1
|
Kumar J, Sharma N, Singh SP. Genome-resolved metagenomics inferred novel insights into the microbial community, metabolic pathways, and biomining potential of Malanjkhand acidic copper mine tailings. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:50864-50882. [PMID: 36807860 DOI: 10.1007/s11356-023-25893-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 02/08/2023] [Indexed: 04/16/2023]
Abstract
Mine tailing sites provide profound opportunities to elucidate the microbial mechanisms involved in ecosystem functioning. In the present study, metagenomic analysis of dumping soil and adjacent pond around India's largest copper mine at Malanjkhand has been done. Taxonomic analysis deciphered the abundance of phyla Proteobacteria, Bacteroidetes, Acidobacteria, and Chloroflexi. Genomic signatures of viruses were predicted in the soil metagenome, whereas Archaea and Eukaryotes were noticed in water samples. Mesophilic chemolithotrophs, such as Acidobacteria bacterium, Chloroflexi bacterium, and Verrucomicrobia bacterium, were predominant in soil, whereas, in the water sample, the abundance of Methylobacterium mesophilicum, Pedobacter sp., and Thaumarchaeota archaeon was determined. The functional potential analysis highlighted the abundance of genes related to sulfur, nitrogen, methane, ferrous oxidation, carbon fixation, and carbohydrate metabolisms. The genes for copper, iron, arsenic, mercury, chromium, tellurium, hydrogen peroxide, and selenium resistance were found to be predominant in the metagenomes. Metagenome-assembled genomes (MAGs) were constructed from the sequencing data, indicating novel microbial species genetically related to the phylum predicted through whole genome metagenomics. Phylogenetic analysis, genome annotations, functional potential, and resistome analysis showed the resemblance of assembled novel MAGs with traditional organisms used in bioremediation and biomining applications. Microorganisms harboring adaptive mechanisms, such as detoxification, hydroxyl radical scavenging, and heavy metal resistance, could be the potent benefactions for their utility as bioleaching agents. The genetic information produced in the present investigation provides a foundation for pursuing and understanding the molecular aspects of bioleaching and bioremediation applications.
Collapse
Affiliation(s)
- Jitesh Kumar
- Center of Innovative and Applied Bioprocessing, Department of Biotechnology (DBT), Govt. of India, S.A.S. Nagar, Sector-81, (Knowledge City) Mohali, 140306, India
| | - Nitish Sharma
- Center of Innovative and Applied Bioprocessing, Department of Biotechnology (DBT), Govt. of India, S.A.S. Nagar, Sector-81, (Knowledge City) Mohali, 140306, India
| | - Sudhir P Singh
- Center of Innovative and Applied Bioprocessing, Department of Biotechnology (DBT), Govt. of India, S.A.S. Nagar, Sector-81, (Knowledge City) Mohali, 140306, India.
| |
Collapse
|
2
|
Li M, Wen J. Recent progress in the application of omics technologies in the study of bio-mining microorganisms from extreme environments. Microb Cell Fact 2021; 20:178. [PMID: 34496835 PMCID: PMC8425152 DOI: 10.1186/s12934-021-01671-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Accepted: 08/30/2021] [Indexed: 11/11/2022] Open
Abstract
Bio-mining microorganisms are a key factor affecting the metal recovery rate of bio-leaching, which inevitably produces an extremely acidic environment. As a powerful tool for exploring the adaptive mechanisms of microorganisms in extreme environments, omics technologies can greatly aid our understanding of bio-mining microorganisms and their communities on the gene, mRNA, and protein levels. These omics technologies have their own advantages in exploring microbial diversity, adaptive evolution, changes in metabolic characteristics, and resistance mechanisms of single strains or their communities to extreme environments. These technologies can also be used to discover potential new genes, enzymes, metabolites, metabolic pathways, and species. In addition, integrated multi-omics analysis can link information at different biomolecular levels, thereby obtaining more accurate and complete global adaptation mechanisms of bio-mining microorganisms. This review introduces the current status and future trends in the application of omics technologies in the study of bio-mining microorganisms and their communities in extreme environments.
Collapse
Affiliation(s)
- Min Li
- Key Laboratory of Systems Bioengineering, Tianjin University, Tianjin, China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin University, Tianjin, China
- Frontier Science Center of Ministry of Education, Tianjin University, Tianjin, China
| | - Jianping Wen
- Key Laboratory of Systems Bioengineering, Tianjin University, Tianjin, China.
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin University, Tianjin, China.
- Frontier Science Center of Ministry of Education, Tianjin University, Tianjin, China.
| |
Collapse
|
3
|
Moazzam P, Boroumand Y, Rabiei P, Baghbaderani SS, Mokarian P, Mohagheghian F, Mohammed LJ, Razmjou A. Lithium bioleaching: An emerging approach for the recovery of Li from spent lithium ion batteries. CHEMOSPHERE 2021; 277:130196. [PMID: 33784558 DOI: 10.1016/j.chemosphere.2021.130196] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 02/08/2021] [Accepted: 03/03/2021] [Indexed: 06/12/2023]
Abstract
The rapidly growing demand for lithium has resulted in a sharp increase in its price. This is due to the ubiquitous use of lithium-ion batteries (LIBs) in large-scale energy and transportation sectors as well as portable devices. Recycling of the LIBs for being the supply of critical metals hence becomes environmentally and economically viable. The presently used approaches for the recovery of spent LIBs like pyrometallurgical process can effectively recover nickel, cobalt, and copper, while lithium is usually lost in slag. Bioleaching process as an alternative method of extraction and recovery of valuable metals from the primary and secondary resources has been attracting a large pool of attraction. This method can provide higher recovery yield even for low concentration of metals which makes it viable among conventional methods. The bioleaching process can work with lower operating cost and consumed water and energy along with a simple condition, which produces less hazardous by-products ultimately. Here, we comprehensively review the biological and chemical mechanisms of the bioleaching process with a conclusive discussion to help how to extend the use of bioleaching for lithium extraction and recovery from the spent LIBs with a focus on recovery yields improvement. We elaborate on the three main types of the reported bioleaching with considering effective parameters including temperature, initial pH, pulp density, aeration, and medium and cell nutrients to sustain microorganism activity. Finally, practical challenges and future opportunities of lithium are discussed to inspire future research trends and pilot studies to realize the full potential of lithium recovery using sustainable bioleaching processes to extend a clean energy future.
Collapse
Affiliation(s)
- Parisa Moazzam
- School of Chemistry, University of New South Wales, Sydney, 2052, Australia
| | - Yasaman Boroumand
- Department of Biotechnology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, 81746-73441, Iran
| | - Parisa Rabiei
- Department of Biotechnology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, 81746-73441, Iran
| | - Sorour Salehi Baghbaderani
- Department of Biotechnology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, 81746-73441, Iran
| | - Parastou Mokarian
- Department of Biotechnology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, 81746-73441, Iran
| | - Fereshteh Mohagheghian
- Department of Biotechnology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, 81746-73441, Iran
| | - Layth Jasim Mohammed
- Department of Biotechnology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, 81746-73441, Iran
| | - Amir Razmjou
- Department of Biotechnology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, 81746-73441, Iran; Centre for Technology in Water and Wastewater, University of Technology Sydney, New South Wales, Australia; UNESCO Centre for Membrane Science and Technology, School of Chemical Engineering, University of New South Wales, Sydney, 2052, Australia.
| |
Collapse
|
4
|
Chen Q, Wang J, Zhang H, Shi H, Liu G, Che J, Liu B. Microbial community and function in nitrogen transformation of ectopic fermentation bed system for pig manure composting. BIORESOURCE TECHNOLOGY 2021; 319:124155. [PMID: 33035862 DOI: 10.1016/j.biortech.2020.124155] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 09/14/2020] [Accepted: 09/17/2020] [Indexed: 06/11/2023]
Abstract
In this work, agricultural wastes were treated by composting in an ectopic fermentation bed system (EFBS) with a continuous nitrogen addition technique. With decreasing of NH4+-N concentration and increasing of NO3--N concentration were observed, and activities of protease, urease and nitrate reductase changed significantly during the fermentation process. To elucidate the key microbes and their function in nitrogen-transforming, microbial diversity and clusters of orthologous groups (COGs) in composting materials were evaluated using metagenomic technology. Comparing with ammonification, the COGs involved in nitrification and denitrification were predominant in the composts. The correlation heatmap revealed that Streptomyces predominant in ammonification was significantly affected by contents of N, NH4+-N and NO3--N. Meanwhile, ammonia-oxidizing archaea (AOA) had a positive relationship with moisture. The most abundant genera in denitrification had positive relationships with N and NO3--N. The results indicated that EFBS had functionally diverse microbes and COGs for NH3 removal.
Collapse
Affiliation(s)
- Qianqian Chen
- Agricultural Bio-resource Research Institute, Fujian Academy of Agriculture Sciences, Fuzhou 350003, China
| | - Jieping Wang
- Agricultural Bio-resource Research Institute, Fujian Academy of Agriculture Sciences, Fuzhou 350003, China.
| | - Haifeng Zhang
- Agricultural Bio-resource Research Institute, Fujian Academy of Agriculture Sciences, Fuzhou 350003, China
| | - Huai Shi
- Agricultural Bio-resource Research Institute, Fujian Academy of Agriculture Sciences, Fuzhou 350003, China
| | - Guohong Liu
- Agricultural Bio-resource Research Institute, Fujian Academy of Agriculture Sciences, Fuzhou 350003, China
| | - Jianmei Che
- Agricultural Bio-resource Research Institute, Fujian Academy of Agriculture Sciences, Fuzhou 350003, China
| | - Bo Liu
- Agricultural Bio-resource Research Institute, Fujian Academy of Agriculture Sciences, Fuzhou 350003, China
| |
Collapse
|
5
|
Hemmat-Jou MH, Safari-Sinegani AA, Che R, Mirzaie-Asl A, Tahmourespour A, Tahmasbian I. Toxic trace element resistance genes and systems identified using the shotgun metagenomics approach in an Iranian mine soil. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:4845-4856. [PMID: 32949366 DOI: 10.1007/s11356-020-10824-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Accepted: 09/13/2020] [Indexed: 05/27/2023]
Abstract
This study aimed to identify the microbial communities, resistance genes, and resistance systems in an Iranian mine soil polluted with toxic trace elements (TTE). The polluted soil samples were collected from a mining area and compared against non-polluted (control) collected soils from the vicinity of the mine. The soil total DNA was extracted and sequenced, and bioinformatic analysis of the assembled metagenomes was conducted to identify soil microbial biodiversity, TTE resistance genes, and resistance systems. The results of the employed shotgun approach indicated that the relative abundance of Proteobacteria, Firmicutes, Bacteroidetes, and Deinococcus-Thermus was significantly higher in the TTE-polluted soils compared with those in the control soils, while the relative abundance of Actinobacteria and Acidobacteria was significantly lower in the polluted soils. The high concentration of TTE increased the ratio of archaea to bacteria and decreased the alpha diversity in the polluted soils compared with the control soils. Canonical correspondence analysis (CCA) demonstrated that heavy metal pollution was the major driving factor in shaping microbial communities compared with any other soil characteristics. In the identified heavy metal resistome (HV-resistome) of TTE-polluted soils, major functional pathways were carbohydrates metabolism, stress response, amino acid and derivative metabolism, clustering-based subsystems, iron acquisition and metabolism, cell wall synthesis and capsulation, and membrane transportation. Ten TTE resistance systems were identified in the HV-resistome of TTE-polluted soils, dominated by "P-type ATPases," "cation diffusion facilitators," and "heavy metal efflux-resistance nodulation cell division (HME-RND)." Most of the resistance genes (69%) involved in resistance systems are affiliated to cell wall, outer membrane, periplasm, and cytoplasmic membrane. The finding of this study provides insight into the microbial community in Iranian TTE-polluted soils and their resistance genes and systems.
Collapse
Affiliation(s)
| | | | - Rongxiao Che
- Institute of International Rivers and Eco-security, Yunnan University, Kunming, 650091, China
| | - Asghar Mirzaie-Asl
- Department of Biotechnology, Bu-Ali Sina University, Hamedan, 6517838695, Iran
| | - Arezoo Tahmourespour
- Department of Basic Medical Sciences, Islamic Azad University (Isfahan Branch), Isfahan, Iran
| | - Iman Tahmasbian
- Department of Agriculture and Fisheries, Queensland Government, Toowoomba, QLD, 4350, Australia
| |
Collapse
|
6
|
Dong W, Hyde KD, Doilom M, Yu XD, Bhat DJ, Jeewon R, Boonmee S, Wang GN, Nalumpang S, Zhang H. Pseudobactrodesmium (Dactylosporaceae, Eurotiomycetes, Fungi) a Novel Lignicolous Genus. Front Microbiol 2020; 11:456. [PMID: 32300334 PMCID: PMC7144566 DOI: 10.3389/fmicb.2020.00456] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 03/03/2020] [Indexed: 11/13/2022] Open
Abstract
During our ongoing surveys of fungi on submerged wood in the Greater Mekong Subregion, we collected two new species similar to Bactrodesmium longisporum. Pseudobactrodesmium gen. nov. is introduced to accommodate the new species, P. aquaticum, P. chiangmaiensis and B. longisporum is transferred to this genus. Fasciculate conidiophores, enteroblastic conidiogenous cells and subulate to fusiform, phragmoseptate conidia with a tapering apical cell and sheath characterize the genus. Pseudobactrodesmium aquaticum has longer conidia than P. chiangmaiensis. The placement of Pseudobactrodesmium in Dactylosporaceae (Eurotiomycetes) is a novel finding based on analyses of combined LSU, SSU, ITS and RPB2 sequence data. Our study reveals that Pseudobactrodesmium is likely to be a speciose genus with different species in streams around the world.
Collapse
Affiliation(s)
- Wei Dong
- Faculty of Agriculture and Food, Kunming University of Science and Technology, Kunming, China.,Department of Entomology and Plant Pathology, Faculty of Agriculture, Chiang Mai University, Chiang Mai, Thailand.,Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, Thailand
| | - Kevin D Hyde
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, Thailand
| | - Mingkwan Doilom
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China.,World Agroforestry Centre, East and Central Asia, Kunming, China
| | - Xian-Dong Yu
- Faculty of Agriculture and Food, Kunming University of Science and Technology, Kunming, China
| | | | - Rajesh Jeewon
- Department of Health Sciences, Faculty of Science, University of Mauritius, Reduit, Mauritius
| | - Saranyaphat Boonmee
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, Thailand
| | - Gen-Nuo Wang
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, China
| | - Sarunya Nalumpang
- Department of Entomology and Plant Pathology, Faculty of Agriculture, Chiang Mai University, Chiang Mai, Thailand
| | - Huang Zhang
- Faculty of Agriculture and Food, Kunming University of Science and Technology, Kunming, China.,Department of Botany, University of British Columbia, Vancouver, BC, Canada.,Yunnan Key Lab of Soil Carbon Sequestration and Pollution Control, Kunming University of Science and Technology, Kunming, China
| |
Collapse
|
7
|
Deng X, Yang Z, Chen R. Study of characteristics on metabolism of Penicillium chrysogenum F1 during bioleaching of heavy metals from contaminated soil. Can J Microbiol 2019; 65:629-641. [DOI: 10.1139/cjm-2018-0624] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Penicillium chrysogenum F1 is very efficient in bioleaching heavy metals from the soil and is used for that purpose. We found that F1 can extract 19.8 mg Cd, Cu, Pb, and Zn from 2.5 g soil; the total heavy metals’ bioleaching ratio was 60.4%. In this study, the bioleaching mechanism was investigated by means of metabonomics; different metabolite ions were screened (relative standard deviation >30%) and analyzed using clustering, univariate and multivariate analysis. Statistical analyses via Volcano Plot, principal component analysis, and partial least square discriminant analysis models revealed a difference between Ctrl 7 (the controls cultured and sampled on day 7) and Ctrl 15 (the controls cultured and sampled on day 15). Samp 15 (the samples cultured with heavy-metal-contaminated soil) was significantly different from Ctrl 7 and Ctrl 15. Analysis of the different ions demonstrated that the glucose catabolism pathways of glycolysis and the tricarboxylic acid (TCA) cycle were enhanced, and glucose anabolism through the pentose phosphate pathway was inhibited during bioleaching. At the same time, the metabolism of glutathione was also downregulated. Therefore, the catabolism of glucose was unaffected by the addition of heavy-metal-contaminated soil, and increasing glucose is beneficial to catabolism. The extraction of metals is mainly attributed to the metabolites of the TCA cycle.
Collapse
Affiliation(s)
- Xinhui Deng
- College of Life Science and Chemistry of Hunan University of Technology, Hunan Zhuzhou 412007, China
| | - Zhihui Yang
- College of Metallurgy and Environment of Central South University, Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, Hunan Changsha 410083, China
| | - Runhua Chen
- College of Environmental Science and Engineering, Central South University of Forestry Science and Technology, Hunan Changsha 410007, China
| |
Collapse
|
8
|
Assessment of Bioleaching Microbial Community Structure and Function Based on Next-Generation Sequencing Technologies. MINERALS 2018. [DOI: 10.3390/min8120596] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
It is widely known that bioleaching microorganisms have to cope with the complex extreme environment in which microbial ecology relating to community structure and function varies across environmental types. However, analyses of microbial ecology of bioleaching bacteria is still a challenge. To address this challenge, numerous technologies have been developed. In recent years, high-throughput sequencing technologies enabling comprehensive sequencing analysis of cellular RNA and DNA within the reach of most laboratories have been added to the toolbox of microbial ecology. The next-generation sequencing technology allowing processing DNA sequences can produce available draft genomic sequences of more bioleaching bacteria, which provides the opportunity to predict models of genetic and metabolic potential of bioleaching bacteria and ultimately deepens our understanding of bioleaching microorganism. High-throughput sequencing that focuses on targeted phylogenetic marker 16S rRNA has been effectively applied to characterize the community diversity in an ore leaching environment. RNA-seq, another application of high-throughput sequencing to profile RNA, can be for both mapping and quantifying transcriptome and has demonstrated a high efficiency in quantifying the changing expression level of each transcript under different conditions. It has been demonstrated as a powerful tool for dissecting the relationship between genotype and phenotype, leading to interpreting functional elements of the genome and revealing molecular mechanisms of adaption. This review aims to describe the high-throughput sequencing approach for bioleaching environmental microorganisms, particularly focusing on its application associated with challenges.
Collapse
|
9
|
Hart A, Cortés MP, Latorre M, Martinez S. Codon usage bias reveals genomic adaptations to environmental conditions in an acidophilic consortium. PLoS One 2018; 13:e0195869. [PMID: 29742107 PMCID: PMC5942774 DOI: 10.1371/journal.pone.0195869] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 03/30/2018] [Indexed: 11/20/2022] Open
Abstract
The analysis of codon usage bias has been widely used to characterize different communities of microorganisms. In this context, the aim of this work was to study the codon usage bias in a natural consortium of five acidophilic bacteria used for biomining. The codon usage bias of the consortium was contrasted with genes from an alternative collection of acidophilic reference strains and metagenome samples. Results indicate that acidophilic bacteria preferentially have low codon usage bias, consistent with both their capacity to live in a wide range of habitats and their slow growth rate, a characteristic probably acquired independently from their phylogenetic relationships. In addition, the analysis showed significant differences in the unique sets of genes from the autotrophic species of the consortium in relation to other acidophilic organisms, principally in genes which code for proteins involved in metal and oxidative stress resistance. The lower values of codon usage bias obtained in this unique set of genes suggest higher transcriptional adaptation to living in extreme conditions, which was probably acquired as a measure for resisting the elevated metal conditions present in the mine.
Collapse
Affiliation(s)
- Andrew Hart
- UMI 2071 CNRS-UCHILE, Facultad de Ciencias Físicas y Matemáticas, Centro de Modelamiento Matemático, Universidad de Chile, Casilla 170, Correo 3, Santiago, Chile
| | - María Paz Cortés
- Mathomics, Centro de Modelamiento Matemático, Universidad de Chile, Santiago, Chile
- Fondap-Center of Genome Regulation, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Mauricio Latorre
- Mathomics, Centro de Modelamiento Matemático, Universidad de Chile, Santiago, Chile
- Fondap-Center of Genome Regulation, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
- Laboratorio de Bioinformática y Expresión Génica, INTA, Universidad de Chile, Macul, Santiago, Chile
- Universidad de O'Higgins, Instituto de Ciencias de la Ingeniería, Rancagua, Chile
- * E-mail: (ML); (SM)
| | - Servet Martinez
- Departamento de Ingeniería Matemática, UMI 2071 CNRS-UCHILE, Facultad de Ciencias Físicas y Matemáticas, Centro de Modelamiento Matemático, Universidad de Chile, Casilla 170, Correo 3, Santiago, Chile
- * E-mail: (ML); (SM)
| |
Collapse
|
10
|
Microbiomes in extremely acidic environments: functionalities and interactions that allow survival and growth of prokaryotes at low pH. Curr Opin Microbiol 2018; 43:139-147. [PMID: 29414445 DOI: 10.1016/j.mib.2018.01.011] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 01/17/2018] [Accepted: 01/20/2018] [Indexed: 11/23/2022]
Abstract
Extremely acidic environments have global distribution and can have natural or, increasingly, anthropogenic origins. Extreme acidophiles grow optimally at pH 3 or less, have multiple strategies for tolerating stresses that accompany high levels of acidity and are scattered in all three domains of the tree of life. Metagenomic studies have expanded knowledge of the diversity of extreme acidophile communities, their ecological networks and their metabolic potentials, both confirmed and inferred. High resolution compositional and functional profiling of these microbiomes have begun to reveal spatial diversity patterns at global, regional, local, zonal and micro-scales. Future integration of genomic and other meta-omic data will offer new opportunities to utilize acidic microbiomes and to engineer beneficial interactions within them in biotechnologies.
Collapse
|
11
|
|
12
|
Xiao Y, Liu X, Liang Y, Niu J, Zhang X, Ma L, Hao X, Gu Y, Yin H. Insights into functional genes and taxonomical/phylogenetic diversity of microbial communities in biological heap leaching system and their correlation with functions. Appl Microbiol Biotechnol 2016; 100:9745-9756. [DOI: 10.1007/s00253-016-7819-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 08/11/2016] [Accepted: 08/15/2016] [Indexed: 01/17/2023]
|
13
|
Cárdenas JP, Quatrini R, Holmes DS. Genomic and metagenomic challenges and opportunities for bioleaching: a mini-review. Res Microbiol 2016; 167:529-38. [PMID: 27394987 DOI: 10.1016/j.resmic.2016.06.007] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Revised: 06/28/2016] [Accepted: 06/29/2016] [Indexed: 12/19/2022]
Abstract
High-throughput genomic technologies are accelerating progress in understanding the diversity of microbial life in many environments. Here we highlight advances in genomics and metagenomics of microorganisms from bioleaching heaps and related acidic mining environments. Bioleaching heaps used for copper recovery provide significant opportunities to study the processes and mechanisms underlying microbial successions and the influence of community composition on ecosystem functioning. Obtaining quantitative and process-level knowledge of these dynamics is pivotal for understanding how microorganisms contribute to the solubilization of copper for industrial recovery. Advances in DNA sequencing technology provide unprecedented opportunities to obtain information about the genomes of bioleaching microorganisms, allowing predictive models of metabolic potential and ecosystem-level interactions to be constructed. These approaches are enabling predictive phenotyping of organisms many of which are recalcitrant to genetic approaches or are unculturable. This mini-review describes current bioleaching genomic and metagenomic projects and addresses the use of genome information to: (i) build metabolic models; (ii) predict microbial interactions; (iii) estimate genetic diversity; and (iv) study microbial evolution. Key challenges and perspectives of bioleaching genomics/metagenomics are addressed.
Collapse
Affiliation(s)
| | | | - David S Holmes
- Fundación Ciencia & Vida, Santiago, Chile; Facultad de Ciencias Biologicas, Universidad Andres Bello, Santiago, Chile.
| |
Collapse
|
14
|
Microbial communities from different subsystems in biological heap leaching system play different roles in iron and sulfur metabolisms. Appl Microbiol Biotechnol 2016; 100:6871-6880. [DOI: 10.1007/s00253-016-7537-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 03/29/2016] [Accepted: 04/05/2016] [Indexed: 11/26/2022]
|