1
|
Wang A, Xie W, Zhang J. The synergistic role of viral infection and immune response in the pathogenesis of facial palsy. J Neurovirol 2025:10.1007/s13365-025-01258-7. [PMID: 40374879 DOI: 10.1007/s13365-025-01258-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2025] [Revised: 03/07/2025] [Accepted: 04/14/2025] [Indexed: 05/18/2025]
Abstract
Facial palsy refers to facial muscle paralysis and is typically brought about by viral infections, such as herpes simplex virus type 1 (HSV-1), herpes zoster virus (VZV), and SARS-CoV-2. While significant progress has been achieved in viral facial palsy pathogenesis, mechanisms of viral infection-immunity synergy are yet to be revealed. The authors of this article made an attempt to fill this gap by critically summarizing how viral infection causes inflammation and damage to the facial nerve through an immune response mechanism in the facial palsy pathogenesis. We also summarize the current treatment modalities and their respective efficacies. The article set the conditions under which viral infections caused by HSV-1, VZV, SARS-CoV-2, HIV, and EBV lead to facial paralysis and how the viruses infect the facial nerve, initiate an immune response, and cause nerve death. The impact involved direct viral invasion of neurons, immune evasion and induction of neuroinflammation. The review also discusses the primary role of T cells, B cells and innate immune cells in inducing or relieving the condition. The study emphasizes the need to understand the synergic effect of viral infection and immuneresponse of facial palsy as the foundation of the creation of more potent therapeutic strategies. The paper provides a detailed overview of complex interaction of immuneresponse and viral infection of facial palsy with significant level of importance regarding future research and clinical application.
Collapse
Affiliation(s)
| | - Wei Xie
- Quzhou hospital of TCM, Quzhou, China
| | | |
Collapse
|
2
|
Nebangwa DN, Shey RA, Shadrack DM, Shintouo CM, Yaah NE, Yengo BN, Efeti MT, Gwei KY, Fomekong DBA, Nchanji GT, Lemoge AA, Ntie‑Kang F, Ghogomu SM. Predictive immunoinformatics reveal promising safety and anti-onchocerciasis protective immune response profiles to vaccine candidates (Ov-RAL-2 and Ov-103) in anticipation of phase I clinical trials. PLoS One 2024; 19:e0312315. [PMID: 39432476 PMCID: PMC11493244 DOI: 10.1371/journal.pone.0312315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 10/03/2024] [Indexed: 10/23/2024] Open
Abstract
Onchocerciasis (river blindness) is a debilitating tropical disease that causes significant eye and skin damage, afflicting millions worldwide. As global efforts shift from disease management to elimination, vaccines have become crucial supplementary tools. The Onchocerciasis Vaccine for Africa (TOVA) Initiative was established in 2015, to advance at least one vaccine candidate initially targeting onchocerciasis in infants and children below 5 years of age, through Phase I human trials by 2025. Notably, Ov-RAL-2 and Ov-103 antigens have shown great promise during pre-clinical development, however, the overall success rate of vaccine candidates during clinical development remains relatively low due to certain adverse effects and immunogenic limitations. This study, thus, aimed at predicting the safety and immunogenicity of Ov-RAL-2 and Ov-103 potential onchocerciasis vaccine candidates prior to clinical trials. Advanced molecular simulation models and analytical immunoinformatics algorithms were applied to predict potential adverse side effects and efficacy of these antigens in humans. The analyses revealed that both Ov-RAL-2 and Ov-103 demonstrate favourable safety profiles as toxicogenic and allergenic epitopes were found to be absent within each antigen. Also, both antigens were predicted to harbour substantial numbers of a wide range of distinct epitopes (antibodies, cytokines, and T- Cell epitopes) associated with protective immunity against onchocerciasis. In agreement, virtual vaccination simulation forecasted heightened, but sustained levels of primary and secondary protective immune responses to both vaccine candidates over time. Ov-103 was predicted to be non-camouflageable, as it lacked epitopes identical to protein sequences in the human proteome. Indeed, both antigens were able to bind with high affinity and activate the innate immune TLR4 receptor, implying efficient immune recognition. These findings suggest that Ov-RAL-2 and Ov-103 can induce sufficient protective responses through diverse humoral and cellular mechanisms. Overall, our study provides additional layer of evidence for advancing the clinical development of both vaccine candidates against onchocerciasis.
Collapse
Affiliation(s)
- Derrick Neba Nebangwa
- Department of Biochemistry and Molecular Biology, Faculty of Science, University of Buea, Buea, Cameroon
| | - Robert Adamu Shey
- Department of Biochemistry and Molecular Biology, Faculty of Science, University of Buea, Buea, Cameroon
- Tropical Disease Interventions, Diagnostics, Vaccines and Therapeutics (TroDDIVaT) Initiative, Buea, Cameroon
| | | | - Cabirou Mounchili Shintouo
- Department of Biochemistry and Molecular Biology, Faculty of Science, University of Buea, Buea, Cameroon
| | - Ntang Emmaculate Yaah
- Department of Biochemistry and Molecular Biology, Faculty of Science, University of Buea, Buea, Cameroon
| | - Bernis Neneyoh Yengo
- Department of Microbiology and Immunology, College of Medicine, Drexel University, Philadelphia, Pennsylvania, United States of America
| | - Mary Teke Efeti
- Department of Biochemistry and Molecular Biology, Faculty of Science, University of Buea, Buea, Cameroon
| | - Ketura Yaje Gwei
- Department of Biochemistry and Molecular Biology, Faculty of Science, University of Buea, Buea, Cameroon
| | | | - Gordon Takop Nchanji
- Tropical Disease Interventions, Diagnostics, Vaccines and Therapeutics (TroDDIVaT) Initiative, Buea, Cameroon
- Department of Microbiology and Parasitology, Faculty of Science, University of Buea, Buea, Cameroon
| | - Arnaud Azonpi Lemoge
- Ngonpong Therapeutics, Concord Pike, Wilmington, Delaware, United States of America
| | - Fidele Ntie‑Kang
- Center for Drug Discovery, University of Buea, Buea, Cameroon
- Department of Chemistry, University of Buea, Buea, Cameroon
- Institute of Pharmacy, Martin‑Luther University of Halle‑Wittenberg, Halle, Germany
| | - Stephen Mbigha Ghogomu
- Department of Biochemistry and Molecular Biology, Faculty of Science, University of Buea, Buea, Cameroon
| |
Collapse
|
3
|
Brogna C, Piscopo M. Reply to the letter of Thiruchelvam K. et al. J Med Virol 2024; 96:e29885. [PMID: 39185666 DOI: 10.1002/jmv.29885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/17/2024] [Accepted: 08/13/2024] [Indexed: 08/27/2024]
Affiliation(s)
- Carlo Brogna
- Craniomed group Srl. Research facility, Bresso (Mi), Italy
| | - Marina Piscopo
- Department of Biology, University of Naples Federico II, Naples, Italy
| |
Collapse
|
4
|
Brogna C, Bisaccia DR, Costanzo V, Lettieri G, Montano L, Viduto V, Fabrowski M, Cristoni S, Prisco M, Piscopo M. Who Is the Intermediate Host of RNA Viruses? A Study Focusing on SARS-CoV-2 and Poliovirus. Microorganisms 2024; 12:643. [PMID: 38674588 PMCID: PMC11051822 DOI: 10.3390/microorganisms12040643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 03/19/2024] [Accepted: 03/21/2024] [Indexed: 04/28/2024] Open
Abstract
The COVID-19 pandemic has sparked a surge in research on microbiology and virology, shedding light on overlooked aspects such as the infection of bacteria by RNA virions in the animal microbiome. Studies reveal a decrease in beneficial gut bacteria during COVID-19, indicating a significant interaction between SARS-CoV-2 and the human microbiome. However, determining the origins of the virus remains complex, with observed phenomena such as species jumps adding layers to the narrative. Prokaryotic cells play a crucial role in the disease's pathogenesis and transmission. Analyzing previous studies highlights intricate interactions from clinical manifestations to the use of the nitrogen isotope test. Drawing parallels with the history of the Poliovirus underscores the need to prioritize investigations into prokaryotic cells hosting RNA viruses.
Collapse
Affiliation(s)
- Carlo Brogna
- Department of Research, Craniomed Group Facility Srl., 20091 Bresso, Italy;
| | | | - Vincenzo Costanzo
- Institute of Molecular Biology and Pathology (IBPM), National Research Council, 00185 Rome, Italy;
| | - Gennaro Lettieri
- Department of Biology, University of Naples Federico II, 80126 Napoli, Italy; (G.L.); (M.P.)
| | - Luigi Montano
- Andrology Unit and Service of LifeStyle Medicine in Uro-Andrology, Local Health Authority (ASL), 84124 Salerno, Italy;
| | - Valentina Viduto
- Long COVID-19 Foundation, Brookfield Court, Leeds LS25 1NB, UK; (V.V.)
| | - Mark Fabrowski
- Long COVID-19 Foundation, Brookfield Court, Leeds LS25 1NB, UK; (V.V.)
- Department of Emergency Medicine, Royal Sussex County Hospital, University Hospitals Sussex, Eastern Road, Brighton BN2 5BE, UK
- British Polio Fellowship, Watford WD25 8HR, UK
| | | | - Marina Prisco
- Department of Biology, University of Naples Federico II, 80126 Napoli, Italy; (G.L.); (M.P.)
| | - Marina Piscopo
- Department of Biology, University of Naples Federico II, 80126 Napoli, Italy; (G.L.); (M.P.)
| |
Collapse
|
5
|
Rao S, Gross RS, Mohandas S, Stein CR, Case A, Dreyer B, Pajor NM, Bunnell HT, Warburton D, Berg E, Overdevest JB, Gorelik M, Milner J, Saxena S, Jhaveri R, Wood JC, Rhee KE, Letts R, Maughan C, Guthe N, Castro-Baucom L, Stockwell MS. Postacute Sequelae of SARS-CoV-2 in Children. Pediatrics 2024; 153:e2023062570. [PMID: 38321938 PMCID: PMC10904902 DOI: 10.1542/peds.2023-062570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/01/2023] [Indexed: 02/08/2024] Open
Abstract
The coronavirus disease 2019 (COVID-19) pandemic has caused significant medical, social, and economic impacts globally, both in the short and long term. Although most individuals recover within a few days or weeks from an acute infection, some experience longer lasting effects. Data regarding the postacute sequelae of severe acute respiratory syndrome coronavirus 2 infection (PASC) in children, or long COVID, are only just emerging in the literature. These symptoms and conditions may reflect persistent symptoms from acute infection (eg, cough, headaches, fatigue, and loss of taste and smell), new symptoms like dizziness, or exacerbation of underlying conditions. Children may develop conditions de novo, including postural orthostatic tachycardia syndrome, myalgic encephalomyelitis/chronic fatigue syndrome, autoimmune conditions and multisystem inflammatory syndrome in children. This state-of-the-art narrative review provides a summary of our current knowledge about PASC in children, including prevalence, epidemiology, risk factors, clinical characteristics, underlying mechanisms, and functional outcomes, as well as a conceptual framework for PASC based on the current National Institutes of Health definition. We highlight the pediatric components of the National Institutes of Health-funded Researching COVID to Enhance Recovery Initiative, which seeks to characterize the natural history, mechanisms, and long-term health effects of PASC in children and young adults to inform future treatment and prevention efforts. These initiatives include electronic health record cohorts, which offer rapid assessments at scale with geographical and demographic diversity, as well as longitudinal prospective observational cohorts, to estimate disease burden, illness trajectory, pathobiology, and clinical manifestations and outcomes.
Collapse
Affiliation(s)
- Suchitra Rao
- Department of Pediatrics, University of Colorado School of Medicine and Children’s Hospital Colorado, Aurora, Colorado
| | - Rachel S. Gross
- Departments of Pediatrics
- Population Health, NYU Grossman School of Medicine, New York, New York
| | - Sindhu Mohandas
- Division of Infectious Diseases
- Department of Pediatrics and Radiology, Children’s Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Cheryl R. Stein
- Child and Adolescent Psychiatry, New York University Grossman School of Medicine, New York, New York
| | - Abigail Case
- Department of Pediatrics and Rehabilitation Medicine, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Benard Dreyer
- Department of Pediatrics and Radiology, Children’s Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Nathan M. Pajor
- Division of Pulmonary Medicine, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - H. Timothy Bunnell
- Biomedical Research Informatics Center, Nemours Children’s Health, Nemours Children’s Hospital, Delaware, Wilmington, Delaware
| | - David Warburton
- Department of Pediatrics and Radiology, Children’s Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Elizabeth Berg
- Department of Pediatrics, Columbia University Vagelos College of Physicians and Surgeons, New York, New York
| | - Jonathan B. Overdevest
- Department of Pediatrics, Columbia University Vagelos College of Physicians and Surgeons, New York, New York
| | - Mark Gorelik
- Department of Pediatrics, Columbia University Vagelos College of Physicians and Surgeons, New York, New York
| | - Joshua Milner
- Department of Pediatrics, Columbia University Vagelos College of Physicians and Surgeons, New York, New York
| | - Sejal Saxena
- Department of Pediatrics, Columbia University Vagelos College of Physicians and Surgeons, New York, New York
| | - Ravi Jhaveri
- Division of Infectious Diseases, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois
| | - John C. Wood
- Department of Pediatrics and Radiology, Children’s Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Kyung E. Rhee
- Department of Pediatrics, University of California, San Diego, School of Medicine, San Diego, California
| | - Rebecca Letts
- Population Health, NYU Grossman School of Medicine, New York, New York
| | - Christine Maughan
- Population Health, NYU Grossman School of Medicine, New York, New York
| | - Nick Guthe
- Population Health, NYU Grossman School of Medicine, New York, New York
| | | | - Melissa S. Stockwell
- Department of Pediatrics, Columbia University Vagelos College of Physicians and Surgeons, New York, New York
- Department of Population and Family Health, Columbia University Mailman School of Public Health, New York, New York
| |
Collapse
|
6
|
Brogna C, Montano L, Zanolin ME, Bisaccia DR, Ciammetti G, Viduto V, Fabrowski M, Baig AM, Gerlach J, Gennaro I, Bignardi E, Brogna B, Frongillo A, Cristoni S, Piscopo M. A retrospective cohort study on early antibiotic use in vaccinated and unvaccinated COVID-19 patients. J Med Virol 2024; 96:e29507. [PMID: 38504586 DOI: 10.1002/jmv.29507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 02/14/2024] [Accepted: 02/23/2024] [Indexed: 03/21/2024]
Abstract
The bacteriophage behavior of SARS-CoV-2 during the acute and post-COVID-19 phases appears to be an important factor in the development of the disease. The early use of antibiotics seems to be crucial to inhibit disease progression-to prevent viral replication in the gut microbiome, and control toxicological production from the human microbiome. To study the impact of specific antibiotics on recovery from COVID-19 and long COVID (LC) taking into account: vaccination status, comorbidities, SARS-CoV-2 wave, time of initiation of antibiotic therapy and concomitant use of corticosteroids and nonsteroidal anti-inflammatory drugs (NSAIDs). A total of 211 COVID-19 patients were included in the study: of which 59 were vaccinated with mRNA vaccines against SARS-CoV-2 while 152 were unvaccinated. Patients were enrolled in three waves: from September 2020 to October 2022, corresponding to the emergence of the pre-Delta, Delta, and Omicron variants of the SARS-CoV-2 virus. The three criteria for enrolling patients were: oropharyngeal swab positivity or fecal findings; moderate symptoms with antibiotic intake; and measurement of blood oxygen saturation during the period of illness. The use of antibiotic combinations, such as amoxicillin with clavulanic acid (875 + 125 mg tablets, every 12 h) plus rifaximin (400 mg tablets every 12 h), as first choice, as suggested from the previous data, or azithromycin (500 mg tablets every 24 h), plus rifaximin as above, allows healthcare professionals to focus on the gut microbiome and its implications in COVID-19 disease during patient care. The primary outcome measured in this study was the estimated average treatment effect, which quantified the difference in mean recovery between patients receiving antibiotics and those not receiving antibiotics at 3 and 9 days after the start of treatment. In the analysis, both vaccinated and unvaccinated groups had a median illness duration of 7 days (interquartile range [IQR] 6-9 days for each; recovery crude hazard ratio [HR] = 0.94, p = 0.700). The median illness duration for the pre-Delta and Delta waves was 8 days (IQR 7-10 days), while it was shorter, 6.5 days, for Omicron (IQR 6-8 days; recovery crude HR = 1.71, p < 0.001). These results were confirmed by multivariate analysis. Patients with comorbidities had a significantly longer disease duration: median 8 days (IQR 7-10 days) compared to 7 days (IQR 6-8 days) for those without comorbidities (crude HR = 0.75, p = 0.038), but this result was not confirmed in multivariate analysis as statistical significance was lost. Early initiation of antibiotic therapy resulted in a significantly shorter recovery time (crude HR = 4.74, p < 0.001). Concomitant use of NSAIDs did not reduce disease duration and in multivariate analysis prolonged the disease (p = 0.041). A subgroup of 42 patients receiving corticosteroids for a median of 3 days (IQR 3-6 days) had a longer recovery time (median 9 days, IQR 8-10 days) compared to others (median 7 days, IQR 6-8 days; crude HR = 0.542, p < 0.001), as confirmed also by the adjusted HR. In this study, a statistically significant reduction in recovery time was observed among patients who received early antibiotic treatment. Early initiation of antibiotics played a crucial role in maintaining higher levels of blood oxygen saturation. In addition, it is worth noting that a significant number of patients who received antibiotics in the first 3 days and for a duration of 7 days, during the acute phase did not develop LC.
Collapse
Affiliation(s)
- Carlo Brogna
- Craniomed Group Srl. Research Facility, Bresso, Italy
| | - Luigi Montano
- Andrology Unit and Service of Lifestyle Medicine in Uro-Andrology, Local Health Authority (ASL), Salerno, Italy
| | | | | | - Gianluca Ciammetti
- Otorhinolaryngology Unit, Hospital Ferdinando Veneziale Isernia, Regional Health Authority of Molise, Italy
| | | | - Mark Fabrowski
- Department of Emergency Medicine, Royal Sussex County Hospital, University Hospitals Sussex, Brighton, UK
| | - Abdul M Baig
- Department of Biological and Biomedical Sciences, Aga Khan University, Karachi, Pakistan
| | | | - Iapicca Gennaro
- Pineta Grande Hospital Group, Department of Urology, Santa Rita Clinic, Atripalda, Italy
| | | | - Barbara Brogna
- Department of Radiology, Moscati Hospital, Avellino, Italy
| | | | | | - Marina Piscopo
- Department of Biology, University of Naples Federico II, Naples, Italy
| |
Collapse
|
7
|
Carusi A, Filipovska J, Wittwehr C, Clerbaux LA. CIAO: a living experiment in interdisciplinary large-scale collaboration facilitated by the Adverse Outcome Pathway framework. Front Public Health 2023; 11:1212544. [PMID: 37637826 PMCID: PMC10449328 DOI: 10.3389/fpubh.2023.1212544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 07/12/2023] [Indexed: 08/29/2023] Open
Abstract
Introduction The CIAO project was launched in Spring 2020 to address the need to make sense of the numerous and disparate data available on COVID-19 pathogenesis. Based on a crowdsourcing model of large-scale collaboration, the project has exploited the Adverse Outcome Pathway (AOP) knowledge management framework built to support chemical risk assessment driven by mechanistic understanding of the biological perturbations at the different organizational levels. Hence the AOPs might have real potential to integrate data produced through different approaches and from different disciplines as experienced in the context of COVID-19. In this study, we aim to address the effectiveness of the AOP framework (i) in supporting an interdisciplinary collaboration for a viral disease and (ii) in working as the conceptual mediator of a crowdsourcing model of collaboration. Methods We used a survey disseminated among the CIAO participants, a workshop open to all interested CIAO contributors, a series of interviews with some participants and a self-reflection on the processes. Results The project has supported genuine interdisciplinarity with exchange of knowledge. The framework provided a common reference point for discussion and collaboration. The diagram used in the AOPs assisted with making explicit what are the different perspectives brought to the knowledge about the pathways. The AOP-Wiki showed up many aspects about its usability for those not already in the world of AOPs. Meanwhile their use in CIAO highlighted needed adaptations. Introduction of new Wiki elements for modulating factors was potentially the most disruptive one. Regarding how well AOPs support a crowdsourcing model of large-scale collaboration, the CIAO project showed that this is successful when there is a strong central organizational impetus and when clarity about the terms of the collaboration is brought as early as possible. Discussion Extrapolate the successful CIAO approach and related processes to other areas of science where the AOP could foster interdisciplinary and systematic organization of the knowledge is an exciting perspective.
Collapse
Affiliation(s)
| | | | - Clemens Wittwehr
- European Commission, Joint Research Centre (JRC), Joint Research Centre, Ispra, Italy
| | - Laure-Alix Clerbaux
- European Commission, Joint Research Centre (JRC), Joint Research Centre, Ispra, Italy
| |
Collapse
|
8
|
Brogna B, Bignardi E, Megliola A, Laporta A, La Rocca A, Volpe M, Musto LA. A Pictorial Essay Describing the CT Imaging Features of COVID-19 Cases throughout the Pandemic with a Special Focus on Lung Manifestations and Extrapulmonary Vascular Abdominal Complications. Biomedicines 2023; 11:2113. [PMID: 37626610 PMCID: PMC10452395 DOI: 10.3390/biomedicines11082113] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/20/2023] [Accepted: 07/24/2023] [Indexed: 08/27/2023] Open
Abstract
With the Omicron wave, SARS-CoV-2 infections improved, with less lung involvement and few cases of severe manifestations. In this pictorial review, there is a summary of the pathogenesis with particular focus on the interaction of the immune system and gut and lung axis in both pulmonary and extrapulmonary manifestations of COVID-19 and the computed tomography (CT) imaging features of COVID-19 pneumonia from the beginning of the pandemic, describing the typical features of COVID-19 pneumonia following the Delta variant and the atypical features appearing during the Omicron wave. There is also an outline of the typical features of COVID-19 pneumonia in cases of breakthrough infection, including secondary lung complications such as acute respiratory distress disease (ARDS), pneumomediastinum, pneumothorax, and lung pulmonary thromboembolism, which were more frequent during the first waves of the pandemic. Finally, there is a description of vascular extrapulmonary complications, including both ischemic and hemorrhagic abdominal complications.
Collapse
Affiliation(s)
- Barbara Brogna
- Department of Interventional and Emergency Radiology, San Giuseppe Moscati Hospital, 83100 Avellino, Italy; (A.L.); (A.L.R.); (L.A.M.)
| | - Elio Bignardi
- Department of Radiology, Francesco Ferrari Hospital, ASL Lecce, 73042 Casarano, Italy;
| | - Antonia Megliola
- Radiology Unit, “Frangipane” Hospital, ASL Avellino, 83031 Ariano Irpino, Italy; (A.M.); (M.V.)
| | - Antonietta Laporta
- Department of Interventional and Emergency Radiology, San Giuseppe Moscati Hospital, 83100 Avellino, Italy; (A.L.); (A.L.R.); (L.A.M.)
| | - Andrea La Rocca
- Department of Interventional and Emergency Radiology, San Giuseppe Moscati Hospital, 83100 Avellino, Italy; (A.L.); (A.L.R.); (L.A.M.)
| | - Mena Volpe
- Radiology Unit, “Frangipane” Hospital, ASL Avellino, 83031 Ariano Irpino, Italy; (A.M.); (M.V.)
| | - Lanfranco Aquilino Musto
- Department of Interventional and Emergency Radiology, San Giuseppe Moscati Hospital, 83100 Avellino, Italy; (A.L.); (A.L.R.); (L.A.M.)
| |
Collapse
|
9
|
Schorr HC, Schultz ZD. Chemical conjugation to differentiate monosaccharides by Raman and surface enhanced Raman spectroscopy. Analyst 2023; 148:2035-2044. [PMID: 36974935 PMCID: PMC10167912 DOI: 10.1039/d2an01762h] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
Sugars play important roles in numerous biological processes, from providing energy to modifying proteins to alter their function. Glycosylation, the attachment of a sugar residue to a protein, is the most common post translational modification. Identifying the glycans on a protein is a useful tool both for pharmaceutical development as well as probing the proteome and glycome further. Sugars, however, are difficult analytes to probe due to their isomeric nature. In this work, Raman spectroscopy and surface enhanced Raman spectroscopy (SERS) are used to identify different monosaccharide species based on the vibrational modes of these isomeric analytes. The weak scattering of the sugars was overcome through conjugation with phenylboronic acid to provide a larger Raman scattering cross section and induce slight changes in the observed spectra associated with the structure of the monosaccharides. Spontaneous Raman, SERS in flow, and static SERS detection were performed in order to discriminate between arabinose, fructose, galactose, glucose, mannose, and ribose, as well as provide a method for identification and quantification for these sugar conjugates.
Collapse
Affiliation(s)
- Hannah C Schorr
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA.
| | - Zachary D Schultz
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
10
|
de Leeuw VC, van Oostrom CTM, Zwart EP, Heusinkveld HJ, Hessel EVS. Prolonged Differentiation of Neuron-Astrocyte Co-Cultures Results in Emergence of Dopaminergic Neurons. Int J Mol Sci 2023; 24:ijms24043608. [PMID: 36835019 PMCID: PMC9959280 DOI: 10.3390/ijms24043608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/03/2023] [Accepted: 02/07/2023] [Indexed: 02/15/2023] Open
Abstract
Dopamine is present in a subgroup of neurons that are vital for normal brain functioning. Disruption of the dopaminergic system, e.g., by chemical compounds, contributes to the development of Parkinson's disease and potentially some neurodevelopmental disorders. Current test guidelines for chemical safety assessment do not include specific endpoints for dopamine disruption. Therefore, there is a need for the human-relevant assessment of (developmental) neurotoxicity related to dopamine disruption. The aim of this study was to determine the biological domain related to dopaminergic neurons of a human stem cell-based in vitro test, the human neural progenitor test (hNPT). Neural progenitor cells were differentiated in a neuron-astrocyte co-culture for 70 days, and dopamine-related gene and protein expression was investigated. Expression of genes specific for dopaminergic differentiation and functioning, such as LMX1B, NURR1, TH, SLC6A3, and KCNJ6, were increasing by day 14. From day 42, a network of neurons expressing the catecholamine marker TH and the dopaminergic markers VMAT2 and DAT was present. These results confirm stable gene and protein expression of dopaminergic markers in hNPT. Further characterization and chemical testing are needed to investigate if the model might be relevant in a testing strategy to test the neurotoxicity of the dopaminergic system.
Collapse
|
11
|
Fantini J, Chahinian H, Yahi N. Convergent Evolution Dynamics of SARS-CoV-2 and HIV Surface Envelope Glycoproteins Driven by Host Cell Surface Receptors and Lipid Rafts: Lessons for the Future. Int J Mol Sci 2023; 24:1923. [PMID: 36768244 PMCID: PMC9915253 DOI: 10.3390/ijms24031923] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/12/2023] [Accepted: 01/16/2023] [Indexed: 01/21/2023] Open
Abstract
Although very different, in terms of their genomic organization, their enzymatic proteins, and their structural proteins, HIV and SARS-CoV-2 have an extraordinary evolutionary potential in common. Faced with various selection pressures that may be generated by treatments or immune responses, these RNA viruses demonstrate very high adaptive capacities, which result in the continuous emergence of variants and quasi-species. In this retrospective analysis of viral proteins, ensuring the adhesion of these viruses to the plasma membrane of host cells, we highlight many common points that suggest the convergent mechanisms of evolution. HIV and SARS-CoV-2 first recognize a lipid raft microdomain that acts as a landing strip for viral particles on the host cell surface. In the case of mucosal cells, which are the primary targets of both viruses, these microdomains are enriched in anionic glycolipids (gangliosides) forming a global electronegative field. Both viruses use lipid rafts to surf on the cell surface in search of a protein receptor able to trigger the fusion process. This implies that viral envelope proteins are both geometrically and electrically compatible to the biomolecules they select to invade host cells. In the present study, we identify the surface electrostatic potential as a critical parameter controlling the convergent evolution dynamics of HIV-1 and SARS-CoV-2 surface envelope proteins, and we discuss the impact of this parameter on the phenotypic properties of both viruses. The virological data accumulated since the emergence of HIV in the early 1980s should help us to face present and future virus pandemics.
Collapse
Affiliation(s)
| | | | - Nouara Yahi
- INSERM UMR_S 1072, Aix Marseille University, 13015 Marseille, France
| |
Collapse
|
12
|
Paumgartten FJR, De Grava Kempinas W, Shiota K. Viral infections, vaccines and antiviral drugs in pregnancy and the development of the conceptus. Reprod Toxicol 2023; 115:36-39. [PMID: 36403853 DOI: 10.1016/j.reprotox.2022.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
| | - Wilma De Grava Kempinas
- Laboratory of Reproductive and Developmental Biology and Toxicology, Department of structural and Functional Biology, Institute of Biosciences, Sao Paulo State University (UNESP), Botucatu, SP, Brazil
| | | |
Collapse
|
13
|
Brogna C, Viduto V, Fabrowski M, Cristoni S, Marino G, Montano L, Piscopo M. The importance of the gut microbiome in the pathogenesis and transmission of SARS-CoV-2. Gut Microbes 2023; 15:2244718. [PMID: 37559387 PMCID: PMC10416738 DOI: 10.1080/19490976.2023.2244718] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 07/22/2023] [Accepted: 08/01/2023] [Indexed: 08/11/2023] Open
Abstract
Zhou et al. study nicely traces a significant topic in COVID-19 infection: the persistence of the virus within the intestinal tract. Many pathological mechanisms have been noted in the current literature about the mode of infection and propagation of SARS-CoV-2 in the human body. Nevertheless, there are still many concerns about this: only some things seem well understood. We present a different point of view by illustrating the importance of the gut microbiome in the pathogenesis of COVID-19 disorders.
Collapse
Affiliation(s)
- Carlo Brogna
- Department of Research, Craniomed Group Facility Srl, Bresso, Italy
| | | | - Mark Fabrowski
- Emergency Department, University Hospitals Sussex, Brighton, UK
| | - Simone Cristoni
- Department of Chemistry, ISB – Ion Source & Biotechnologies Srl, Bresso, Italy
| | - Giuliano Marino
- Marsan Consulting Srl., Public Health Company; via Dei Fiorentini, Napoli, Italy
| | - Luigi Montano
- Andrology Unit and Service of LifeStyle Medicine in Uro-Andrology, Local Health Authority (ASL) Salerno, Salerno, Italy
| | - Marina Piscopo
- Department of Biology, University of Naples Federico II, Naples, Italy
| |
Collapse
|
14
|
Brogna C, Cristoni S, Brogna B, Bisaccia DR, Marino G, Viduto V, Montano L, Piscopo M. Toxin-like Peptides from the Bacterial Cultures Derived from Gut Microbiome Infected by SARS-CoV-2-New Data for a Possible Role in the Long COVID Pattern. Biomedicines 2022; 11:87. [PMID: 36672595 PMCID: PMC9855837 DOI: 10.3390/biomedicines11010087] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/18/2022] [Accepted: 12/26/2022] [Indexed: 01/01/2023] Open
Abstract
It has been 3 years since the beginning of the SARS-CoV-2 outbreak, however it is as yet little known how to care for the acute COVID-19 and long COVID patients. COVID-19 clinical manifestations are of both pulmonary and extra-pulmonary types. Extra-pulmonary ones include extreme tiredness (fatigue), shortness of breath, muscle aches, hyposmia, dysgeusia, and other neurological manifestations. In other autoimmune diseases, such as Parkinson's disease (PD) or Alzheimer's Disease (AD), it is well known that role of acetylcholine is crucial in olfactory dysfunction. We have already observed the presence of toxin-like peptides in plasma, urine, and faecal samples from COVID-19 patients, which are very similar to molecules known to alter acetylcholine signaling. After observing the production of these peptides in bacterial cultures, we have performed additional proteomics analyses to better understand their behavior and reported the extended data from our latest in vitro experiment. It seems that the gut microbiome continues to produce toxin-like peptides also after the decrease of RNA SARS-CoV-2 viral load at molecular tests. These toxicological interactions between the gut/human microbiome bacteria and the virus suggest a new scenario in the study of the clinical symptoms in long COVID and also in acute COVID-19 patients. It is discussed that in the bacteriophage similar behavior, the presence of toxins produced by bacteria continuously after viral aggression can be blocked using an appropriate combination of certain drugs.
Collapse
Affiliation(s)
- Carlo Brogna
- Department of Research, Craniomed Group Facility Srl., 20091 Bresso, Italy
| | | | - Barbara Brogna
- Department of Radiology, Moscati Hospital, Contrada Amoretta, 83100 Avellino, Italy
| | | | - Giuliano Marino
- Marsanconsulting Srl. Public Health Company, Via dei Fiorentini, 80133 Napoli, Italy
| | | | - Luigi Montano
- Andrology Unit and Service of Life Style Medicine in Uro-Andrology, Local Health Authority (ASL), 84124 Salerno, Italy
| | - Marina Piscopo
- Department of Biology, University of Naples Federico II, 80126 Napoli, Italy
| |
Collapse
|