1
|
Yoon JG, Lim S, Hyun HJ, Seong H, Noh JY, Song JY, Kim WJ, Cheong HJ. Respiratory microbiome and clinical course of carbapenem-resistant Acinetobacter baumannii pneumonia in critically Ill patients. Medicine (Baltimore) 2024; 103:e38988. [PMID: 39093794 PMCID: PMC11296444 DOI: 10.1097/md.0000000000038988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 06/28/2024] [Indexed: 08/04/2024] Open
Abstract
Carbapenem-resistant Acinetobacter baumannii (CRAB) pneumonia has been a serious problem in the intensive care unit (ICU). However, defined characteristics of respiratory microbiome in CRAB pneumonia are lacking nowadays. This study aimed to analyze respiratory microbiome of CRAB pneumonia compared to non-CRAB pneumonia and reveal the clinical significance of respiratory microbiome data in these patients. Patients diagnosed with severe pneumonia with mechanical ventilation were enrolled in the ICU of a tertiary care hospital. Respiratory specimens were collected on days 1, 4, 7, and 14 in each participant via tracheal aspiration. Clinical data and outcomes of each enrolled patient were collected via electronic medical records. Microbiome analysis was conducted with collected respiratory specimens undergone by next-generation sequencing of microbial 16S ribosomal DNA. Six CRAB pneumonia, 4 non-CRAB pneumonia and 5 healthy controls were enrolled. In CRAB pneumonia, CRAB was detected in 3 patients by sputum culture at day 1, while it was negative at day 1 and detected later in the others by follow-up sputum culture. Beta diversity plot analysis showed differences between each group. Shannon index was decreased markedly at day 4 in CRAB pneumonia compared to the others. Among CRAB pneumonia cases, 3 respiratory specimens were culture-negative, but positive by microbiome analysis. Lower respiratory microbiome in CRAB pneumonia had distinct characteristics and early loss of diversity compared to non-CRAB pneumonia, which might be related to poor clinical course. Moreover, CRAB acquisition and colonization would be predicted by preemptive microbiome analysis, which will contribute to effective infection control in the ICU.
Collapse
Affiliation(s)
- Jin Gu Yoon
- Division of Infectious Diseases, Department of Internal Medicine, Korea University College of Medicine, Seoul, Republic of Korea
| | - Sooyeon Lim
- Asia Pacific Influenza Institute, Korea University College of Medicine, Seoul, Republic of Korea
- Vaccine Innovation Center-KU Medicine, Seoul, Republic of Korea
| | - Hak-Jun Hyun
- Division of Infectious Diseases, Department of Internal Medicine, Korea University College of Medicine, Seoul, Republic of Korea
| | - Hye Seong
- Division of Infectious Diseases, Department of Internal Medicine, Korea University College of Medicine, Seoul, Republic of Korea
| | - Ji Yun Noh
- Division of Infectious Diseases, Department of Internal Medicine, Korea University College of Medicine, Seoul, Republic of Korea
- Asia Pacific Influenza Institute, Korea University College of Medicine, Seoul, Republic of Korea
- Vaccine Innovation Center-KU Medicine, Seoul, Republic of Korea
| | - Joon Young Song
- Division of Infectious Diseases, Department of Internal Medicine, Korea University College of Medicine, Seoul, Republic of Korea
- Asia Pacific Influenza Institute, Korea University College of Medicine, Seoul, Republic of Korea
- Vaccine Innovation Center-KU Medicine, Seoul, Republic of Korea
| | - Woo Joo Kim
- Division of Infectious Diseases, Department of Internal Medicine, Korea University College of Medicine, Seoul, Republic of Korea
- Asia Pacific Influenza Institute, Korea University College of Medicine, Seoul, Republic of Korea
- Vaccine Innovation Center-KU Medicine, Seoul, Republic of Korea
| | - Hee Jin Cheong
- Division of Infectious Diseases, Department of Internal Medicine, Korea University College of Medicine, Seoul, Republic of Korea
- Asia Pacific Influenza Institute, Korea University College of Medicine, Seoul, Republic of Korea
- Vaccine Innovation Center-KU Medicine, Seoul, Republic of Korea
| |
Collapse
|
2
|
Abstract
Features of the airway microbiome in persons with cystic fibrosis (pwCF) are correlated with disease progression. Microbes have traditionally been classified for their ability to tolerate oxygen. It is unknown whether supplemental oxygen, a common medical intervention, affects the airway microbiome of pwCF. We hypothesized that hyperoxia significantly impacts the pulmonary microbiome in cystic fibrosis. In this study, we cultured spontaneously expectorated sputum from pwCF in artificial sputum medium under 21%, 50%, and 100% oxygen conditions using a previously validated model system that recapitulates microbial community composition in uncultured sputum. Culture aliquots taken at 24, 48, and 72 h, along with uncultured sputum, underwent shotgun metagenomic sequencing with absolute abundance values obtained with the use of spike-in bacteria. Raw sequencing files were processed using the bioBakery pipeline to determine changes in taxonomy, predicted function, antimicrobial resistance genes, and mobile genetic elements. Hyperoxia reduced absolute microbial load, species richness, and diversity. Hyperoxia reduced absolute abundance of specific microbes, including facultative anaerobes such as Rothia and some Streptococcus species, with minimal impact on canonical CF pathogens such as Pseudomonas aeruginosa and Staphylococcus aureus. The effect size of hyperoxia on predicted functional pathways was stronger than that on taxonomy. Large changes in microbial cooccurrence networks were noted. Hyperoxia exposure perturbs airway microbial communities in a manner well tolerated by key pathogens. Supplemental oxygen use may enable the growth of lung pathogens and should be further studied in the clinical setting. IMPORTANCE The airway microbiome in persons with cystic fibrosis (pwCF) is correlated with lung function and disease severity. Supplemental oxygen use is common in more advanced CF, yet its role in perturbing airway microbial communities is unknown. By culturing sputum samples from pwCF under normal and elevated oxygen conditions, we found that increased oxygen led to reduced total numbers and diversity of microbes, with relative sparing of common CF pathogens such as Pseudomonas aeruginosa and Staphylococcus aureus. Supplemental oxygen use may enable the growth of lung pathogens and should be further studied in the clinical setting.
Collapse
|
3
|
Perspective on the clone library method for infectious diseases. Respir Investig 2021; 59:741-747. [PMID: 34400128 DOI: 10.1016/j.resinv.2021.07.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 06/23/2021] [Accepted: 07/04/2021] [Indexed: 01/27/2023]
Abstract
Recently, culture-independent molecular methods, such as DNA sequencing techniques targeting the 16S-ribosomal RNA (rRNA) gene and/or other housekeeping genes with Sanger method-based technologies, next generation sequencing (NGS), and metagenomic analysis, have been developed for detecting microorganisms in the human body; these can provide information on microbiomes of samples from individuals with or without infectious diseases. Determining the bacterial species is crucial in identifying causative bacteria of upper and lower respiratory tract infections, especially for Streptococcus species, but NGS analysis is often not precise enough to identify bacteria at the species level. This review briefly introduces previous observations of the microbiome of samples from various respiratory and other infections assessed using the clone library method with Sanger sequencing of the 16S-rRNA gene. On analysis of 16S-rRNA gene-sequence data of bronchoalveolar lavage fluid obtained from pneumonia lesions in patients with bacterial pneumonia and lung abscess, anaerobes are often detected in non-elderly patients with pneumonia, and the detection rate of Staphylococcus aureus in patients with hospital-acquired pneumonia is lower than that previously reported. Analysis of pleural effusion samples from patients with pleurisy indicated a more important role of anaerobes than previous believed. The other topics reviewed include microbiomes of nontuberculous mycobacteriosis and lower respiratory tract infections in children with permanent tracheostomy due to neuromuscular disorders, in nasal discharge, in bacterial vaginosis, in the intracystic fluid of postoperative maxillary cyst, and in bacterial conjunctivitis; urine microbiota in urethritis; fecal microbiota; and newly detected infectious organisms in the human respiratory tract.
Collapse
|