1
|
Edyedu I, Ugwu OPC, Ugwu CN, Alum EU, Eze VHU, Basajja M, Ugwu JN, Ogenyi FC, Ejemot-Nwadiaro RI, Okon MB, Egba SI, Uti DE, Aja PM. The role of pharmacological interventions in managing urological complications during pregnancy and childbirth: A review. Medicine (Baltimore) 2025; 104:e41381. [PMID: 39960970 PMCID: PMC11835077 DOI: 10.1097/md.0000000000041381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 01/10/2025] [Indexed: 02/20/2025] Open
Abstract
Pregnancy leads to a number of structural and functional changes in the urinary system, which makes females susceptible to urological complications. This review aims to discuss the epidemiology, complications and prevention and management of urinary tract infections (UTIs), kidney stones and bladder dysfunction in pregnancy. UTIs are the most common urological problem presenting in 10% of pregnant women; Escherichia coli is the most common causative organism. If left untreated, UTIs lead to acute pyelonephritis which occurs in about 2% of pregnant women and which has serious consequences for both the mother and the baby. Kidney stones, although rare, are hazardous, occurring in 1 in 200 to 1 in 1500 pregnancies, and may cause obstructive uropathy, and aggravation of "labor-like" pain. Urological complications are frequent in pregnancy; bladder dysfunction alone has been documented to affect 50% of the pregnant women. Urological complications can have severe consequences when not properly managed including preterm labor and renal dysfunction. In order to have the best pharmacological care, safe use of antibiotics for UTIs is needed along with other measures for kidney stones. This review highlights the importance of a team approach to patient management to optimize outcome and touches briefly on some of the ethical dilemmas that may be encountered when drug therapy in pregnancy is being considered. Therefore, it is feasible to enhance the health of women and the fetus during this period through patient focused care and innovative interventions.
Collapse
Affiliation(s)
- Isaac Edyedu
- Faculty of Clinical Medicine Kampala International University, Kampala, Uganda
| | | | - Chinyere N. Ugwu
- Department of Publication and Extension, Kampala International University, Kampala, Uganda
| | - Esther Ugo Alum
- Department of Publication and Extension, Kampala International University, Kampala, Uganda
| | - Val Hyginus Udoka Eze
- Department of Publication and Extension, Kampala International University, Kampala, Uganda
| | - Mariam Basajja
- Health Care and Data Management Leiden University, Kampala, Uganda
| | - Jovita Nnenna Ugwu
- Department of Publication and Extension, Kampala International University, Kampala, Uganda
| | - Fabian Chukwudi Ogenyi
- Department of Publication and Extension, Kampala International University, Kampala, Uganda
| | - Regina Idu Ejemot-Nwadiaro
- Department of Public Health, School of Allied Health Sciences, Kampala International University, Kampala, Uganda
- Directorate of Research, Innovation, Consultancy and Extension (RICE), Kampala International University, Kampala, Uganda
| | - Michael Ben Okon
- Department of Publication and Extension, Kampala International University, Kampala, Uganda
| | - Simeon Ikechukwu Egba
- Department of Publication and Extension, Kampala International University, Kampala, Uganda
| | - Daniel Ejim Uti
- Department of Publication and Extension, Kampala International University, Kampala, Uganda
| | - Patrick Maduabuchi Aja
- Directorate of Research, Innovation, Consultancy and Extension (RICE), Kampala International University, Kampala, Uganda
- Department of Biochemistry, Kampala International University, Kampala, Uganda
| |
Collapse
|
2
|
Catlin NR, Cappon GD, Davenport SD, Stethem CM, Nowland WS, Campion SN, Bowman CJ. New approach methodologies to confirm developmental toxicity of pharmaceuticals based on weight of evidence. Reprod Toxicol 2024; 129:108686. [PMID: 39128486 DOI: 10.1016/j.reprotox.2024.108686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 08/05/2024] [Accepted: 08/08/2024] [Indexed: 08/13/2024]
Abstract
The aim of embryo-fetal developmental toxicity assessments for pharmaceuticals is to inform potential risk of adverse pregnancy outcome, which has traditionally relied on studies in pregnant animals. Recent updates to international safety guidelines (ICH S5R3) have incorporated information on how to use weight of evidence and alternative assays to reduce animal use while still informing risk of fetal harm. Uptake of these alternative approaches has been slow due to limitations in understanding how alternative assays translate to in vivo effects and then relevance to human exposure. To understand the predictivity of new approach methodologies for developmental toxicity (DevTox NAMs), we used two pharmaceutical examples (glasdegib and lorlatinib) to illustrate the value of DevTox NAMs to complement weight of evidence (WoE) assessments while considering the relationship of concentration-effect levels in NAMs to in vivo studies. The in vitro results generated in a battery of assays (mEST, rWEC, zebrafish, and human based stem cells) confirmed the WoE based on literature and further confirmed by preliminary embryo-fetal development data. The data generated for these two compounds supports integrating DevTox NAMs into the developmental toxicity assessment for advanced cancer indications.
Collapse
Affiliation(s)
- Natasha R Catlin
- Drug Safety Research and Development, Pfizer Research & Development, Groton, CT, USA.
| | - Gregg D Cappon
- Drug Safety Research and Development, Pfizer Research & Development, Groton, CT, USA; Current: ToxStrategies, Katy, TX, USA
| | - Scott D Davenport
- Drug Safety Research and Development, Pfizer Research & Development, Groton, CT, USA
| | - Christine M Stethem
- Drug Safety Research and Development, Pfizer Research & Development, Groton, CT, USA
| | - William S Nowland
- Drug Safety Research and Development, Pfizer Research & Development, Groton, CT, USA
| | - Sarah N Campion
- Drug Safety Research and Development, Pfizer Research & Development, Groton, CT, USA
| | - Christopher J Bowman
- Drug Safety Research and Development, Pfizer Research & Development, Groton, CT, USA
| |
Collapse
|
3
|
Achan J, Barry A, Leroy D, Kamara G, Duparc S, Kaszubska W, Gandhi P, Buffet B, Tshilab P, Ogutu B, Taylor T, Krishna S, Richardson N, Ramachandruni H, Rietveld H. Defining the next generation of severe malaria treatment: a target product profile. Malar J 2024; 23:174. [PMID: 38835069 DOI: 10.1186/s12936-024-04986-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 05/14/2024] [Indexed: 06/06/2024] Open
Abstract
BACKGROUND Severe malaria is a life-threatening infection, particularly affecting children under the age of 5 years in Africa. Current treatment with parenteral artemisinin derivatives is highly efficacious. However, artemisinin partial resistance is widespread in Southeast Asia, resulting in delayed parasite clearance after therapy, and has emerged independently in South America, Oceania, and Africa. Hence, new treatments for severe malaria are needed, and it is prudent to define their characteristics now. This manuscript focuses on the target product profile (TPP) for new treatments for severe malaria. It also highlights preparedness when considering ways of protecting the utility of artemisinin-based therapies. TARGET PRODUCT PROFILE Severe malaria treatments must be highly potent, with rapid onset of antiparasitic activity to clear the infection as quickly as possible to prevent complications. They should also have a low potential for drug resistance selection, given the high parasite burden in patients with severe malaria. Combination therapies are needed to deter resistance selection and dissemination. Partner drugs which are approved for uncomplicated malaria treatment would provide the most rapid development pathway for combinations, though new candidate molecules should be considered. Artemisinin combination approaches to severe malaria would extend the lifespan of current therapy, but ideally, completely novel, non-artemisinin-based combination therapies for severe malaria should be developed. These should be advanced to at least phase 2 clinical trials, enabling rapid progression to patient use should current treatment fail clinically. New drug combinations for severe malaria should be available as injectable formulations for rapid and effective treatment, or as rectal formulations for pre-referral intervention in resource-limited settings. CONCLUSION Defining the TPP is a key step to align responses across the community to proactively address the potential for clinical failure of artesunate in severe malaria. In the shorter term, artemisinin-based combination therapies should be developed using approved or novel drugs. In the longer term, novel combination treatments should be pursued. Thus, this TPP aims to direct efforts to preserve the efficacy of existing treatments while improving care and outcomes for individuals affected by this life-threatening disease.
Collapse
Affiliation(s)
| | - Aïssata Barry
- Centre National de Recherche et de Formation sur le Paludisme, Ouagadougou, Burkina Faso
| | - Didier Leroy
- Medicines for Malaria Venture, Route de Pré-Bois 20, Post Box 1826, CH-1215, Geneva 15, Switzerland
| | - George Kamara
- Médecins Sans Frontières, Magburaka District Hospital, Freetown, Sierra Leone
| | - Stephan Duparc
- Medicines for Malaria Venture, Route de Pré-Bois 20, Post Box 1826, CH-1215, Geneva 15, Switzerland
| | - Wiweka Kaszubska
- Medicines for Malaria Venture, Route de Pré-Bois 20, Post Box 1826, CH-1215, Geneva 15, Switzerland
| | | | - Bénédicte Buffet
- Medicines for Malaria Venture, Route de Pré-Bois 20, Post Box 1826, CH-1215, Geneva 15, Switzerland
| | | | - Bernhards Ogutu
- Centre for Clinical Research, Kenya Medical Research Institute, Kisumu, Kenya
| | - Terrie Taylor
- Queen Elizabeth Central Hospital and Blantyre Malaria Project, Kamuzu University of Health Sciences, Blantyre, Malawi
| | - Sanjeev Krishna
- Institut Für Tropenmedizin, Eberhard Karls Universität Tübingen, and German Center for Infection Research (Dzif), Tübingen, Germany
- Centre de Recherches Médicales de Lambaréné (CERMEL), Lambaréné, Gabon
- Clinical Academic Group, Institute for Infection and Immunity, St. George's University of London, London, UK
- St George's University Hospitals NHS Foundation Trust, London, UK
| | | | - Hanu Ramachandruni
- Medicines for Malaria Venture, Route de Pré-Bois 20, Post Box 1826, CH-1215, Geneva 15, Switzerland.
| | - Hans Rietveld
- Medicines for Malaria Venture, Route de Pré-Bois 20, Post Box 1826, CH-1215, Geneva 15, Switzerland.
| |
Collapse
|
4
|
Jeong M, Yoo S. FetoML: Interpretable predictions of the fetotoxicity of drugs based on machine learning approaches. Mol Inform 2024; 43:e202300312. [PMID: 38850133 DOI: 10.1002/minf.202300312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 02/16/2024] [Accepted: 03/03/2024] [Indexed: 06/10/2024]
Abstract
Pregnant females may use medications to manage health problems that develop during pregnancy or that they had prior to pregnancy. However, using medications during pregnancy has a potential risk to the fetus. Assessing the fetotoxicity of drugs is essential to ensure safe treatments, but the current process is challenged by ethical issues, time, and cost. Therefore, the need for in silico models to efficiently assess the fetotoxicity of drugs has recently emerged. Previous studies have proposed successful machine learning models for fetotoxicity prediction and even suggest molecular substructures that are possibly associated with fetotoxicity risks or protective effects. However, the interpretation of the decisions of the models on fetotoxicity prediction for each drug is still insufficient. This study constructed machine learning-based models that can predict the fetotoxicity of drugs while providing explanations for the decisions. For this, permutation feature importance was used to identify the general features that the model made significant in predicting the fetotoxicity of drugs. In addition, features associated with fetotoxicity for each drug were analyzed using the attention mechanism. The predictive performance of all the constructed models was significantly high (AUROC: 0.854-0.974, AUPR: 0.890-0.975). Furthermore, we conducted literature reviews on the predicted important features and found that they were highly associated with fetotoxicity. We expect that our model will benefit fetotoxicity research by providing an evaluation of fetotoxicity risks for drugs or drug candidates, along with an interpretation of that prediction.
Collapse
Affiliation(s)
- Myeonghyeon Jeong
- Department of Intelligent Electronics and Computer Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Sunyong Yoo
- Department of Intelligent Electronics and Computer Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea
| |
Collapse
|
5
|
Myden A, Stalford SA, Fowkes A, White E, Hirose A, Yamada T. Enhancing developmental and reproductive toxicity knowledge: A new AOP stemming from glutathione depletion. Curr Res Toxicol 2023; 5:100124. [PMID: 37808440 PMCID: PMC10556594 DOI: 10.1016/j.crtox.2023.100124] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/14/2023] [Accepted: 09/13/2023] [Indexed: 10/10/2023] Open
Abstract
Integrated approaches to testing and assessments (IATAs) have been proposed as a method to organise new approach methodologies in order to replace traditional animal testing for chemical safety assessments. To capture the mechanistic aspects of toxicity assessments, IATAs can be framed around the adverse outcome pathway (AOP) concept. To utilise AOPs fully in this context, a sufficient number of pathways need to be present to develop fit for purpose IATAs. In silico approaches can support IATA through the provision of predictive models and also through data integration to derive conclusions using a weight-of-evidence approach. To examine the maturity of a developmental and reproductive toxicity (DART) AOP network derived from the literature, an assessment of its coverage was performed against a novel toxicity dataset. A dataset of diverse compounds, with data from studies performed according to OECD test guidelines TG-421 and TG-422, was curated to test the performance of an in silico model based on the AOP network - allowing for the identification of knowledge gaps within the network. One such gap in the knowledge was filled through the development of an AOP stemming from the molecular initiating event 'glutathione reaction with an electrophile' leading to male fertility toxicity. The creation of the AOP provided the mechanistic rationale for the curation of pre-existing structural alerts to relevant key events. Integrating this new knowledge and associated alerts into the DART AOP network will improve its coverage of DART-relevant chemical space. In addition, broadening the coverage of AOPs for a particular regulatory endpoint may facilitate the development of, and confidence in, robust IATAs.
Collapse
Affiliation(s)
- Alun Myden
- Lhasa Limited, Granary Wharf House, 2 Canal Wharf, Leeds LS11 5PS, United Kingdom
| | - Susanne A. Stalford
- Lhasa Limited, Granary Wharf House, 2 Canal Wharf, Leeds LS11 5PS, United Kingdom
| | - Adrian Fowkes
- Lhasa Limited, Granary Wharf House, 2 Canal Wharf, Leeds LS11 5PS, United Kingdom
| | - Emma White
- Lhasa Limited, Granary Wharf House, 2 Canal Wharf, Leeds LS11 5PS, United Kingdom
| | - Akihiko Hirose
- Division of Risk Assessment, Center for Biological Safety and Research, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki 210-9501, Japan
| | - Takashi Yamada
- Division of Risk Assessment, Center for Biological Safety and Research, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki 210-9501, Japan
| |
Collapse
|
6
|
Rethinking agrochemical safety assessment: A perspective. Regul Toxicol Pharmacol 2021; 127:105068. [PMID: 34678328 DOI: 10.1016/j.yrtph.2021.105068] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 10/09/2021] [Accepted: 10/18/2021] [Indexed: 11/20/2022]
Abstract
Agrochemical safety assessment has traditionally relied on the use of animals for toxicity testing, based on scientific understanding and test guidelines developed in the 1980s. However, since then, there have been significant advances in the toxicological sciences that have improved our understanding of mechanisms underpinning adverse human health effects. The time is ripe to 'rethink' approaches used for human safety assessments of agrochemicals to ensure they reflect current scientific understanding and increasingly embrace new opportunities to improve human relevance and predictivity, and to reduce the reliance on animals. Although the ultimate aim is to enable a paradigm shift and an overhaul of global regulatory data requirements, there is much that can be done now to ensure new opportunities and approaches are adopted and implemented within the current regulatory frameworks. This commentary reviews current initiatives and emerging opportunities to embrace new approaches to improve agrochemical safety assessment for humans, and considers various endpoints and initiatives (including acute toxicity, repeat dose toxicity studies, carcinogenicity, developmental and reproductive toxicity, exposure-driven approaches, inhalation toxicity, and data modelling). Realistic aspirations to improve safety assessment, incorporate new technologies and reduce reliance on animal testing without compromising protection goals are discussed.
Collapse
|
7
|
Hoffmann S, Marigliani B, Akgün-Ölmez SG, Ireland D, Cruz R, Busquet F, Flick B, Lalu M, Ghandakly EC, de Vries RBM, Witters H, Wright RA, Ölmez M, Willett C, Hartung T, Stephens ML, Tsaioun K. A Systematic Review to Compare Chemical Hazard Predictions of the Zebrafish Embryotoxicity Test With Mammalian Prenatal Developmental Toxicity. Toxicol Sci 2021; 183:14-35. [PMID: 34109416 PMCID: PMC8404989 DOI: 10.1093/toxsci/kfab072] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Originally developed to inform the acute toxicity of chemicals on fish, the zebrafish embryotoxicity test (ZET) has also been proposed for assessing the prenatal developmental toxicity of chemicals, potentially replacing mammalian studies. Although extensively evaluated in primary studies, a comprehensive review summarizing the available evidence for the ZET's capacity is lacking. Therefore, we conducted a systematic review of how well the presence or absence of exposure-related findings in the ZET predicts prenatal development toxicity in studies with rats and rabbits. A two-tiered systematic review of the developmental toxicity literature was performed, a review of the ZET literature was followed by one of the mammalian literature. Data were extracted using DistillerSR, and study validity was assessed with an amended SYRCLE's risk-of-bias tool. Extracted data were analyzed for each species and substance, which provided the basis for comparing the 2 test methods. Although limited by the number of 24 included chemicals, our results suggest that the ZET has potential to identify chemicals that are mammalian prenatal developmental toxicants, with a tendency for overprediction. Furthermore, our analysis confirmed the need for further standardization of the ZET. In addition, we identified contextual and methodological challenges in the application of systematic review approaches to toxicological questions. One key to overcoming these challenges is a transition to more comprehensive and transparent planning, conduct and reporting of toxicological studies. The first step toward bringing about this change is to create broad awareness in the toxicological community of the need for and benefits of more evidence-based approaches.
Collapse
Affiliation(s)
- Sebastian Hoffmann
- Evidence-Based Toxicology Collaboration (EBTC), Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland 21205, USA
- seh consulting + services, 33106 Paderborn, Germany
| | - Bianca Marigliani
- Department of Science and Technology, Federal University of São Paulo (UNIFESP), São José dos Campos, 12231-280 São Paulo, Brazil
| | - Sevcan Gül Akgün-Ölmez
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Marmara University, Istanbul, 34722, Turkey
| | - Danielle Ireland
- Department of Biology, Swarthmore College, Swarthmore, Pennsylvania 19081, USA
| | - Rebecca Cruz
- Laboratory of Dental Clinical Research, Universidade Federal Fluminense, Niterói, 20520-040 Rio de Janeiro, Brazil
| | | | - Burkhard Flick
- Experimental Toxicology and Ecology, BASF SE, 67063 Ludwigshafen am Rhein, Germany
| | - Manoj Lalu
- Department of Anesthesiology and Pain Medicine, Ottawa Hospital Research Institute, Ottawa, K1H 8L6 Ontario, Canada
| | - Elizabeth C Ghandakly
- Berman Institute of Bioethics, Johns Hopkins University, Baltimore, Maryland 21205, USA
| | - Rob B M de Vries
- Evidence-Based Toxicology Collaboration (EBTC), Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland 21205, USA
- Systematic Review Centre for Laboratory Experimentation (SYRCLE), Department for Health Evidence, Radboud Institute for Health Sciences, Radboudumc, 6500HB Nijmegen, The Netherlands
| | | | - Robert A Wright
- William H. Welch Medical Library, Johns Hopkins University, Baltimore, Maryland 21205, USA
| | - Metin Ölmez
- Umraniye Family Health Center (No. 44), Turkish Ministry of Health, 34760 Istanbul, Turkey
| | - Catherine Willett
- Humane Society International, Washington, 20037 District of Columbia, USA
| | - Thomas Hartung
- Center for Alternatives to Animal Testing (CAAT), Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland 21205, USA
| | - Martin L Stephens
- Evidence-Based Toxicology Collaboration (EBTC), Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland 21205, USA
| | - Katya Tsaioun
- Evidence-Based Toxicology Collaboration (EBTC), Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland 21205, USA
| |
Collapse
|
8
|
Hougaard KS. Next Generation Reproductive and Developmental Toxicology: Crosstalk Into the Future. FRONTIERS IN TOXICOLOGY 2021; 3:652571. [PMID: 35295122 PMCID: PMC8915852 DOI: 10.3389/ftox.2021.652571] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 02/17/2021] [Indexed: 12/13/2022] Open
Affiliation(s)
- Karin Sørig Hougaard
- National Research Centre for the Working Environment, Copenhagen, Denmark
- Department of Public Health, University of Copenhagen, Copenhagen, Denmark
- *Correspondence: Karin Sørig Hougaard
| |
Collapse
|