1
|
Dahan A, Yarmolinsky L, Budovsky A, Khalfin B, Ben-Shabat S. Therapeutic Potential of Ficus benjamina: Phytochemical Identification and Investigation of Antimicrobial, Anticancer, Pro-Wound-Healing, and Anti-Inflammatory Properties. Molecules 2025; 30:1961. [PMID: 40363768 PMCID: PMC12073557 DOI: 10.3390/molecules30091961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2025] [Revised: 04/24/2025] [Accepted: 04/24/2025] [Indexed: 05/15/2025] Open
Abstract
Ficus benjamina is a common park tree, with previous reports of some medicinal properties. In this work, we identified and explored phytochemicals from F. benjamina for potential antimicrobial, pro-wound-healing, anti-inflammatory, and effect on cancer cell lines' proliferation, both experimentally and bioinformatically. Gas chromatography/mass spectrometry (GC/MS) analysis was performed to identify the volatile compounds. The nonvolatile active components of the extract were identified by HPLC and LC-ESI-MS. We found that some drug-resistant microorganisms (Escherichia coli, Klebsiella pneumoniae, Acinetobacter baumannii, Serratia marcescens, and Salmonella enteritidis) were inhibited by the extract, the 80% fraction, and all the identified flavonoids except quercetin 3-O-rutinoside. Furthermore, the extract and above-mentioned compound also inhibited the growth of biofilm-producing bacterium. The extract and 80% fraction were very potent (p < 0.001) at inducing death of MCF7 and U87 cancer cell cultures and were more effective in that than the chemotherapeutic agent doxorubicin which served as a positive control. Additionally, the extract of F. benjamina, the 80% fraction, and selected phytochemicals had pronounced pro-wound-healing properties. Finally, the extracts, the 80% fraction, caffeic acid, kaempferol 3-O-rutinoside, and kaempferol 3-O-robinobioside significantly inhibited the secretion of pro-inflammatory cytokines, IL-6 and IL-8 (p < 0.001). In conclusion, this comprehensive research revealed convincing and promising indications of significant therapeutic potential of a F. benjamina extract and its active phytochemicals.
Collapse
Affiliation(s)
- Arik Dahan
- Department of Clinical Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel; (L.Y.); (B.K.)
| | - Ludmila Yarmolinsky
- Department of Clinical Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel; (L.Y.); (B.K.)
| | - Arie Budovsky
- Research & Development Authority, Barzilai University Medical Center, Ashkelon 7830604, Israel;
| | - Boris Khalfin
- Department of Clinical Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel; (L.Y.); (B.K.)
| | - Shimon Ben-Shabat
- Department of Clinical Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel; (L.Y.); (B.K.)
| |
Collapse
|
2
|
Arıkan Malkoç M, Özer Yaman S, Yuluğ E, Işık S, Kural B. L-Theanine Ameliorates Doxorubicin-Induced Ovarian Toxicity by Reducing Endoplasmic Reticulum Stress. Food Sci Nutr 2025; 13:e70150. [PMID: 40291931 PMCID: PMC12021995 DOI: 10.1002/fsn3.70150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 03/25/2025] [Accepted: 03/27/2025] [Indexed: 04/30/2025] Open
Abstract
Doxorubicin (DOX) is an anthracycline antibiotic widely used as an antineoplastic agent. L-theanine (LTN) is a unique amino acid obtained from tea (Camellia sinensis) and a highly valuable nutraceutical additive in the food industry. The aim of this study was to investigate the effects of LTN on ovarian endoplasmic reticulum stress (ERS) in DOX-induced rats. The rats were divided into one of four groups: Control (saline), DOX (20 mg/kg DOX, i.p.), DOX + LTN200 (DOX + 200 mg/kg LTN) and DOX + LTN400 (DOX + 400 mg/kg LTN). DOX was administered on the first day, followed by three consecutive days of LTN via oral gavage. The levels of ERS (GRP78, IRE1, and CHOP), oxidative stress (TOS, OSI, and MDA), inflammation (TNF-α) and fertility (E2 and PGN) parameters were analyzed using ELISA or assay kits. In addition, morphological and apoptotic (DNA fragmentation) changes in ovarian tissues were examined histologically. The study found that both doses of LTN were effective in reversing DOX-induced ERS by lowering oxidative stress, inflammation, and apoptosis, and alleviating morphological changes. However, the 400 mg/kg LTN group exhibited more significant effects. LTN treatment thus has the potential to alleviate the adverse effects on ovarian tissue caused by DOX by modulating the endoplasmic reticulum (ER) stress response and associated conditions.
Collapse
Affiliation(s)
- Meltem Arıkan Malkoç
- Vocational School of Health SciencesKaradeniz Technical UniversityTrabzonTürkiye
| | - Serap Özer Yaman
- Department of Medical Biochemistry, Faculty of MedicineUniversity of Health SciencesTrabzonTürkiye
| | - Esin Yuluğ
- Department of Histology and Embryology, Faculty of MedicineKaradeniz Technical UniversityTrabzonTürkiye
| | - Semanur Işık
- Department of Histology and Embryology, Faculty of MedicineKaradeniz Technical UniversityTrabzonTürkiye
| | - Birgül Kural
- Department of Medical Biochemistry, Faculty of MedicineKaradeniz Technical UniversityTrabzonTürkiye
| |
Collapse
|
3
|
Üstüner E, Yıldırım E, Macun HC, Ekici H, Şahin Y, Güncüm E, Anteplioğlu T, Elifoğlu TB, Bozkaya E. Ultrasonographic and histopathological investigation of the effect of N-acetylcysteine on doxorubicin-induced ovarian and uterine toxicity in rats. J Ovarian Res 2024; 17:135. [PMID: 38943148 PMCID: PMC11214216 DOI: 10.1186/s13048-024-01459-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 06/17/2024] [Indexed: 07/01/2024] Open
Abstract
BACKGROUND This study aimed to investigate the mitigating effect of N-acetylcysteine (NAC) on doxorubicin (DOX)-induced ovarian and uterine toxicity in rats using laboratory tests, ultrasonographic (US) imaging, and histopathology analysis. METHODS Forty-eight rats were divided into six groups (n = 8) as follows: Group A (control) (0.5 mL saline administered intraperitoneally [IP]), Group B (a single 10 mg/kg dose of DOX administered IP on day 1), Group C (a single 10 mg/kg dose of DOX administered IP 24 h before sacrifice), Group D (100 mg/kg of NAC administered IP for 21 days), Group E ( a single 10 mg/kg dose of DOX administered IP on day 1 and 100 mg/kg of NAC administered IP for 21 days), and Group F (100 mg/kg of NAC administered IP for 21 days and a single 10 mg/kg dose of DOX administered IP 24 h before sacrifice). The ovaries were examined using B-mode US on days 1, 14, and 21, and the histopathological examinations of the ovaries and the uterus were undertaken after sacrifice on day 22. RESULTS Histomorphological analyses showed that ovarian weight decreased after DOX administration in Group B but not in Group E. US revealed a transient increase in ovarian size in Group B and E, reverting to baseline levels over time, as well as a progressive increase in peritoneal fluid in Groups B and E. Group B exhibited a significant decrease in the thickness of the endometrium and myometrium and uterine cornual length, which was not observed in Group E. Histopathological examination showed that DOX caused a decline in follicular count, especially in primordial, secondary, and Graafian follicles, and resulted in follicular atresia, predominantly in Group B. Destructive degeneration/necrosis and vascular changes were most prominently seen in the corpus luteum of Groups C and B. In NAC-treated rats (Groups E and F), although germ cell damage was present, atretic follicles and vascular changes, such as hyperemia and congestion, were reduced. The anti-müllerian hormone (AMH) level was the highest in Group F. CONCLUSIONS NAC, an antioxidant, attenuated DOX-induced gonadotoxicity in rats.
Collapse
Affiliation(s)
- Evren Üstüner
- Faculty of Medicine, Department of Radiology, Ankara University, Ankara, Turkey.
| | - Ebru Yıldırım
- Faculty of Veterinary Medicine, Department of Pharmacology and Toxicology, Kirikkale University, Kirikkale, Turkey
| | - Hasan Ceyhun Macun
- Faculty of Veterinary Medicine, Department of Obstetrics and Gynecology, Kirikkale University, Kirikkale, Turkey
| | - Hüsamettin Ekici
- Faculty of Veterinary Medicine, Department of Pharmacology and Toxicology, Kirikkale University, Kirikkale, Turkey
| | - Yaşar Şahin
- Faculty of Veterinary Medicine, Department of Pharmacology and Toxicology, Kirikkale University, Kirikkale, Turkey
| | - Enes Güncüm
- Faculty of Veterinary Medicine, Department of Pharmacology and Toxicology, Kirikkale University, Kirikkale, Turkey
| | - Tuğçe Anteplioğlu
- Faculty of Veterinary Medicine, Department of Pathology, Kirikkale University, Kirikkale, Turkey
| | - Taha Burak Elifoğlu
- Faculty of Veterinary Medicine, Department of Obstetrics and Gynecology, Kirikkale University, Kirikkale, Turkey
| | - Esra Bozkaya
- Scientific and Technological Research Application and Research Center, Kirikkale University, Kirikkale, Türkiye
| |
Collapse
|
4
|
Markowska A, Antoszczak M, Markowska J, Huczyński A. Gynotoxic Effects of Chemotherapy and Potential Protective Mechanisms. Cancers (Basel) 2024; 16:2288. [PMID: 38927992 PMCID: PMC11202309 DOI: 10.3390/cancers16122288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 06/16/2024] [Accepted: 06/18/2024] [Indexed: 06/28/2024] Open
Abstract
Chemotherapy is one of the leading cancer treatments. Unfortunately, its use can contribute to several side effects, including gynotoxic effects in women. Ovarian reserve suppression and estrogen deficiency result in reduced quality of life for cancer patients and are frequently the cause of infertility and early menopause. Classic alkylating cytostatics are among the most toxic chemotherapeutics in this regard. They cause DNA damage in ovarian follicles and the cells they contain, and they can also induce oxidative stress or affect numerous signaling pathways. In vitro tests, animal models, and a few studies among women have investigated the effects of various agents on the protection of the ovarian reserve during classic chemotherapy. In this review article, we focused on the possible beneficial effects of selected hormones (anti-Müllerian hormone, ghrelin, luteinizing hormone, melatonin), agents affecting the activity of apoptotic pathways and modulating gene expression (C1P, S1P, microRNA), and several natural (quercetin, rapamycin, resveratrol) and synthetic compounds (bortezomib, dexrazoxane, goserelin, gonadoliberin analogs, imatinib, metformin, tamoxifen) in preventing gynotoxic effects induced by commonly used cytostatics. The presented line of research appears to provide a promising strategy for protecting and/or improving the ovarian reserve in the studied group of cancer patients. However, well-designed clinical trials are needed to unequivocally assess the effects of these agents on improving hormonal function and fertility in women treated with ovotoxic anticancer drugs.
Collapse
Affiliation(s)
- Anna Markowska
- Department of Perinatology and Women’s Health, Poznań University of Medical Sciences, 60-535 Poznań, Poland
| | - Michał Antoszczak
- Department of Medical Chemistry, Faculty of Chemistry, Adam Mickiewicz University, 61-614 Poznań, Poland
| | - Janina Markowska
- Gynecological Oncology Center, Poznańska 58A, 60-850 Poznań, Poland;
| | - Adam Huczyński
- Department of Medical Chemistry, Faculty of Chemistry, Adam Mickiewicz University, 61-614 Poznań, Poland
| |
Collapse
|
5
|
Ahmad MS, Braoudaki M, Patel H, Ahmad I, Shagufta, Siddiqui SS. Novel Siglec-15-Sia axis inhibitor leads to colorectal cancer cell death by targeting miR-6715b-3p and oncogenes. Front Immunol 2023; 14:1254911. [PMID: 37869015 PMCID: PMC10587484 DOI: 10.3389/fimmu.2023.1254911] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 09/22/2023] [Indexed: 10/24/2023] Open
Abstract
Siglecs are well known immunotherapeutic targets in cancer. Current checkpoint inhibitors have exhibited limited efficacy, prompting a need for novel therapeutics for targets such as Siglec-15. Presently, small molecule inhibitors targeting Siglec-15 are not explored alongside characterised regulatory mechanisms involving microRNAs in CRC progression. Therefore, a small molecule inhibitor to target Siglec-15 was elucidated in vitro and microRNA mediated inhibitor effects were investigated. Our research findings demonstrated that the SHG-8 molecule exerted significant cytotoxicity on cell viability, migration, and colony formation, with an IC50 value of approximately 20µM. SHG-8 exposure induced late apoptosis in vitro in SW480 CRC cells. Notably, miR-6715b-3p was the most upregulated miRNA in high-throughput sequencing, which was also validated via RT-qPCR. MiR-6715b-3p may regulate PTTG1IP, a potential oncogene which was validated via RT-qPCR and in silico analysis. Additionally, molecular docking studies revealed SHG-8 interactions with the Siglec-15 binding pocket with the binding affinity of -5.4 kcal/mol, highlighting its role as a small molecule inhibitor. Importantly, Siglec-15 and PD-L1 are expressed on mutually exclusive cancer cell populations, suggesting the potential for combination therapies with PD-L1 antagonists.
Collapse
Affiliation(s)
- Mohammed Saqif Ahmad
- School of Life and Medical Sciences, University of Hertfordshire, Hatfield, United Kingdom
| | - Maria Braoudaki
- School of Life and Medical Sciences, University of Hertfordshire, Hatfield, United Kingdom
| | - Hershna Patel
- School of Life and Medical Sciences, University of Hertfordshire, Hatfield, United Kingdom
| | - Irshad Ahmad
- Department of Biotechnology, School of Arts and Sciences, American University of Ras Al Khaimah, Ras Al Khaimah, United Arab Emirates
| | - Shagufta
- Department of Biotechnology, School of Arts and Sciences, American University of Ras Al Khaimah, Ras Al Khaimah, United Arab Emirates
| | - Shoib Sarwar Siddiqui
- School of Life and Medical Sciences, University of Hertfordshire, Hatfield, United Kingdom
| |
Collapse
|
6
|
Trujillo M, Odle AK, Aykin-Burns N, Allen AR. Chemotherapy induced oxidative stress in the ovary: drug-dependent mechanisms and potential interventions†. Biol Reprod 2023; 108:522-537. [PMID: 36539327 PMCID: PMC10106837 DOI: 10.1093/biolre/ioac222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 12/07/2022] [Accepted: 12/14/2022] [Indexed: 01/19/2023] Open
Abstract
Cancer incidence and relative survival are expected to increase over the next few decades. With the majority of patients receiving combinatorial chemotherapy, an increasing proportion of patients experience long-term side effects from treatment-including reproductive disorders and infertility. A limited number of studies have examined mechanisms of single-agent chemotherapy-induced gonadotoxicity, with chemotherapy-induced oxidative stress being implicated in the loss of reproductive functions. Current methods of female fertility preservation are costly, invasive, only moderately successful, and seldom presented to cancer patients. The potential of antioxidants to alleviate chemotherapy has been overlooked at a time when it is becoming increasingly important to develop strategies to protect reproductive functions during chemotherapy. This review will summarize the importance of reactive oxygen species homeostasis in reproduction, chemotherapy-induced mitochondrial dysfunction in oocytes, chemotherapy-induced oxidative stress, and several promising natural adjuvants.
Collapse
Affiliation(s)
- Madison Trujillo
- Division of Radiation Health, University of Arkansas for Medical Sciences, Little Rock, AR, USA
- Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, USA
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Angela K Odle
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Nukhet Aykin-Burns
- Division of Radiation Health, University of Arkansas for Medical Sciences, Little Rock, AR, USA
- Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Antiño R Allen
- Division of Radiation Health, University of Arkansas for Medical Sciences, Little Rock, AR, USA
- Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, USA
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| |
Collapse
|
7
|
Idrees M, Kumar V, Khan AM, Joo MD, Lee KW, Sohn SH, Kong IK. Cycloastragenol activation of telomerase improves β-Klotho protein level and attenuates age-related malfunctioning in ovarian tissues. Mech Ageing Dev 2023; 209:111756. [PMID: 36462538 DOI: 10.1016/j.mad.2022.111756] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 11/24/2022] [Accepted: 11/25/2022] [Indexed: 12/02/2022]
Abstract
Age-related deterioration in the reproductive capacity of women is directly related to the poor developmental potential of ovarian follicles. Although telomerase plays a key role in female fertility, TERT-targeting therapeutic strategies for age-related female infertility have yet to be investigated. This study elucidated the effect of Telomerase activation on mice ovaries and more specifically on Klb (β-Klotho) gene expression, which is linked to ageing, female hormonal regulation, and cyclicity. The homology-based 3D model of hTERT was used to predict its binding mode of Cycloastragenol (CAG) using molecular docking and molecular dynamics simulations. Based on docking score, simulation behavior, and interaction with hTERT residues it was observed that CAG could bind with the hTERT model. CAG treatment to primary cultured mouse granulosa cells and activation of telomerase was examined via telomerase activity assay (Mouse TE (telomerase) ELISA Kit) and telomere length by quantitative fluorescence in situ hybridization. CAG mediated telomerase also significantly improved β-Klotho protein level in the aged granulosa cells. To demonstrate that β-Klotho is telomerase dependent, the TERT was knocked down via siRNA in granulosa cells and protein level of β-Klotho was examined. Furthermore, CAG-mediated telomerase activation significantly enhanced the level of Klb and recovered ovarian follicles in the D-galactose (D-gal)-induced ovarian ageing mouse model. Moreover, Doxorubicin-induced ovarian damage, which changes ovarian hormones, and inhibit follicular growth was successfully neutralized by CAG activated telomerase and its recovery of β-Klotho level. In conclusion, TERT dependent β-Klotho regulation in ovarian tissues is one of the mechanisms, which can overcome female infertility.
Collapse
Affiliation(s)
- Muhammad Idrees
- Division of Applied Life Science (BK21 Four), Gyeongsang National University, Jinju 52828, Gyeongnam Province, Republic of Korea.
| | - Vikas Kumar
- Division of Life Sciences, Department of Bio & Medical Big Data (BK21 Four), Research Institute of Natural Science (RINS), Gyeongsang National University (GNU), 501 Jinju-daero, Jinju 52828, Republic of Korea.
| | - Abdul Majid Khan
- Division of Applied Life Science (BK21 Four), Gyeongsang National University, Jinju 52828, Gyeongnam Province, Republic of Korea.
| | - Myeong-Don Joo
- Division of Applied Life Science (BK21 Four), Gyeongsang National University, Jinju 52828, Gyeongnam Province, Republic of Korea.
| | - Keun-Woo Lee
- Division of Life Sciences, Department of Bio & Medical Big Data (BK21 Four), Research Institute of Natural Science (RINS), Gyeongsang National University (GNU), 501 Jinju-daero, Jinju 52828, Republic of Korea.
| | - Sea-Hwan Sohn
- Department of Animal Science and Biotechnology, Gyeongsang National University, Jinju 52725, Gyeongnam Province, Republic of Korea.
| | - Il-Keun Kong
- Division of Applied Life Science (BK21 Four), Gyeongsang National University, Jinju 52828, Gyeongnam Province, Republic of Korea; Institute of Agriculture and Life Science, Gyeongsang National University, Gyeongnam Province, Republic of Korea; The King Kong Corp. Ltd., Gyeongsang National University, Jinju 52828, Gyeongnam Province, Republic of Korea.
| |
Collapse
|
8
|
Silva RLDS, Lins TLBG, Monte APOD, de Andrade KO, de Sousa Barberino R, da Silva GAL, Campinho DDSP, Junior RCP, Matos MHTD. Protective effect of gallic acid on doxorubicin-induced ovarian toxicity in mouse. Reprod Toxicol 2023; 115:147-156. [PMID: 36572231 DOI: 10.1016/j.reprotox.2022.12.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 12/17/2022] [Accepted: 12/21/2022] [Indexed: 12/24/2022]
Abstract
The aims of the present study were to evaluate the protective effects of gallic acid against doxorubicin-induced ovarian toxicity in mice, and to verify the possible involvement of PI3K and mTOR signaling pathway members (PTEN, Akt, FOXO3a and rpS6) in the gallic acid protective actions. Mice were pretreated with NaCl (0.15 M, p.o.) (control and doxorubicin groups) or gallic acid (50, 100 or 200 mg/kg body weight, p.o.) once daily, for 5 days, and on the third day of treatment, after 1 h of treatment administration, the mice received saline solution (i.p.) (control group) or doxorubicin (10 mg/kg of body weight, i.p.). Next, the ovaries were harvested for histological (follicular morphology and activation), fluorescence (GSH and mitochondrial activity), and immunohistochemical (PCNA, cleaved caspase-3, TNF-α, p-PTEN, Akt, p-Akt, p-rpS6 and p-FOXO3a) analyses. The results showed that cotreatment with 50 mg/kg gallic acid plus doxorubicin preserved the percentage of normal follicles and cell proliferation, reduced the percentage of cleaved caspase-3 follicles, prevented inflammation, and increased GSH concentrations and mitochondrial activity compared to doxorubicin treatment alone. Furthermore, cotreatment 50 mg/kg gallic acid plus doxorrubicin increased expression of Akt, p-Akt, p-rpS6 and p-FOXO3a compared to the doxorubicin alone. In conclusion, 50 mg/kg gallic acid protects the mouse ovary against doxorubicin-induced damage by improving GSH concentrations and mitochondrial activity and cellular proliferation, inhibiting inflammation and apoptosis, and regulating PI3K and mTOR signaling pathway.
Collapse
Affiliation(s)
- Regina Lucia Dos Santos Silva
- Nucleus of Biotechnology Applied to Ovarian Follicle Development, Federal University of São Francisco Valley, Petrolina 56300-990, PE, Brazil
| | - Thae Lanne Barbosa Gama Lins
- Nucleus of Biotechnology Applied to Ovarian Follicle Development, Federal University of São Francisco Valley, Petrolina 56300-990, PE, Brazil
| | - Alane Pains Oliveira do Monte
- Nucleus of Biotechnology Applied to Ovarian Follicle Development, Federal University of São Francisco Valley, Petrolina 56300-990, PE, Brazil
| | - Kíscyla Oliveira de Andrade
- Nucleus of Biotechnology Applied to Ovarian Follicle Development, Federal University of São Francisco Valley, Petrolina 56300-990, PE, Brazil
| | - Ricássio de Sousa Barberino
- Nucleus of Biotechnology Applied to Ovarian Follicle Development, Federal University of São Francisco Valley, Petrolina 56300-990, PE, Brazil
| | - Gizele Augusta Lemos da Silva
- Nucleus of Biotechnology Applied to Ovarian Follicle Development, Federal University of São Francisco Valley, Petrolina 56300-990, PE, Brazil
| | - Daniela da Silva Pereira Campinho
- Nucleus of Biotechnology Applied to Ovarian Follicle Development, Federal University of São Francisco Valley, Petrolina 56300-990, PE, Brazil
| | - Raimundo Campos Palheta Junior
- Laboratory of Veterinary Pharmacology, Department of Veterinary Medicine, Federal University of São Francisco Valley, Petrolina 56300-900, PE, Brazil
| | - Maria Helena Tavares de Matos
- Nucleus of Biotechnology Applied to Ovarian Follicle Development, Federal University of São Francisco Valley, Petrolina 56300-990, PE, Brazil.
| |
Collapse
|
9
|
Xiong J, Tian Y, Ma G, Ling A, Shan S, Cheng G. Comparative RNA-seq analysis and ceRNA network of genistein-treated GT1-7 neurons. Mol Cell Toxicol 2022. [DOI: 10.1007/s13273-022-00279-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
10
|
Liu T, Huang Y, Lin H. Estrogen disorders: Interpreting the abnormal regulation of aromatase in granulosa cells (Review). Int J Mol Med 2021; 47:73. [PMID: 33693952 PMCID: PMC7952251 DOI: 10.3892/ijmm.2021.4906] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 01/27/2021] [Indexed: 12/11/2022] Open
Abstract
Ovarian granulosa cells (GCs) are the most important source of estrogen. Therefore, aromatase (estrogen synthase), which is the key enzyme in estrogen synthesis, is not only an important factor of ovarian development, but also the key to estrogen secretion by GCs. Disorders of the ovarian estrogen secretion are more likely to induce female estrogen-dependent diseases and fertility issues, such as ovarian cancer and polycystic ovary syndrome. Hence, aromatase is an important drug target; treatment with its inhibitors in estrogen-dependent diseases has attracted increasing attention. The present review article focuses on the regulation and mechanism of the aromatase activity in the GCs, as well as the specific regulation of aromatase promoters. In GCs, follicle-stimulating hormone (FSH) is dependent on the cyclic adenosine monophosphate (cAMP) pathway to regulate the aromatase activity, and the regulation of this enzyme is related to the activation of signaling pathways, such as phosphatidylinositol 3-kinase (PI3K) and extracellular signal-regulated kinase (ERK). In addition, endocrine-disrupting substance and other related factors affect the expression of aromatase, which eventually create an imbalance in the estrogen secretion by the target tissues. The present review highlights these useful factors as potential inhibitors for target therapy.
Collapse
Affiliation(s)
- Ting Liu
- Department of Pathophysiology, School of Basic Medicine Sciences, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Yifei Huang
- First Clinical Medical School, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Hui Lin
- Department of Pathophysiology, School of Basic Medicine Sciences, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| |
Collapse
|