1
|
Wang X, Zhao Z, Qi S, Li Z, Wang Z, Zhou S, Cui J, Li J, Wu D. Evaluating the combined estrogenic effects of plant growth regulators via electrochemical and E-Screen methods. RSC Adv 2024; 14:36745-36753. [PMID: 39559573 PMCID: PMC11571117 DOI: 10.1039/d4ra06838f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Accepted: 11/12/2024] [Indexed: 11/20/2024] Open
Abstract
The study shows that plant growth regulators (PGRs) have estrogenic effects, which may disrupt the normal physiological functions of endogenous estrogen in organisms. This study used electrochemical methods to investigate the electrochemical behavior and estrogenic effects of PGRs gibberellic acid (GA3), ethylene (ETH), and naphthalene acetic acid (NAA) on estrogen-free human breast cancer cells (MCF-7) cells when exposed individually or in combination. The results indicate that GA3, ETH, and NAA, whether used alone or in combination, exhibit estrogenic effects on MCF-7 cells. The accuracy of the electrochemical method was validated against the E-Screen method, with consistent results between the two methods. Analysis of the combined estrogenic effects of PGRs detected by electrochemical and E-Screen methods revealed antagonistic effects for GA3/ETH, synergistic effects for GA3/NAA, additive effects for NAA/ETH, and synergistic effects for GA3/ETH/NAA. The combined estrogenic effects of PGRs at environmental actual concentration ratios detected by the electrochemical method were consistent with the results of the E-Screen method. This study successfully established a simple, fast, sensitive, and low-cost electrochemical detection method for the combined estrogenic effects of PGRs, providing a new approach for detecting such effects.
Collapse
Affiliation(s)
- Xijie Wang
- College of Pharmacy, Jiamusi University Jiamusi Heilongjiang 154007 P. R. China
| | - Zijia Zhao
- College of Pharmacy, Jiamusi University Jiamusi Heilongjiang 154007 P. R. China
| | - Shulan Qi
- College of Pharmacy, Jiamusi University Jiamusi Heilongjiang 154007 P. R. China
| | - Zan Li
- College of Pharmacy, Jiamusi University Jiamusi Heilongjiang 154007 P. R. China
| | - Zhong Wang
- Heilongjiang Provincial Key Laboratory of New Drug Development and Pharmacotoxicological Evaluation, Jiamusi University Jiamusi 154007 China
- College of Biology and Agriculture, Jiamusi University Jiamusi Heilongjiang 154007 P. R. China
| | - Shi Zhou
- College of Pharmacy, Jiamusi University Jiamusi Heilongjiang 154007 P. R. China
- Heilongjiang Provincial Key Laboratory of New Drug Development and Pharmacotoxicological Evaluation, Jiamusi University Jiamusi 154007 China
| | - Jiwen Cui
- College of Pharmacy, Jiamusi University Jiamusi Heilongjiang 154007 P. R. China
- Heilongjiang Provincial Key Laboratory of New Drug Development and Pharmacotoxicological Evaluation, Jiamusi University Jiamusi 154007 China
| | - Jinlian Li
- College of Pharmacy, Jiamusi University Jiamusi Heilongjiang 154007 P. R. China
- Heilongjiang Provincial Key Laboratory of New Drug Development and Pharmacotoxicological Evaluation, Jiamusi University Jiamusi 154007 China
| | - Dongmei Wu
- College of Pharmacy, Jiamusi University Jiamusi Heilongjiang 154007 P. R. China
- Heilongjiang Provincial Key Laboratory of New Drug Development and Pharmacotoxicological Evaluation, Jiamusi University Jiamusi 154007 China
| |
Collapse
|
2
|
Wang X, Hao W. Reproductive and developmental toxicity of plant growth regulators in humans and animals. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 196:105640. [PMID: 37945238 DOI: 10.1016/j.pestbp.2023.105640] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 09/29/2023] [Accepted: 10/02/2023] [Indexed: 11/12/2023]
Abstract
Plant growth regulators (PGRs) are currently one of the widely used pesticides, as being considered to have relatively low toxicity compared with other pesticides. However, widespread use may lead to overexposure from multiple sources. Exposure to PGRs is associated with different toxicity that affects many organs in our body, such as the toxicity to testis, ovaries, liver, kidneys and brain. In addition, some PGRs are considered potential endocrine disrupting chemicals. Evidence exists for development and reproductive toxicity associated with prenatal and postnatal exposure in both animals and humans. PGRs can affect the synthesis and secretion of sex hormones, destroy the structure and function of the reproductive system, and harm the growth and development of offspring, which may be related to germ cell cycle disorders, apoptosis and oxidative stress. This review summaries the reproductive and developmental toxicity data available about PGRs in mammals. In the future, conducting comprehensive epidemiological studies will be crucial for assessing the reproductive and developmental toxicity resulting from a mixture of various PGRs, with a particular emphasis on understanding the underlying molecular mechanisms.
Collapse
Affiliation(s)
- Xiaoxia Wang
- Department of Toxicology, School of Public Health, Peking University, Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing 100191, China
| | - Weidong Hao
- Department of Toxicology, School of Public Health, Peking University, Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing 100191, China.
| |
Collapse
|
3
|
Lei X, Abd El-Aty AM, Xu L, Zhao J, Li J, Gao S, Zhao Y, She Y, Jin F, Wang J, Zheng L, Jin M, Hammock BD. Production of a Monoclonal Antibody for the Detection of Forchlorfenuron: Application in an Indirect Enzyme-Linked Immunosorbent Assay and Immunochromatographic Strip. BIOSENSORS 2023; 13:bios13020239. [PMID: 36832005 PMCID: PMC9954037 DOI: 10.3390/bios13020239] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/02/2023] [Accepted: 02/05/2023] [Indexed: 05/03/2023]
Abstract
In this study, a monoclonal antibody (mAb) specific to forchlorfenuron (CPPU) with high sensitivity and specificity was produced and designated (9G9). To detect CPPU in cucumber samples, an indirect enzyme-linked immunosorbent assay (ic-ELISA) and a colloidal gold nanobead immunochromatographic test strip (CGN-ICTS) were established using 9G9. The half-maximal inhibitory concentration (IC50) and the LOD for the developed ic-ELISA were determined to be 0.19 ng/mL and 0.04 ng/mL in the sample dilution buffer, respectively. The results indicate that the sensitivity of the antibodies prepared in this study (9G9 mAb) was higher than those reported in the previous literature. On the other hand, in order to achieve rapid and accurate detection of CPPU, CGN-ICTS is indispensable. The IC50 and the LOD for the CGN-ICTS were determined to be 27 ng/mL and 6.1 ng/mL. The average recoveries of the CGN-ICTS ranged from 68 to 82%. The CGN-ICTS and ic-ELISA quantitative results were all confirmed by liquid chromatography-tandem mass spectrometry (LC-MS/MS) with 84-92% recoveries, which indicated the methods developed herein are appropriate for detecting CPPU in cucumber. The CGN-ICTS method is capable of both qualitative and semiquantitative analysis of CPPU, which makes it a suitable alternative complex instrument method for on-site detection of CPPU in cucumber samples since it does not require specialized equipment.
Collapse
Affiliation(s)
- Xingmei Lei
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - A. M. Abd El-Aty
- Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt
- Department of Medical Pharmacology, Medical Faculty, Ataturk University, Erzurum 25240, Turkey
| | - Lingyuan Xu
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jing Zhao
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jia Li
- Jinhua Miaozhidizhi Agricultural Technology Co., Ltd., Jinhua 321000, China
| | - Song Gao
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yun Zhao
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yongxin She
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Fen Jin
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jing Wang
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Lufei Zheng
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Correspondence: (L.Z.); (M.J.); Tel.: +86-10-8210-6567 (L.Z.); +86-10-8210-6570 (M.J.)
| | - Maojun Jin
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Research Center of Quality Standards for Agro-Products, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
- Correspondence: (L.Z.); (M.J.); Tel.: +86-10-8210-6567 (L.Z.); +86-10-8210-6570 (M.J.)
| | - Bruce D. Hammock
- Department of Entomology & Nematology and the UC Davis Comprehensive Cancer Center, University of California, Davis, CA 95616, USA
| |
Collapse
|
4
|
Gong G, Kam H, Chen H, Chen Y, Cheang WS, Giesy JP, Zhou Q, Lee SMY. Role of endocrine disruption in toxicity of 6-benzylaminopurine (6-BA) to early-life stages of Zebrafish. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 232:113287. [PMID: 35149407 DOI: 10.1016/j.ecoenv.2022.113287] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/20/2022] [Accepted: 02/02/2022] [Indexed: 06/14/2023]
Abstract
6-benzylaminopurine (6-BA), classified as a "plant hormone", is an important ingredient in production of "toxic bean sprouts". Although there is no direct evidence of adverse effects, its hazardous effects have received some attention and aroused furious debate between proponents and environmental regulators. In this study, potential adverse effects of 6-BA were investigated by exposing zebrafish in vivo to 0.2 - 25 mg 6-BA/L. Results indicated that, when exposure was limited to early-life stage (4-36 hpf), 20 mg 6-BA/L caused early hatching, abnormal spontaneous movement, and precocious hyperactivity in zebrafish embryos/larvae. While under a continuous exposure regime, 6-BA at 0.2 mg/L was able to cause hyperactive locomotion and transcription of genes related to neurogenesis (gnrh3 and nestin) and endocrine systems (cyp19a and fshb) in 5 dpf larvae. Quantification by use of LC/MS indicated bioaccumulation of 6-BA in zebrafish increased when exposed to 0.2 or 20 mg 6-BA/L. These results suggested that 6-BA could accumulate in aquatic organisms and disrupt neuro-endocrine systems. Accordingly, exposure to 0.2 mg 6-BA/L increased production of estradiol (E2) and consequently E2/T ratio in zebrafish larvae, which directly indicated 6-BA is estrogenic. In silico simulations demonstrated potential for binding of 6-BA to estrogen receptor alpha (ERa) and cytochrome P450 aromatase (CYP19A). Therefore, induction of estrogenic effects, via potential interactions with hormone receptors or disturbance of downstream transcription signaling, was possible mechanism underlying the toxicity of 6-BA. Taken together, these findings demonstrate endocrine disrupting properties of 6-BA, which suggest concerns about risks posed to endocrine systems.
Collapse
Affiliation(s)
- Guiyi Gong
- Zhanjiang Institute of Clinical Medicine, Central People's Hospital of Zhanjiang, Zhanjiang 524045, China; State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macao, China.
| | - Hiotong Kam
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Hanbin Chen
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Yan Chen
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Wai San Cheang
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - John P Giesy
- Toxicology Centre, University of Saskatchewan, Saskatoon Saskatchewan S7N 5B3, Canada; Department of Veterinary Biomedical Sciences, University of Saskatchewan, Saskatoon Saskatchewan S7N 5B4, Canada; Department of Environmental Sciences, Baylor University, Waco, TX 76706, United States
| | - Qiaohong Zhou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Simon Ming-Yuen Lee
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macao, China.
| |
Collapse
|
5
|
Liu X, Xie B, Cheng Y, Luo L, Liang Y, Xiao Z. A Sensitive Monoclonal-Antibody-Based ELISA for Forchlorfenuron Residue Analysis in Food Samples. BIOSENSORS 2022; 12:bios12020078. [PMID: 35200339 PMCID: PMC8869720 DOI: 10.3390/bios12020078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 01/23/2022] [Accepted: 01/24/2022] [Indexed: 11/16/2022]
Abstract
In this study, forchlorfenuron (CPPU) was coupled with succinic anhydride to yield a CPPU hapten (CPPU-COOH), and a high-affinity monoclonal antibody (mAb) that can specifically recognize CPPU was produced. Using this mAb as a recognition reagent, a sensitive indirect competitive enzyme-linked immunosorbent assay (icELISA) for CPPU was optimized, which exhibits an IC50 of 1.04 ng/mL, a limit of detection of 0.16 ng/mL, and a linear range of 0.31–3.43 ng/mL for CPPU. Cross-reactivity percentages with six analogues were all below 6%. The average recovery rates for cucumber and orange samples were from 85.23% to 119.14%. The analysis results of this icELISA showed good consistency with those from liquid chromatography mass spectrometry. These results suggest that the proposed icELISA provides a sensitive, specific, and reliable strategy for CPPU detection in food samples.
Collapse
|
6
|
Comparative Pharmacokinetic Study of Forchlorfenuron in Adult and Juvenile Rats. Molecules 2021; 26:molecules26144276. [PMID: 34299551 PMCID: PMC8306460 DOI: 10.3390/molecules26144276] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 07/09/2021] [Accepted: 07/13/2021] [Indexed: 01/10/2023] Open
Abstract
Forchlorfenuron (CPPU) is a plant growth regulator extensively used in agriculture. However, studies on CPPU pharmacokinetics are lacking. We established and validated a rapid, sensitive, and accurate liquid chromatography-mass spectrometry method for CPPU detection in rat plasma. CPPU pharmacokinetics was evaluated in adult and juvenile rats orally treated with 10, 30, and 90 mg/kg of the compound. The area under the plasma drug concentration-time curve from 0 to 24 h (AUC), at the final time point sampled (AUC0-t), and the maximum drug concentration of CPPU increased in a dose-dependent manner. The pharmacokinetic parameters AUC0-t and absolute bioavailability were higher in the juvenile rats than in adult rats. The mean residence time and AUC0-t of juvenile rats in the gavage groups, except for the 10 mg/kg dose, were significantly higher in comparison to those observed for adult rats (p < 0.001). The plasma clearance of CPPU in juvenile rats was slightly lower than that in the adult rats. Taken together, juvenile rats were more sensitive to CPPU than adult rats, which indicates potential safety risks of CPPU in minors.
Collapse
|
7
|
Zhu D, Ping L, Qian R, Chen C, Hong Y, Tong Z, Yang X. Dissipation behavior, residue dynamics, and dietary risk assessment of forchlorfenuron in postharvest kiwifruits during simulated cold chain logistics and store shelf life. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:20002-20011. [PMID: 33410058 DOI: 10.1007/s11356-020-11803-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 11/23/2020] [Indexed: 06/12/2023]
Abstract
Forchlorfenuron (CPPU) is often applied during the cultivation of kiwifruit to produce larger fruit. To address degradation patterns of CPPU during simulated cold chain logistics and simulated shelf life of the fruit after harvest, appropriate storage methods and safe consumption behavior can be investigated. In this study, an ultra-high-performance liquid chromatography-tandem mass spectrometry method was adopted to detect CPPU residues under different conditions. CPPU in kiwifruit stored at 6 °C had a half-life of 40.8-77.0 days. However, when kiwifruit was stored at 0 °C under simulated cold chain storage conditions, the half-life of CPPU was 63.0-115.5 days, implying that lower storage temperatures can reduce the degradation rate of CPPU. The residues of CPPU in kiwifruit pulp declined with time, and the reduction followed the first-order kinetics equation. More CPPU residues were present in the pulp of postharvest kiwifruit treated with exogenous ethylene than in the pulp of untreated kiwifruit. Thus, using exogenous ethylene for artificial ripening after harvest is not recommended. We determined that the appropriate cold chain storage temperature is 6 °C. It is recommended that the public select kiwifruit stored for at least 2 weeks. The estimated chronic and acute dietary risk quotients of CPPU are ≤ 0.79% and ≤ 0.11%, respectively. Therefore, it is highly unlikely that consumers will be poisoned by CPPU due to kiwifruit consumption. Our results provide scientific evidence regarding the adoption of appropriate kiwifruit storage methods and consumption behavior to enhance consumption safety.
Collapse
Affiliation(s)
- Difeng Zhu
- Center for Drug Safety Evaluation and Research, College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, Zhejiang, China
| | - Li Ping
- Center for Drug Safety Evaluation and Research, College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, Zhejiang, China
| | - Renyun Qian
- Center for Drug Safety Evaluation and Research, College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, Zhejiang, China
| | - Chao Chen
- Center for Drug Safety Evaluation and Research, College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, Zhejiang, China
| | - Yawen Hong
- Center for Drug Safety Evaluation and Research, College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, Zhejiang, China
| | - Zhenxuan Tong
- Center for Drug Safety Evaluation and Research, College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, Zhejiang, China
| | - Xiaochun Yang
- Center for Drug Safety Evaluation and Research, College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, Zhejiang, China.
| |
Collapse
|