1
|
Dasmahapatra AK, Chatterjee J, Tchounwou PB. A systematic review of the toxic potential of parabens in fish. FRONTIERS IN TOXICOLOGY 2024; 6:1399467. [PMID: 39434713 PMCID: PMC11491439 DOI: 10.3389/ftox.2024.1399467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 08/19/2024] [Indexed: 10/23/2024] Open
Abstract
Parabens are the most prevalent ingredients in cosmetics and personal care products (PCPs). They are colorless and tasteless and exhibit good stability when combined with other components. Because of these unique physicochemical properties, they are extensively used as antimicrobial and antifungal agents. Their release into the aquatic ecosystem poses potential threats to aquatic organisms, including fish. We conducted an electronic search in PubMed (http://www.ncbi.nlm.nih.gov/pubmed) using the search term parabens and fish and sorted 93 articles consisting of methyl paraben (MTP), ethyl paraben (ETP), propyl paraben (PPP), butyl paraben (BTP), and benzyl paraben (BNP) in several fish species. Furthermore, we confined our search to six fish species (common carp, Cyprinus carpio; fathead minnows, Pimephales promelas; Japanese medaka, Oryzias latipes; rainbow trout, Oncorhynchus mykiss; Nile tilapia, Oreochromis niloticus; and zebrafish, Danio rerio) and four common parabens (MTP, ETP, PPP, and BTP) and sorted 48 articles for review. Our search indicates that among all six fish, zebrafish was the most studied fish and the MTP was the most tested paraben in fish. Moreover, depending on the alkyl chain length and linearity, long-chained parabens were more toxic than the parabens with short chains. Parabens can be considered endocrine disruptors (EDs), targeting estrogen-androgen-thyroid-steroidogenesis (EATS) pathways, blocking the development and growth of gametes, and causing intergenerational toxicity to impact the viability of offspring/larvae. Paraben exposure can also induce behavioral changes and nervous system disorders in fish. Although the USEPA and EU limit the use of parabens in cosmetics and pharmaceuticals, their prolonged persistence in the environment may pose an additional health risk to humans.
Collapse
Affiliation(s)
- Asok K. Dasmahapatra
- Department of BioMolecular Science, Environmental Toxicology Division, University of Mississippi, Oxford, MS, United States
| | - Joydeep Chatterjee
- Department of Biology, University of Texas-Arlington, Arlington, TX, United States
| | - Paul B. Tchounwou
- RCMI Center for Urban Health Disparities Research and Innovation, School of Computer, Mathematical and Natural Sciences, Morgan State University, Baltimore, MD, United States
| |
Collapse
|
2
|
Colnot T, Dekant W, Greim H. Grouping of esters of 4-hydroxybenzoic acid for hazard assessment. Arch Toxicol 2024; 98:571-575. [PMID: 38052763 DOI: 10.1007/s00204-023-03641-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 11/16/2023] [Indexed: 12/07/2023]
Abstract
Hazardous properties of a large number of esters of 4-hydroxybenzoic acid (parabens) have been proposed by ECHA to be assessed as a group. We recommend to restrict the grouping approach to short chain esters, i.e. methyl, ethyl, propyl and butyl paraben which are very similar in chemical structures, physicochemical properties, toxicokinetics, and hazardous properties. While these parabens show a weak estrogenicity in some in vitro or in vivo screening assays, they do not induce estrogen-receptor-mediated adverse effects in intact animals. Therefore, there is no support regarding classification and labeling of endocrine disruption or reproductive toxicity of these parabens.
Collapse
Affiliation(s)
| | - Wolfgang Dekant
- Department of Toxicology, Institut Für Toxikologie, University of Würzburg, Versbacher Strasse 9, 97078, Würzburg, Germany.
| | | |
Collapse
|
3
|
Li Z, Jia K, Chen X, Guo J, Zheng Z, Chen W, Peng Y, Yang Y, Lu H, Yang J. Exposure to Butylparaben Induces Craniofacial Bone Developmental Toxicity in Zebrafish (Danio rerio) Embryos. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 265:115523. [PMID: 37776822 DOI: 10.1016/j.ecoenv.2023.115523] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/30/2023] [Accepted: 09/23/2023] [Indexed: 10/02/2023]
Abstract
Butylparaben (BuP) is a common antibacterial preservative utilized extensively in food, medical supplies, cosmetics, and personal care products. The current study reports the use of Zebrafish (Danio rerio) embryos to investigate potential developmental toxicity caused by exposure to BuP. The development of Neural crest cells (NCCs) is highly active during gastrulation in Zebrafish embryos. Thus, we utilized 0.5 mg/L, 0.75 mg/L, and 1 mg/L BuP solutions, respectively, in accordance with the international safety standard dosage. We observed severe craniofacial cartilage deformities, periocular edema, cardiac dysplasia, and delayed otolith development in the Zebrafish larvae 5 days after exposure. The oxidative stress response was significantly enhanced. In addition, the biochemical analysis revealed that the activities of catalase (CAT) and superoxide dismutase (SOD) were significantly reduced relative to the control group, whereas the concentration of malondialdehyde (MDA) was significantly elevated. Furthermore, ALP activity, a marker of osteoblast activity, was also reduced. Moreover, the RT-qPCR results indicated that the expression of chondrocyte marker genes sox9a, sox9b, and col2a1a was down-regulated. In addition, the morphology of maxillofacial chondrocytes was altered in Zebrafish larvae, and the proliferation of cranial NCCs was inhibited. Accordingly, our findings indicate that strong oxidative stress induced by BuP inhibits the proliferation of NCCs in larval Zebrafish, leading to craniofacial deformities.
Collapse
Affiliation(s)
- Zekun Li
- Department of Endodontics, Affiliated Stomatological Hospital, Nanchang University, Nanchang 330006, Jiangxi, China; Jiangxi Key Laboratory of Oral Biomedicine, Jiangxi Clinical Medical Research Center of Oral Diseases, Nanchang 330006, Jiangxi,China
| | - Kun Jia
- Center for Drug Screening and Research, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou 341000, Jiangxi, China; School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Xiaomei Chen
- Department of Endodontics, Affiliated Stomatological Hospital, Nanchang University, Nanchang 330006, Jiangxi, China; Jiangxi Key Laboratory of Oral Biomedicine, Jiangxi Clinical Medical Research Center of Oral Diseases, Nanchang 330006, Jiangxi,China
| | - Jun Guo
- Department of Endodontics, Affiliated Stomatological Hospital, Nanchang University, Nanchang 330006, Jiangxi, China; Jiangxi Key Laboratory of Oral Biomedicine, Jiangxi Clinical Medical Research Center of Oral Diseases, Nanchang 330006, Jiangxi,China
| | - Zhiguo Zheng
- Department of Endodontics, Affiliated Stomatological Hospital, Nanchang University, Nanchang 330006, Jiangxi, China; Jiangxi Key Laboratory of Oral Biomedicine, Jiangxi Clinical Medical Research Center of Oral Diseases, Nanchang 330006, Jiangxi,China
| | - Weihua Chen
- Jiangxi Key Laboratory of Oral Biomedicine, Jiangxi Clinical Medical Research Center of Oral Diseases, Nanchang 330006, Jiangxi,China
| | - Yuan Peng
- Center for Drug Screening and Research, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou 341000, Jiangxi, China
| | - Yuhao Yang
- Department of Endodontics, Affiliated Stomatological Hospital, Nanchang University, Nanchang 330006, Jiangxi, China; Jiangxi Key Laboratory of Oral Biomedicine, Jiangxi Clinical Medical Research Center of Oral Diseases, Nanchang 330006, Jiangxi,China
| | - Huiqiang Lu
- Center for Drug Screening and Research, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou 341000, Jiangxi, China; Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Ji'an 343009, Jiangxi, China
| | - Jian Yang
- Department of Endodontics, Affiliated Stomatological Hospital, Nanchang University, Nanchang 330006, Jiangxi, China; Jiangxi Key Laboratory of Oral Biomedicine, Jiangxi Clinical Medical Research Center of Oral Diseases, Nanchang 330006, Jiangxi,China.
| |
Collapse
|
4
|
Radwan P, Wielgomas B, Radwan M, Krasiński R, Bujak-Pietrek S, Polańska K, Kilanowicz A, Jurewicz J. Urinary concentration of selected nonpersistent endocrine disrupting chemicals-reproductive outcomes among women from a fertility clinic. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:45088-45096. [PMID: 36701050 PMCID: PMC10076394 DOI: 10.1007/s11356-023-25355-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 01/12/2023] [Indexed: 06/17/2023]
Abstract
Parabens and benzophenones are compounds widely used in cosmetics and personal care products. Although human exposure is widespread there is a limited number of epidemiological studies assessing the relationship between exposure to these chemicals and female reproductive health. The aim of the study is to explore the relationship between paraben and benzophenone concentrations and reproductive outcomes among women attending a fertility center. This prospective cohort included 450 women undergoing in vitro treatment (IVF) at fertility clinic in Poland. The validated gas chromatography ion-tap mass spectrometry to assess concentrations of parabens in urine (methyl (MP), ethyl (EP), propyl (PP), butyl paraben (BP)) and benzophenone-3 (BP-3) was used. To explore the relationship between concentrations of examined chemicals and reproductive outcomes (methaphase II (MII) oocyte yield, total oocyte yield, implantation rate, fertilization rate, clinical pregnancy, live births), multivariable generalized linear mixed model was used for the analysis. Increased exposure to butyl paraben was associated with a significant decrease in MII oocyte count (p = 0.007) when exposure to BP was treated as the continuous variable. Additionally, the exposure to BP in the highest quartile of exposure also decreases MII oocyte count (p = 0.02) compared to the lowest quartile. Urinary concentrations of BP were not related to total oocyte count, fertilization and implantation rate, clinical pregnancy, and live birth when the exposure variable was continuous variable or in the quartiles of exposure. Exposure to MP, EP, PP, the sum of examined parabens, and benzophenone-3 were not related to any of the examined reproductive outcomes. Exposure to butyl paraben was associated with a decrease in MII oocyte count among women attending fertility clinic rinsing concerns that exposure may have a potential adverse impact on embryological outcomes. The results emphasize the importance to reduce chemicals in the environment in order to minimize exposure. As this is the first study showing such an association, further research is needed to confirm these novel results in other populations.
Collapse
Affiliation(s)
- Paweł Radwan
- Department of Gynecology and Reproduction, “Gameta” Health Centre, 7 Cybernetyki St, 02-677 Warsaw, Poland
- Department of Gynecology and Reproduction, “Gameta” Clinic, Kielce-Regional Science –Technology Centre, 45 Podzamcze St, 26-060 Chęciny, Poland
| | - Bartosz Wielgomas
- Department of Toxicology, Medical University of Gdańsk, 107 Hallera St., 80-416, Gdańsk, Poland
| | - Michał Radwan
- Department of Gynecology and Reproduction, “Gameta” Hospital, 34/36 Rudzka St., 95-030 Rzgów, Poland
- Faculty of Health Sciences, Mazovian State University in Płock, 2 Dabrowskiego Sq., 09-402 Plock, Poland
| | - Rafał Krasiński
- Department of Gynecology and Reproduction, “Gameta” Hospital, 34/36 Rudzka St., 95-030 Rzgów, Poland
| | - Stella Bujak-Pietrek
- Department of Chemical Safety, Nofer Institute of Occupational Medicine, 8 Teresy St; 91-348, Łódź, Poland
| | - Kinga Polańska
- Department of Paediatrics and Allergy, Copernicus Memorial Hospital, Medical University of Lodz, Piłsudskiego 71; 90-329, Łódź, Poland
| | - Anna Kilanowicz
- Department of Toxicology, Medical University of Lodz, Muszynskiego 1; 90-151, Łódź, Poland
| | - Joanna Jurewicz
- Department of Chemical Safety, Nofer Institute of Occupational Medicine, 8 Teresy St; 91-348, Łódź, Poland
| |
Collapse
|
5
|
Land KL, Miller FG, Fugate AC, Hannon PR. The effects of endocrine-disrupting chemicals on ovarian- and ovulation-related fertility outcomes. Mol Reprod Dev 2022; 89:608-631. [PMID: 36580349 PMCID: PMC10100123 DOI: 10.1002/mrd.23652] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 11/03/2022] [Accepted: 11/06/2022] [Indexed: 11/21/2022]
Abstract
Exposure to endocrine-disrupting chemicals (EDCs) is unavoidable, which represents a public health concern given the ability of EDCs to target the ovary. However, there is a large gap in the knowledge about the impact of EDCs on ovarian function, including the process of ovulation. Defects in ovulation are the leading cause of infertility in women, and EDC exposures are contributing to the prevalence of infertility. Thus, investigating the effects of EDCs on the ovary and ovulation is an emerging area for research and is the focus of this review. The effects of EDCs on gametogenesis, uterine function, embryonic development, and other aspects of fertility are not addressed to focus on ovarian- and ovulation-related fertility issues. Herein, findings from epidemiological and basic science studies are summarized for several EDCs, including phthalates, bisphenols, per- and poly-fluoroalkyl substances, flame retardants, parabens, and triclosan. Epidemiological literature suggests that exposure is associated with impaired fecundity and in vitro fertilization outcomes (decreased egg yield, pregnancies, and births), while basic science literature reports altered ovarian follicle and corpora lutea numbers, altered hormone levels, and impaired ovulatory processes. Future directions include identification of the mechanisms by which EDCs disrupt ovulation leading to infertility, especially in women.
Collapse
Affiliation(s)
- Katie L. Land
- Department of Obstetrics & Gynecology, College of MedicineUniversity of KentuckyLexingtonKentuckyUSA
| | - Frances G. Miller
- Department of Obstetrics & Gynecology, College of MedicineUniversity of KentuckyLexingtonKentuckyUSA
| | - Ava C. Fugate
- Department of Obstetrics & Gynecology, College of MedicineUniversity of KentuckyLexingtonKentuckyUSA
| | - Patrick R. Hannon
- Department of Obstetrics & Gynecology, College of MedicineUniversity of KentuckyLexingtonKentuckyUSA
| |
Collapse
|
6
|
Read-across and new approach methodologies applied in a 10-step framework for cosmetics safety assessment – A case study with parabens. Regul Toxicol Pharmacol 2022; 132:105161. [DOI: 10.1016/j.yrtph.2022.105161] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 01/23/2022] [Accepted: 03/17/2022] [Indexed: 11/17/2022]
|
7
|
Conley JM, Lambright CS, Evans N, Cardon M, Medlock-Kakaley E, Wilson VS, Gray LE. A mixture of 15 phthalates and pesticides below individual chemical no observed adverse effect levels (NOAELs) produces reproductive tract malformations in the male rat. ENVIRONMENT INTERNATIONAL 2021; 156:106615. [PMID: 34000504 PMCID: PMC8380680 DOI: 10.1016/j.envint.2021.106615] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/28/2021] [Accepted: 04/29/2021] [Indexed: 05/10/2023]
Abstract
Humans carry residues of multiple synthetic chemicals at any given point in time. Research has demonstrated that compounds with varying molecular initiating events (MIE) that disrupt common key events can act in concert to produce cumulative adverse effects. Congenital defects of the male reproductive tract are some of the most frequently diagnosed malformations in humans and chemical exposures in utero can produce these effects in laboratory animals and humans. Here, we hypothesized that in utero exposure to a mixture of pesticides and phthalates, each of which produce male reproductive tract defects individually, would produce cumulative effects even when each chemical is present at a no observed adverse effect level (NOAEL) specific for male reproductive effects. Pregnant Sprague-Dawley rats were exposed via oral gavage to a fixed-ratio dilution mixture of 5 pesticides (vinclozolin, linuron, procymidone, prochloraz, pyrifluquinazon), 1 pesticide metabolite (dichlorodiphenyldichloroethylene (DDE)), and 9 phthalates (dipentyl, dicyclohexyl, di-2-ethylhexyl, dibutyl, benzyl butyl, diisobutyl, diisoheptyl, dihexyl, and diheptyl) during the critical window of rat fetal masculinization (gestation day 14-18). The top dose (100% dose) contained each compound at a concentration 2-fold greater than the individual chemical NOAEL followed by a dilution series that represented each chemical at NOAEL, NOAEL/2, NOAEL/4, NOAEL/8, NOAEL/15, NOAEL/100, NOAEL/1000. Reduced fetal testis gene expression occurred at NOAEL/15, reduced fetal testis testosterone production occurred at NOAEL/8, reduced anogenital distance, increased nipple retention, and delayed puberty occurred at NOAEL/4, and severe effects including genital malformations and weight reductions in numerous reproductive tissues occurred at NOAEL/2. This study demonstrates that these phthalates and pesticides acted cumulatively to produce adverse effects at doses below which any individual chemical had been shown to produce an effect alone and even though they have different MIEs.
Collapse
Affiliation(s)
- Justin M Conley
- U.S. Environmental Protection Agency/Office of Research & Development/Center for Public Health and Environmental Assessment/Public Health and Integrated Toxicology Division, Research Triangle Park, NC 27711, United States.
| | - Christy S Lambright
- U.S. Environmental Protection Agency/Office of Research & Development/Center for Public Health and Environmental Assessment/Public Health and Integrated Toxicology Division, Research Triangle Park, NC 27711, United States.
| | - Nicola Evans
- U.S. Environmental Protection Agency/Office of Research & Development/Center for Public Health and Environmental Assessment/Public Health and Integrated Toxicology Division, Research Triangle Park, NC 27711, United States.
| | - Mary Cardon
- U.S. Environmental Protection Agency/Office of Research & Development/Center for Public Health and Environmental Assessment/Public Health and Integrated Toxicology Division, Research Triangle Park, NC 27711, United States.
| | - Elizabeth Medlock-Kakaley
- U.S. Environmental Protection Agency/Office of Research & Development/Center for Public Health and Environmental Assessment/Public Health and Integrated Toxicology Division, Research Triangle Park, NC 27711, United States.
| | - Vickie S Wilson
- U.S. Environmental Protection Agency/Office of Research & Development/Center for Public Health and Environmental Assessment/Public Health and Integrated Toxicology Division, Research Triangle Park, NC 27711, United States.
| | - L Earl Gray
- U.S. Environmental Protection Agency/Office of Research & Development/Center for Public Health and Environmental Assessment/Public Health and Integrated Toxicology Division, Research Triangle Park, NC 27711, United States.
| |
Collapse
|
8
|
Paraben Compounds—Part I: An Overview of Their Characteristics, Detection, and Impacts. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11052307] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Parabens are widely used in different industries as preservatives and antimicrobial compounds. The evolution of analytical techniques allowed the detection of these compounds in different sources at µg/L and ng/L. Until today, parabens were already found in water sources, air, soil and even in human tissues. The impact of parabens in humans, animals and in ecosystems are a matter of discussion within the scientific community, but it is proven that parabens can act as endocrine disruptors, and some reports suggest that they are carcinogenic compounds. The presence of parabens in ecosystems is mainly related to wastewater discharges. This work gives an overview about the paraben problem, starting with their characteristics and applications. Moreover, the dangers related to their usage were addressed through the evaluation of toxicological studies over different species as well as of humans. Considering this, paraben detection in different water sources, wastewater treatment plants, humans and animals was analyzed based on literature results. A review of European legislation regarding parabens was also performed, presenting some considerations for the use of parabens.
Collapse
|
9
|
Fayyaz S, Kreiling R, Sauer UG. Application of grouping and read-across for the evaluation of parabens of different chain lengths with a particular focus on endocrine properties. Arch Toxicol 2021; 95:853-881. [PMID: 33459807 PMCID: PMC7904550 DOI: 10.1007/s00204-020-02967-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 12/22/2020] [Indexed: 11/29/2022]
Abstract
This article presents the outcomes of higher-tier repeated-dose toxicity studies and developmental and reproductive toxicity (DART) studies using Wistar rats requested for methyl paraben and propyl paraben under the European Union chemicals legislation. All studies revealed no-observed adverse effects (NOAELs) at 1000 mg/kg body weight/day. These findings (absence of effects) were then used to interpolate the hazard profile for ethyl paraben, further considering available data for butyl paraben. The underlying read-across hypothesis (all shorter-chained linear n-alkyl parabens are a ‘category’ based on very high structural similarity and are transformed to a common compound) was confirmed by similarity calculations and comparative in vivo toxicokinetics screening studies for methyl paraben, ethyl paraben, propyl paraben and butyl paraben. All four parabens were rapidly taken up systemically following oral gavage administration to rats, metabolised to p-hydroxybenzoic acid, and rapidly eliminated (parabens within one hour; p-hydroxybenzoic acid within 4–8 h). Accordingly, for ethyl paraben, the NOAELs for repeated-dose toxicity and DART were interpolated to be 1000 mg/kg body weight/day. Finally, all evidence was evaluated to address concerns expressed in the literature that parabens might be endocrine disruptors. This evaluation showed that the higher-tier studies do not provide any indication for any endocrine disrupting property. This is the first time that a comprehensive dataset from higher-tier in vivo studies following internationally agreed test protocols has become available for shorter-chained linear n-alkyl parabens. Consistently, the dataset shows that these parabens are devoid of repeated-dose toxicity and do not possess any DART or endocrine disrupting properties.
Collapse
Affiliation(s)
- Susann Fayyaz
- Clariant Produkte (Deutschland) GmbH, Am Unisyspark 1, 65843, Sulzbach, Germany
| | - Reinhard Kreiling
- Clariant Produkte (Deutschland) GmbH, Am Unisyspark 1, 65843, Sulzbach, Germany.
| | - Ursula G Sauer
- Scientific Consultancy-Animal Welfare, Neubiberg, Germany
| |
Collapse
|