and the average methylation level (ln-transformed) of the three CpG sites increased by 0.30% (95%CI: -0.03%, 0.63%). Our findings provide evidence that prenatal BPA exposure might alter DNA methylation levels in the placenta.
Collapse
Affiliation(s)
- Xiuxia Song
- Department of Epidemiology and Social Science, NHC Key Lab. of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Fudan University, Shanghai, China
| | - Ziliang Wang
- Department of Epidemiology and Social Science, NHC Key Lab. of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Fudan University, Shanghai, China
| | - Zhaofeng Zhang
- Department of Epidemiology and Social Science, NHC Key Lab. of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Fudan University, Shanghai, China
| | - Maohua Miao
- Department of Epidemiology and Social Science, NHC Key Lab. of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Fudan University, Shanghai, China
| | - Junwei Liu
- Department of Epidemiology and Social Science, NHC Key Lab. of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Fudan University, Shanghai, China
| | - Min Luan
- Department of Epidemiology and Social Science, NHC Key Lab. of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Fudan University, Shanghai, China
| | - Jing Du
- Department of Epidemiology and Social Science, NHC Key Lab. of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Fudan University, Shanghai, China.
| | - Hong Liang
- Department of Epidemiology and Social Science, NHC Key Lab. of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Fudan University, Shanghai, China.
| | - Wei Yuan
- Department of Epidemiology and Social Science, NHC Key Lab. of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Fudan University, Shanghai, China
| |
Collapse
|
22
|
Ruiz TFR, Taboga SR, Leonel ECR. Molecular mechanisms of mammary gland remodeling: A review of the homeostatic versus bisphenol a disrupted microenvironment. Reprod Toxicol 2021; 105:1-16. [PMID: 34343637 DOI: 10.1016/j.reprotox.2021.07.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 07/26/2021] [Accepted: 07/29/2021] [Indexed: 12/30/2022]
Abstract
Mammary gland (MG) undergoes critical points of structural changes throughout a woman's life. During the perinatal and pubertal stages, MG develops through growth and differentiation to establish a pre-mature feature. If pregnancy and lactation occur, the epithelial compartment branches and differentiates to create a specialized structure for milk secretion and nurturing of the newborn. However, the ultimate MG modification consists of a regression process aiming to reestablish the smaller and less energy demanding structure until another production cycle happens. The unraveling of these fascinating physiologic cycles has helped the scientific community elucidate aspects of molecular regulation of proliferative and apoptotic events and remodeling of the stromal compartment. However, greater understanding of the hormonal pathways involved in MG developmental stages led to concern that endocrine disruptors such as bisphenol A (BPA), may influence these specific development/involution stages, called "windows of susceptibility". Since it is used in the manufacture of polycarbonate plastics and epoxy resins, BPA is a ubiquitous chemical present in human everyday life, exerting an estrogenic effect. Thus, descriptions of its deleterious effects on the MG, especially in terms of serum hormone concentrations, hormonal receptor expression, molecular pathways, and epigenetic alterations, have been widely published. Therefore, allied to a didactic description of the main physiological mechanisms involved in different critical points of MG development, the current review provides a summary of key mechanisms by which the endocrine disruptor BPA impacts MG homeostasis at different windows of susceptibility, causing short- and long-term effects.
Collapse
Affiliation(s)
- Thalles Fernando Rocha Ruiz
- São Paulo State University (Unesp), Department of Biology, Institute of Biosciences, Humanities and Exact Sciences, São José Do Rio Preto, Brazil.
| | - Sebastião Roberto Taboga
- São Paulo State University (Unesp), Department of Biology, Institute of Biosciences, Humanities and Exact Sciences, São José Do Rio Preto, Brazil.
| | - Ellen Cristina Rivas Leonel
- São Paulo State University (Unesp), Department of Biology, Institute of Biosciences, Humanities and Exact Sciences, São José Do Rio Preto, Brazil; Federal University of Goiás (UFG), Department of Histology, Embryology and Cell Biology, Institute of Biological Sciences, Goiânia, Brazil.
| |
Collapse
|
23
|
Profita M, Fabbri E, Spisni E, Valbonesi P. Comparing effects and action mechanisms of BPA and BPS on HTR-8/SVneo placental cells. Biol Reprod 2021; 105:1355-1364. [PMID: 34270681 DOI: 10.1093/biolre/ioab139] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/24/2021] [Accepted: 07/12/2021] [Indexed: 11/14/2022] Open
Abstract
Bisphenol A (BPA) is one of the most investigated compound as a suspected endocrine disrupting chemical. It has been found at nM concentrations in the maternal serum, cord serum, and amniotic fluid and also permeates placental tissues. Attempts are being made to replace BPA with the analog Bisphenol S (BPS). Also BPS was found in maternal and umbilical cord serum, and urine samples from a large population of pregnant women. A few studies investigated BPA impact on the placentation process, and even less are available for BPS. This work aimed to elucidate and compare the effects of BPA and BPS on physiological functions of HTR-8/SVneo cells, derived from extravillous trophoblast of first-trimester pregnancy. Proliferation and migration ability of trophoblast cells were assessed in vitro after exposure to BPA or BPS (10-13 - 10-3 M). Further, induction of the inflammatory response by the bisphenols was studied. To provide insight into the molecular pathways implicated in the responses, experiments were carried out in the presence or absence of tamoxifen as estrogen receptors (ERs) blocker, and U0126 as ERK1/2 phosphorylation inhibitor. Data indicate that BPA significantly affects both proliferation and migration of HTR-8/SVneo cells, through ER and ERK1/2 mediated processes. Differently, BPS only acts on proliferation, again through ER and ERK1/2 mediated processes. BPS, but not BPA, induces secretion of interleukins 6 and 8. Such effect is inhibited by blocking ERK1/2 phosphorylation. To the best of our knowledge, these are the first data showing that BPS affects trophoblast functions through ER/MAPK modulation.
Collapse
Affiliation(s)
- Marilin Profita
- University of Bologna, Department of Biological, Geological, and Environmental Sciences, Ravenna, Italy
| | - Elena Fabbri
- University of Bologna, Department of Biological, Geological, and Environmental Sciences, Ravenna, Italy
| | - Enzo Spisni
- University of Bologna, Department of Biological, Geological, and Environmental Sciences, Ravenna, Italy
| | - Paola Valbonesi
- University of Bologna, Department of Biological, Geological, and Environmental Sciences, Ravenna, Italy
| |
Collapse
|
24
|
A Systematic Review of Bisphenol A from Dietary and Non-Dietary Sources during Pregnancy and Its Possible Connection with Fetal Growth Restriction: Investigating Its Potential Effects and the Window of Fetal Vulnerability. Nutrients 2021; 13:nu13072426. [PMID: 34371934 PMCID: PMC8308698 DOI: 10.3390/nu13072426] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 07/08/2021] [Accepted: 07/09/2021] [Indexed: 12/28/2022] Open
Abstract
Bisphenol A (BPA), a ubiquitous endocrine-disrupting chemical (EDC), is increasingly hypothesized to be a factor contributing to changes in fetal growth velocity. BPA exposure may be environmental, occupational, and/or dietary, with canned foods and plastic bottles contributing significantly. Our systematic review aims to evaluate the current literature and to investigate the role of BPA in abnormal fetal growth patterns. A search was conducted in the PubMed and Cochrane databases. A total of 25 articles met the eligibility criteria and were included in this systematic review. Eleven of them failed to show a clear relationship between BPA and abnormal fetal growth. The majority of the remaining studies (9/14) found an inverse association of BPA with indicators of fetal growth, whereas three studies suggested increased fetal growth, and two studies produced contradictory findings. Of note, both of the studies that collected a sample (amniotic fluid) directly reflecting BPA concentration in the fetus during the first half of pregnancy revealed an inverse association with birth weight. In conclusion, there is mounting evidence that combined exposure to BPA from dietary and non-dietary sources during pregnancy may contribute to abnormal fetal growth; a tendency towards fetal growth restriction was shown, especially when exposure occurs during the first half.
Collapse
|
25
|
Marinello WP, Patisaul HB. Endocrine disrupting chemicals (EDCs) and placental function: Impact on fetal brain development. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2021; 92:347-400. [PMID: 34452690 DOI: 10.1016/bs.apha.2021.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
Abstract
Pregnancy is a critical time of vulnerability for the development of the fetal brain. Exposure to environmental pollutants at any point in pregnancy can negatively impact many aspects of fetal development, especially the organization and differentiation of the brain. The placenta performs a variety of functions that can help protect the fetus and sustain brain development. However, disruption of any of these functions can have negative impacts on both the pregnancy outcome and fetal neurodevelopment. This review presents current understanding of how environmental exposures, specifically to endocrine disrupting chemicals (EDCs), interfere with placental function and, in turn, neurodevelopment. Some of the key differences in placental development between animal models are presented, as well as how placental functions such as serving as a xenobiotic barrier and exchange organ, immune interface, regulator of growth and fetal oxygenation, and a neuroendocrine organ, could be vulnerable to environmental exposure. This review illustrates the importance of the placenta as a modulator of fetal brain development and suggests critical unexplored areas and possible vulnerabilities to environmental exposure.
Collapse
Affiliation(s)
- William P Marinello
- Department of Biological Sciences, Center for Human Health and the Environment, North Carolina State University, Raleigh, NC, United States
| | - Heather B Patisaul
- Department of Biological Sciences, Center for Human Health and the Environment, North Carolina State University, Raleigh, NC, United States.
| |
Collapse
|
26
|
Sol CM, van Zwol - Janssens C, Philips EM, Asimakopoulos AG, Martinez-Moral MP, Kannan K, Jaddoe VWV, Trasande L, Santos S. Maternal bisphenol urine concentrations, fetal growth and adverse birth outcomes: A population-based prospective cohort. Environ Health 2021; 20:60. [PMID: 33992119 PMCID: PMC8126069 DOI: 10.1186/s12940-021-00747-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Accepted: 05/05/2021] [Indexed: 05/17/2023]
Abstract
BACKGROUND Exposure to bisphenols may affect fetal growth and development. The trimester-specific effects of bisphenols on repeated measures of fetal growth remain unknown. Our objective was to assess the associations of maternal bisphenol urine concentrations with fetal growth measures and birth outcomes and identify potential critical exposure periods. METHODS In a population-based prospective cohort study among 1379 pregnant women, we measured maternal bisphenol A, S and F urine concentrations in the first, second and third trimester. Fetal head circumference, length and weight were measured in the second and third trimester by ultrasound and at birth. RESULTS An interquartile range increase in maternal pregnancy-averaged bisphenol S concentrations was associated with larger fetal head circumference (difference 0.18 (95% confidence interval (CI) 0.01 to 0.34) standard deviation scores (SDS), p-value< 0.05) across pregnancy. When focusing on specific critical exposure periods, any detection of first trimester bisphenol S was associated with larger second and third trimester fetal head circumference (difference 0.15 (95% CI 0.05 to 0.26) and 0.12 (95% CI 0.02 to 0.23) SDS, respectively) and fetal weight (difference 0.12 (95% CI 0.02 to 0.22) and 0.16 (95% CI 0.06 to 0.26) SDS, respectively). The other bisphenols were not consistently associated with fetal growth outcomes. Any detection of bisphenol S and bisphenol F in first trimester was also associated with a lower risk of being born small size for gestational age (Odds Ratio 0.56 (95% CI 0.38 to 0.74) and 0.55 (95% CI 0.36 to 0.85), respectively). Bisphenols were not associated with risk of preterm birth. CONCLUSIONS Higher maternal bisphenol S urine concentrations, especially in the first trimester, seem to be related with larger fetal head circumference, higher weight and a lower risk of being small size for gestational age at birth.
Collapse
Affiliation(s)
- Chalana M. Sol
- The Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, PO Box 2040, Rotterdam, 3000 CA the Netherlands
- Department of Pediatrics, Erasmus MC – Sophia Children’s Hospital, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Charissa van Zwol - Janssens
- The Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, PO Box 2040, Rotterdam, 3000 CA the Netherlands
- Department of Pediatrics, Erasmus MC – Sophia Children’s Hospital, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Elise M. Philips
- The Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, PO Box 2040, Rotterdam, 3000 CA the Netherlands
- Department of Pediatrics, Erasmus MC – Sophia Children’s Hospital, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Alexandros G. Asimakopoulos
- Wadsworth Center, New York State Department of Health, and Department of Environmental Health Sciences, School of Public Health, State University of New York at Albany, Albany, NY12201 USA
- Department of Chemistry, the Norwegian University of Science and Technology (NTNU), NO-7491 Trondheim, Norway
| | - Maria-Pilar Martinez-Moral
- Wadsworth Center, New York State Department of Health, and Department of Environmental Health Sciences, School of Public Health, State University of New York at Albany, Albany, NY12201 USA
| | - Kurunthachalam Kannan
- Wadsworth Center, New York State Department of Health, and Department of Environmental Health Sciences, School of Public Health, State University of New York at Albany, Albany, NY12201 USA
- Biochemistry Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Pediatrics, New York University School of Medicine, New York City, NY 10016 USA
- Department of Environmental Medicine, New York University School of Medicine, New York City, NY 10016 USA
| | - Vincent W. V. Jaddoe
- The Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, PO Box 2040, Rotterdam, 3000 CA the Netherlands
- Department of Pediatrics, Erasmus MC – Sophia Children’s Hospital, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Leonardo Trasande
- Department of Pediatrics, New York University School of Medicine, New York City, NY 10016 USA
- Department of Environmental Medicine, New York University School of Medicine, New York City, NY 10016 USA
- Department of Population Health, New York University School of Medicine, New York City, NY USA
- New York Wagner School of Public Service, New York City, NY 10016 USA
- New York University Global Institute of Public Health, New York City, NY 10016 USA
| | - Susana Santos
- The Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, PO Box 2040, Rotterdam, 3000 CA the Netherlands
- Department of Pediatrics, Erasmus MC – Sophia Children’s Hospital, University Medical Center Rotterdam, Rotterdam, the Netherlands
| |
Collapse
|
27
|
Lehle JD, McCarrey JR. Differential susceptibility to endocrine disruptor-induced epimutagenesis. ENVIRONMENTAL EPIGENETICS 2020; 6:dvaa016. [PMID: 33324495 PMCID: PMC7722801 DOI: 10.1093/eep/dvaa016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 12/19/2019] [Accepted: 12/19/2019] [Indexed: 05/08/2023]
Abstract
There is now considerable evidence indicating the potential for endocrine disrupting chemicals to alter the epigenome and for subsets of these epigenomic changes or "epimutations" to be heritably transmitted to offspring in subsequent generations. While there have been many studies indicating how exposure to endocrine disrupting chemicals can disrupt various organs associated with the body's endocrine systems, there is relatively limited information regarding the relative susceptibility of different specific organs, tissues, or cell types to endocrine disrupting chemical-induced epimutagenesis. Here we review available information about different organs, tissues, cell types, and/or cell lines which have been shown to be susceptible to specific endocrine disrupting chemical-induced epimutations. In addition, we discuss possible mechanisms that may be involved, or impacted by this tissue- or cell type-specific, differential susceptibility to different endocrine disrupting chemicals. Finally, we summarize available information indicating that certain periods of development display elevated susceptibility to endocrine disrupting chemical exposure and we describe how this may affect the extent to which germline epimutations can be transmitted inter- or transgenerationally. We conclude that cell type-specific differential susceptibility to endocrine disrupting chemical-induced epimutagenesis is likely to directly impact the extent to, or manner in, which endocrine disrupting chemical exposure initially induces epigenetic changes to DNA methylation and/or histone modifications, and how these endocrine disrupting chemical-induced epimutations can then subsequently impact gene expression, potentially leading to the development of heritable disease states.
Collapse
Affiliation(s)
- Jake D Lehle
- Department of Biology, University of Texas at San Antonio, 1 UTSA Circle, San Antonio, TX 78249, USA
| | - John R McCarrey
- Department of Biology, University of Texas at San Antonio, 1 UTSA Circle, San Antonio, TX 78249, USA
| |
Collapse
|
28
|
Elmetwally MA, Halawa AA, Tang W, Wu G, Bazer FW. Effects of Bisphenol A on expression of genes related to amino acid transporters, insulin- like growth factor, aquaporin and amino acid release by porcine trophectoderm cells. Reprod Toxicol 2020; 96:241-248. [PMID: 32710935 DOI: 10.1016/j.reprotox.2020.07.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 07/16/2020] [Accepted: 07/19/2020] [Indexed: 11/16/2022]
Abstract
The peri-implantation period of pregnancy is critical for conceptus development, implantation, and signaling for establishment of pregnancy. This study evaluated the effects of bisphenol A (BPA) on proliferation, adhesion, and migration of porcine trophectoderm (pTr2) cells, expression of transporters of arginine and synthesis of amino acids. All concentrations of BPA decreased proliferation and adhesion of pTr2 cells after 96 h compared to the control group. Lower concentrations of BPA (1 × 10-9, 1 × 10-8, 10-7M) increased (P < 0.05), but higher concentrations of BPA (1 × 10-5, 1 × 10-4 M) decreased migration of pTr2 cells. BPA increased expression of SLC7A1 mRNA at lower concentrations (1 × 10-9 to 1 × 10-6M) and SL7A6, another cationic acid transporter, at higher concentrations (1 × 10-5, 1 × 10-4 M). BPA also down-regulated the expression of IGF1 and IGF1 receptor at concentrations of 1 × 10-7 to 1 × 10-4 M compared to the control group. The expression of mRNAs for aquaporins (AQP) 3 and 4 were reduced at all concentrations of BPA, but at lower concentrations of BPA, (1 × 10-9 to 1 × 10-8M) expression of AQP9 mRNA increased and the expression of AQP11 was not affected by BPA (P > 0.05). There was an inhibitory effect of BPA on the release of synthesis of asparagine, threonine, taurine, tryptophan, and ornithine into the culture medium by pTr2 cells. Collectively, BPA adversely affected the expression of transporters for cationic amino acids like arginine, as well as AQPs, IGF1, and IGF1R associated with proliferation, migration, and adhesion of pTr2 cells. Those adverse effects would likely increase pregnancy losses during the peri-implantation period of pregnancy.
Collapse
Affiliation(s)
- Mohammed A Elmetwally
- Department of Animal Science, United States; Center for Animal Biotechnology and Genomics, Texas A&M University, College Station, TX 77843, United States; Department of Theriogenology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, 35516, Egypt
| | - Amal A Halawa
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, 35516, Egypt
| | - Wanjin Tang
- Department of Animal Science, United States; Center for Animal Biotechnology and Genomics, Texas A&M University, College Station, TX 77843, United States
| | - Guoyao Wu
- Department of Animal Science, United States; Center for Animal Biotechnology and Genomics, Texas A&M University, College Station, TX 77843, United States
| | - Fuller W Bazer
- Department of Animal Science, United States; Center for Animal Biotechnology and Genomics, Texas A&M University, College Station, TX 77843, United States.
| |
Collapse
|
29
|
Gingrich J, Ticiani E, Veiga-Lopez A. Placenta Disrupted: Endocrine Disrupting Chemicals and Pregnancy. Trends Endocrinol Metab 2020; 31:508-524. [PMID: 32249015 PMCID: PMC7395962 DOI: 10.1016/j.tem.2020.03.003] [Citation(s) in RCA: 110] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 02/19/2020] [Accepted: 03/06/2020] [Indexed: 01/06/2023]
Abstract
Endocrine disrupting chemicals (EDCs) are chemicals that can interfere with normal endocrine signals. Human exposure to EDCs is particularly concerning during vulnerable periods of life, such as pregnancy. However, often overlooked is the effect that EDCs may pose to the placenta. The abundance of hormone receptors makes the placenta highly sensitive to EDCs. We have reviewed the most recent advances in our understanding of EDC exposures on the development and function of the placenta such as steroidogenesis, spiral artery remodeling, drug-transporter expression, implantation and cellular invasion, fusion, and proliferation. EDCs reviewed include those ubiquitous in the environment with available human biomonitoring data. This review also identifies critical gaps in knowledge to drive future research in the field.
Collapse
Affiliation(s)
- Jeremy Gingrich
- Department of Animal Science, College of Agriculture and Natural Resources, Michigan State University, East Lansing, MI, USA; Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, USA
| | - Elvis Ticiani
- Department of Animal Science, College of Agriculture and Natural Resources, Michigan State University, East Lansing, MI, USA
| | - Almudena Veiga-Lopez
- Department of Animal Science, College of Agriculture and Natural Resources, Michigan State University, East Lansing, MI, USA.
| |
Collapse
|
30
|
Basak S, Das MK, Duttaroy AK. Plastics derived endocrine-disrupting compounds and their effects on early development. Birth Defects Res 2020; 112:1308-1325. [PMID: 32476245 DOI: 10.1002/bdr2.1741] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 05/20/2020] [Indexed: 12/14/2022]
Abstract
Despite the fact that the estrogenic effects of bisphenols were first described 80 years ago, recent data about its potential negative impact on birth outcome parameters raises a strong rationale to investigate further. The adverse health effects of plastics recommend to measure the impacts of endocrine-disrupting compounds (EDCs) such as bisphenols (BPA, BPS, BPF), bis(2-ethylhexyl) phthalate, and dibutyl phthalate (DBP) in human health. Exposure to these compounds in utero may program the diseases of the testis, prostate, kidney and abnormalities in the immune system, and cause tumors, uterine hemorrhage during pregnancy and polycystic ovary. These compounds also control the processes of epigenetic transgenerational inheritance of adult-onset diseases by modulating DNA methylation and epimutations in reproductive cells. The early developmental stage is the most susceptible window for developmental and genomic programming. The critical stages of the events for a normal human birth lie between the many transitions occurring between spermatogenesis, egg fertilization and the fully formed fetus. As the cells begin to grow and differentiate, there are critical balances of hormones, and protein synthesis. Data are emerging on how these plastic-derived compounds affect embryogenesis, placentation and feto-placental development since pregnant women and unborn fetuses are often exposed to these factors during preconception and throughout gestation. Impaired early development that ultimately influences fetal outcomes is at the center of many developmental disorders and contributes an independent risk factor for adult chronic diseases. This review will summarize the current status on the impact of exposure to plastic derived EDCs on the growth, gene expression, epigenetic and angiogenic activities of the early fetal development process and their possible effects on birth outcomes.
Collapse
Affiliation(s)
- Sanjay Basak
- Molecular Biology Division, National Institute of Nutrition, Indian Council of Medical Research, Hyderabad, India
| | - Mrinal K Das
- Department of Molecular Medicine, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Asim K Duttaroy
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
31
|
Basak S, Srinivas V, Mallepogu A, Duttaroy AK. Curcumin stimulates angiogenesis through VEGF and expression of HLA‐G in first‐trimester human placental trophoblasts. Cell Biol Int 2020; 44:1237-1251. [DOI: 10.1002/cbin.11324] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Accepted: 02/16/2020] [Indexed: 12/26/2022]
Affiliation(s)
- Sanjay Basak
- Department of Nutrition, Faculty of MedicineUniversity of Oslo POB 1046, Blindern N‐0316 Oslo Norway
- ICMR‐National Institute of Nutrition Hyderabad Telangana 500007 India
| | | | - Aswani Mallepogu
- ICMR‐National Institute of Nutrition Hyderabad Telangana 500007 India
| | - Asim K. Duttaroy
- Department of Nutrition, Faculty of MedicineUniversity of Oslo POB 1046, Blindern N‐0316 Oslo Norway
| |
Collapse
|
32
|
Song W, Puttabyatappa M, Zeng L, Vazquez D, Pennathur S, Padmanabhan V. Developmental programming: Prenatal bisphenol A treatment disrupts mediators of placental function in sheep. CHEMOSPHERE 2020; 243:125301. [PMID: 31726260 PMCID: PMC7243413 DOI: 10.1016/j.chemosphere.2019.125301] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 10/21/2019] [Accepted: 11/02/2019] [Indexed: 05/09/2023]
Abstract
Gestational Bisphenol A (BPA) exposure is associated with low birth weight. We hypothesized that the low birth weight is the consequence of reduced placental efficiency and a function of BPA-induced inflammatory, oxidative, lipotoxic, angiogenic, steroidal and fibrotic changes involving epigenetic alterations. Placentomes were collected during early (day 65) and mid (day 90) gestation (term ∼147 days) from control and BPA (gestational day 30-90)-treated pregnant sheep. BPA treatment: reduced placental efficiency and fetal weight; increased interleukin 8, lipid peroxidation marker, antioxidants, aromatase, 17 alpha-hydroxylase, estrogen receptor 2, insulin like growth factor (IGF) 2 receptor and IGF binding proteins (IGFBP), and histone deacetylase 1 and 2; reduced tumor necrosis factor alpha and IGF1 receptor at early gestation (Day 65). Gestational BPA-induced mid-gestational changes include: reduced angiogenic factor hypoxia inducible factor 1 alpha; increased IL1beta, oxidative stress markers, triglyceride, 17alpha hydroxylase, IGFBP 1, DNA methyltransferase 3 A and histone deacetylase 1. These findings indicate that gestational BPA, either acting directly or by altering steroidal input, produces early/mid-gestational-specific epigenetic changes culminating in placental disruptions at several levels, in keeping with time-specific/time-lagged pregnancy-associated changes in placental efficiency and fetal weight. The reduced early-gestational placental efficiency may be a function of increased inflammation/oxidative stress and reduced IGF bioavailability with the mid-gestational restoration of placental efficiency likely driven by improved IGF bioavailability and the time-lagged response to antioxidant increase. This compensation, the result of time-lagged response to increases in negative mediators of placental function must have failed with pregnancy advancement to explain the low birthweight outcome.
Collapse
Affiliation(s)
- Wenhui Song
- The Fourth Hospital of Shijiazhuang, Shijiazhuang, Hebei, 050011, PR China; Department of Pediatrics, University of Michigan, Ann Arbor, MI, USA
| | | | - Lixia Zeng
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Delia Vazquez
- Department of Pediatrics, University of Michigan, Ann Arbor, MI, USA
| | | | | |
Collapse
|
33
|
Endocrine-Disrupting Chemicals in Human Fetal Growth. Int J Mol Sci 2020; 21:ijms21041430. [PMID: 32093249 PMCID: PMC7073082 DOI: 10.3390/ijms21041430] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 02/15/2020] [Accepted: 02/18/2020] [Indexed: 12/17/2022] Open
Abstract
Fetal growth is regulated by a complex interaction of maternal, placental, and fetal factors. The effects and outcomes that chemicals, widely distributed in the environment, may have on the health status of both the mother and the fetus are not yet well defined. Mainly mixtures of chemical substances are found in the mothers and placenta. Exposure to endocrine-disrupting chemicals (EDCs) can be associated with fetal growth retardation, thyroid dysfunction, and neurological disorders. EDCs mostly interfere with insulin, glucocorticoid, estrogenic, and thyroid pathways, with subsequent effects on normal endocrine and metabolic functions, which cause changes in the epigenome and state of inflammation with life-long effects and consequences. International scientific societies recommend the implementation of research and of all possible preventive measures. This review briefly summarizes all these aspects.
Collapse
|
34
|
Chung FFL, Herceg Z. The Promises and Challenges of Toxico-Epigenomics: Environmental Chemicals and Their Impacts on the Epigenome. ENVIRONMENTAL HEALTH PERSPECTIVES 2020; 128:15001. [PMID: 31950866 PMCID: PMC7015548 DOI: 10.1289/ehp6104] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 12/15/2019] [Accepted: 12/16/2019] [Indexed: 05/02/2023]
Abstract
BACKGROUND It has been estimated that a substantial portion of chronic and noncommunicable diseases can be caused or exacerbated by exposure to environmental chemicals. Multiple lines of evidence indicate that early life exposure to environmental chemicals at relatively low concentrations could have lasting effects on individual and population health. Although the potential adverse effects of environmental chemicals are known to the scientific community, regulatory agencies, and the public, little is known about the mechanistic basis by which these chemicals can induce long-term or transgenerational effects. To address this question, epigenetic mechanisms have emerged as the potential link between genetic and environmental factors of health and disease. OBJECTIVES We present an overview of epigenetic regulation and a summary of reported evidence of environmental toxicants as epigenetic disruptors. We also discuss the advantages and challenges of using epigenetic biomarkers as an indicator of toxicant exposure, using measures that can be taken to improve risk assessment, and our perspectives on the future role of epigenetics in toxicology. DISCUSSION Until recently, efforts to apply epigenomic data in toxicology and risk assessment were restricted by an incomplete understanding of epigenomic variability across tissue types and populations. This is poised to change with the development of new tools and concerted efforts by researchers across disciplines that have led to a better understanding of epigenetic mechanisms and comprehensive maps of epigenomic variation. With the foundations now in place, we foresee that unprecedented advancements will take place in the field in the coming years. https://doi.org/10.1289/EHP6104.
Collapse
Affiliation(s)
| | - Zdenko Herceg
- Epigenetics Group, International Agency for Research on Cancer (IARC), Lyon, France
| |
Collapse
|
35
|
Yang C, Song G, Lim W. A mechanism for the effect of endocrine disrupting chemicals on placentation. CHEMOSPHERE 2019; 231:326-336. [PMID: 31132539 DOI: 10.1016/j.chemosphere.2019.05.133] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 05/13/2019] [Accepted: 05/16/2019] [Indexed: 05/28/2023]
Abstract
Numerous recent studies have shown that endocrine disrupting chemicals (EDCs) in the body of pregnant women can pass through the placenta and be exposed to the fetus, leading to fetal development and cognitive impairment. Placentation through invasion of trophoblast cells and vascular remodeling is essential to maintaining maternal and fetal health throughout the pregnancy. Abnormal placentation can lead to pregnancy disorders such as preeclampsia (PE) and intrauterine growth retardation (IUGR). However, many studies have not been conducted on whether EDCs can inhibit the development and function of the placenta. Isolating placental tissues to analyze the effect of EDCs on placentation has several limitations. In this review, we discussed the types of EDCs that can pass through the placental barrier and accumulate in the placenta with relative outcome. EDCs can be released from a variety of products including plasticizers, pesticides, and retardant. We also discussed the development and dysfunction of the placenta when EDCs were treated on trophoblast cells or pregnant rodent models. The effects of EDCs on the placenta of livestock are also discussed, together with the molecular mechanism of EDCs acting in trophoblast cells. We describe how EDCs cross the membrane of trophoblasts to regulate signaling pathways, causing genetic and epigenetic changes that lead to changes in cell viability and invasiveness. Further studies on the effects of EDCs on placenta may draw attention to the correct use of products containing EDCs during pregnancy.
Collapse
Affiliation(s)
- Changwon Yang
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Republic of Korea
| | - Gwonhwa Song
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Republic of Korea.
| | - Whasun Lim
- Department of Food and Nutrition, Kookmin University, Seoul, 02707, Republic of Korea.
| |
Collapse
|
36
|
Human placental methylome in the interplay of adverse placental health, environmental exposure, and pregnancy outcome. PLoS Genet 2019; 15:e1008236. [PMID: 31369552 PMCID: PMC6675049 DOI: 10.1371/journal.pgen.1008236] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The placenta is the interface between maternal and fetal circulations, integrating maternal and fetal signals to selectively regulate nutrient, gas, and waste exchange, as well as secrete hormones. In turn, the placenta helps create the in utero environment and control fetal growth and development. The unique epigenetic profile of the human placenta likely reflects its early developmental separation from the fetus proper and its role in mediating maternal–fetal exchange that leaves it open to a range of exogenous exposures in the maternal circulation. In this review, we cover recent advances in DNA methylation in the context of placental function and development, as well as the interaction between the pregnancy and the environment.
Collapse
|
37
|
Combarnous Y, Nguyen TMD. Comparative Overview of the Mechanisms of Action of Hormones and Endocrine Disruptor Compounds. TOXICS 2019; 7:toxics7010005. [PMID: 30682876 PMCID: PMC6468742 DOI: 10.3390/toxics7010005] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 01/21/2019] [Accepted: 01/22/2019] [Indexed: 12/23/2022]
Abstract
Endocrine Disruptor Compounds (EDCs) are synthetic or natural molecules in the environment that promote adverse modifications of endogenous hormone regulation in humans and/or in wildlife animals. In the present paper, we review the potential mechanisms of EDCs and point out the similarities and differences between EDCs and hormones. There was only one mechanism, out of nine identified, in which EDCs acted like hormones (i.e. binding and stimulated hormone receptor activity). In the other eight identified mechanisms of action, EDCs exerted their effects either by affecting endogenous hormone concentration, or its availability, or by modifying hormone receptor turn over. This overview is intended to classify the various EDC mechanisms of action in order to better appreciate when in vitro tests would be valid to assess their risks towards humans and wildlife.
Collapse
Affiliation(s)
- Yves Combarnous
- CNRS, INRA, Physiologie de la Reproduction & des Comportements, 37380 Nouzilly, France.
| | - Thi Mong Diep Nguyen
- CNRS, INRA, Physiologie de la Reproduction & des Comportements, 37380 Nouzilly, France.
- Faculty of Biology-Agricultural Engineering, Quy Nhon University, Binh Dinh 820000, Vietnam.
| |
Collapse
|