1
|
Ohno T, Harada S, Saito H, Tanii R, Komori K, Kurosawa M, Wakatake H, Kanazawa M, Ohki U, Minoura A, Yamada M, Kaneko S, Anzai M, Tsutsui Y, Kuhara A, Oyanagi T, Tanaka Y, Takemura H, Takeuchi H, Kunishima H. Molecular epidemiology and clinical features of Klebsiella variicola bloodstream infection compared with infection with other Klebsiella pneumoniae species complex strains. Microbiol Spectr 2025:e0301724. [PMID: 40277351 DOI: 10.1128/spectrum.03017-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Accepted: 03/29/2025] [Indexed: 04/26/2025] Open
Abstract
Klebsiella variicola is an emerging pathogen within the Klebsiella pneumoniae species complex, and its clinical and microbiological characteristics remain poorly understood. This retrospective case-control study analyzed 252 patients with bloodstream infections caused by K. pneumoniae species complex, including 60 with K. variicola infection, to elucidate these characteristics. Our study showed no significant differences in clinical outcomes, such as 30-day mortality, between K. variicola and K. pneumoniae. However, a significant difference was found in the rate of harboring [peg-344, iucA, and rmpA] genes, which are associated with virulence in K. pneumoniae, suggesting that K. variicola may be generally less virulent. Notably, we identified two patients with community-acquired liver abscess caused by hypervirulent K. variicola, representing the first genetically analyzed case of this phenomenon in Japan and highlighting the potential virulence of this species. While there have been several reports on K. variicola carrying hypervirulence genes, this is the first report in Japan, to our knowledge, to genetically characterize a hypervirulent K. variicola isolated from a patient with disseminated liver abscesses using whole-genome sequencing. Multilocus sequence typing revealed high diversity among K. variicola isolates, with 49 distinct sequence types identified, 30 of which were newly registered, highlighting the genetic heterogeneity of this pathogen. No significant clinical differences were observed between K. variicola and other Klebsiella spp. The emergence of hypervirulent K. variicola strains with the potential to cause severe complications warrants further surveillance and research. IMPORTANCE Klebsiella variicola is increasingly recognized as an emerging pathogen commonly found in the environment and human gut. However, its clinical and microbiological characteristics remain poorly understood. This study provides a comprehensive analysis of K. variicola bloodstream infections (BSIs), comparing clinical and genetic features with the closely related K. pneumoniae. We identified significant differences in the prevalence of virulence genes between the two species. Notably, we observed K. variicola causing disseminated liver abscesses, similar to hypervirulent K. pneumoniae strains. These findings have important implications for accurate species identification, informing treatment strategies, and improving patient outcomes in the face of this emerging infectious threat.
Collapse
Affiliation(s)
- Tatsuya Ohno
- Department of Clinical Laboratory, St. Marianna University Yokohama Seibu Hospital, Yokohama, Kanagawa, Japan
- Department of Medical Laboratory Sciences, Health and Sciences, International University of Health and Welfare Graduate School, Kouzunomori, Narita, Japan
| | - Sohei Harada
- Department of Microbiology and Infectious Diseases, Toho University School of Medicine, Tokyo, Japan
| | - Hiroki Saito
- Department of Emergency and Critical Care Medicine, St. Marianna University School of Medicine, Kawasaki, Kanagawa, Japan
- Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Rimi Tanii
- Department of Emergency and Critical Care Medicine, St. Marianna University School of Medicine, Kawasaki, Kanagawa, Japan
| | - Kohji Komori
- Department of Microbiology and Infectious Diseases, Toho University School of Medicine, Tokyo, Japan
| | - Miki Kurosawa
- Department of Clinical Laboratory Technology, St. Marianna University Hospital, Kawasaki, Kanagawa, Japan
| | - Haruaki Wakatake
- Department of Emergency and Critical Care Medicine, St. Marianna University School of Medicine, Kawasaki, Kanagawa, Japan
| | - Minoru Kanazawa
- Department of Emergency and Critical Care Medicine, St. Marianna University School of Medicine, Kawasaki, Kanagawa, Japan
| | - Uiri Ohki
- Division of Cardiovascular Medicine Saitama Medical Center, Jichi Medical University, Omiya-ku, Saitama, Japan
| | - Ayu Minoura
- Department of Emergency and Critical Care Medicine, St. Marianna University School of Medicine, Kawasaki, Kanagawa, Japan
| | - Mario Yamada
- Department of Emergency and Critical Care Medicine, St. Marianna University School of Medicine, Kawasaki, Kanagawa, Japan
| | - Satsuki Kaneko
- Department of Emergency and Critical Care Medicine, St. Marianna University School of Medicine, Kawasaki, Kanagawa, Japan
| | - Momoko Anzai
- Department of Clinical Laboratory, St. Marianna University Yokohama Seibu Hospital, Yokohama, Kanagawa, Japan
| | - Yuto Tsutsui
- Department of Clinical Laboratory, St. Marianna University Yokohama Seibu Hospital, Yokohama, Kanagawa, Japan
| | - Asuka Kuhara
- Department of Nursing, St. Marianna University Yokohama Seibu Hospital, Yokohama, Kanagawa, Japan
| | - Tadatomo Oyanagi
- Department of Clinical Laboratory Technology, St. Marianna University Hospital, Kawasaki, Kanagawa, Japan
| | - Yosuke Tanaka
- Department of Clinical Laboratory, St. Marianna University Yokohama Seibu Hospital, Yokohama, Kanagawa, Japan
| | - Hiromu Takemura
- Department of Microbiology, St. Marianna University School of Medicine, Kawasaki, Kanagawa, Japan
| | - Hiroaki Takeuchi
- Department of Medical Laboratory Sciences, Health and Sciences, International University of Health and Welfare Graduate School, Kouzunomori, Narita, Japan
| | - Hiroyuki Kunishima
- Department of Infection diseases, St. Marianna University School of Medicine, Kawasaki, Kanagawa, Japan
| |
Collapse
|
2
|
Cordeiro CN, Rojas P, Kato MT, Florencio L, Sanz JL. Changes in a glycerol-degrading bacterial community in an upflow anaerobic reactor for 1,3-propanediol production. Appl Microbiol Biotechnol 2025; 109:34. [PMID: 39891698 PMCID: PMC11787190 DOI: 10.1007/s00253-025-13413-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 01/10/2025] [Accepted: 01/15/2025] [Indexed: 02/03/2025]
Abstract
The evolution of the bacterial community in an up-flow anaerobic reactor with silicone support, continuously fed with pure glycerol (day 0-293) and crude glycerol (day 294-362), was studied. Biomass from a former glycerol-degrading reactor was used as inoculum. The maximum yield and productivity of 1,3-propanediol (PDO) (0.62 mol.mol-gly-1 and 14.7 g.L-1.d-1, respectively) were obtained with crude glycerol. The inoculum had low diversity, with dominance of Lactobacillus (70.6%) and Klebsiella/Raoultella (23.3%). After 293 days of feeding with pure glycerol, the abundance of both taxa decreased to less than 10%, either in the attached biofilm or in the biomass growing in suspension. The genus Clostridium and members of the Ruminococcaceae family then became the majority. In the period after feeding with crude glycerol, Clostridium remained as the majority genus in the biofilm; however, it was partially replaced in the suspension by Eubacterium, a non-glycerol degrading bacterium. This fact, together with the prevalence of other glycerol-degrading genera in the biofilm, such as Caproiciproducens and Lactobacillus, indicated that the bacteria attached to the silicone support were responsible for converting glycerol into 1,3-PDO. Therefore, to increase the 1,3-PDO productivity, a good approach would be to maximize the amount of reactor support. Other genera that do not degrade glycerol, such as Anaerobacter and Acetomaculum, thrived at the expense of cellular decay material. The Canonical Correspondence Analysis demonstrated that the origin of glycerol is an important variable to consider during the bioreactor operation for producing 1,3-PDO, while the glycerol loading rate is not. KEY POINTS: • Microbial community showed robustness in a range of operational conditions. • A significantly high 1,3-propanediol yield can be achieved using crude glycerol. • The attached biofilm appears to be key to the high production of 1,3-propanediol.
Collapse
Affiliation(s)
- Cândida Nathaly Cordeiro
- Department of Molecular Biology, Autonomous University of Madrid, 28049, Madrid, Spain
- Department of Civil and Environmental Engineering, Laboratory of Environmental Sanitation, Federal University of Pernambuco, Recife, PE, 50740-530, Brazil
| | - Patricia Rojas
- Department of Molecular Biology, Autonomous University of Madrid, 28049, Madrid, Spain
| | - Mario T Kato
- Department of Civil and Environmental Engineering, Laboratory of Environmental Sanitation, Federal University of Pernambuco, Recife, PE, 50740-530, Brazil
| | - Lourdinha Florencio
- Department of Civil and Environmental Engineering, Laboratory of Environmental Sanitation, Federal University of Pernambuco, Recife, PE, 50740-530, Brazil
| | - José Luis Sanz
- Department of Molecular Biology, Autonomous University of Madrid, 28049, Madrid, Spain.
| |
Collapse
|
3
|
Yakubovskij VI, Morozova VV, Kozlova YN, Tikunov AY, Fedorets VA, Zhirakovskaya EV, Babkin IV, Bardasheva AV, Tikunova NV. Phage vB_KlebPS_265 Active Against Resistant/MDR and Hypermucoid K2 Strains of Klebsiella pneumoniae. Viruses 2025; 17:83. [PMID: 39861872 PMCID: PMC11769527 DOI: 10.3390/v17010083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 12/30/2024] [Accepted: 01/01/2025] [Indexed: 01/27/2025] Open
Abstract
Klebsiella pneumoniae is an important opportunistic pathogen often resistant to antibiotics. Specific phages can be useful in eliminating infection caused by K. pneumoniae. Klebsiella phage vB_KlebPS_265 (KlebP_265) and its host strain were isolated from the sputum of a patient with Klebsiella infection. KlebP_265 was specific mainly to K. pneumoniae-type K2 strains including hypermucoid strains. Most of the hypermucoid KlebP_265-susceptible strains were antibiotic-resistant. This siphophage demonstrated good lytic activity and stability. The KlebP_265 genome was 46,962 bp and contained 88 putative genes; functions were predicted for 37 of them. No genes encoding integrases, toxins, or antibiotic resistance were found in the genome. So, KlebP_265 could potentially be a therapeutic phage. Comparative analysis indicated that KlebP_265 with the most relative Klebsiella phage DP01 formed the putative Dipiunovirus genus. Genome analysis revealed a large monophyletic group of phages related to KlebP_265 and DP01. This group is divided into two monophyletic clusters of phages forming new putative subfamilies Skatevirinae and Roufvirinae. Phylogenetic analysis showed extensive gene exchange between phages from the putative subfamilies. Horizontal transfer even involved conservative genes and led to clear genomic mosaicism, indicating multiple recombination events in the ancestral phages during evolution.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Nina V. Tikunova
- Laboratory of Molecular Microbiology, Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (V.V.M.); (I.V.B.)
| |
Collapse
|
4
|
Shutt-McCabe J, Shaik KB, Hoyles L, McVicker G. The plasmid-borne hipBA operon of Klebsiella michiganensis encodes a potent plasmid stabilization system. J Appl Microbiol 2024; 135:lxae246. [PMID: 39304528 PMCID: PMC11487325 DOI: 10.1093/jambio/lxae246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/11/2024] [Accepted: 09/19/2024] [Indexed: 09/22/2024]
Abstract
AIMS Klebsiella michiganensis is a medically important bacterium that has been subject to relatively little attention in the literature. Interrogation of sequence data from K. michiganensis strains in our collection has revealed the presence of multiple large plasmids encoding type II toxin-antitoxin (TA) systems. Such TA systems are responsible for mediating a range of phenotypes, including plasmid stability ('addiction') and antibiotic persistence. In this work, we characterize the hipBA TA locus found within the Klebsiella oxytoca species complex (KoSC). METHODS AND RESULTS The HipBA TA system is encoded on a plasmid carried by K. michiganensis PS_Koxy4, isolated from an infection outbreak. Employing viability and plasmid stability assays, we demonstrate that PS_Koxy4 HipA is a potent antibacterial toxin and that HipBA is a functional TA module contributing substantially to plasmid maintenance. Further, we provide in silico data comparing HipBA modules across the entire KoSC. CONCLUSIONS We provide the first evidence of the role of a plasmid-encoded HipBA system in stability of mobile genetic elements and analyse the presence of HipBA across the KoSC. These results expand our knowledge of both a common enterobacterial TA system and a highly medically relevant group of bacteria.
Collapse
Affiliation(s)
- Jordan Shutt-McCabe
- Department of Biosciences, Nottingham Trent University, Clifton, Nottingham NG11 8NS, United Kingdom
| | - Karimunnisa Begum Shaik
- Department of Biosciences, Nottingham Trent University, Clifton, Nottingham NG11 8NS, United Kingdom
| | - Lesley Hoyles
- Department of Biosciences, Nottingham Trent University, Clifton, Nottingham NG11 8NS, United Kingdom
| | - Gareth McVicker
- Department of Biosciences, Nottingham Trent University, Clifton, Nottingham NG11 8NS, United Kingdom
| |
Collapse
|
5
|
Mettler SK, Charoenngam N, Colgrove RC. Clinical differences between Raoultella spp. and Klebsiella oxytoca. Front Cell Infect Microbiol 2024; 14:1260212. [PMID: 38887491 PMCID: PMC11180880 DOI: 10.3389/fcimb.2024.1260212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 05/15/2024] [Indexed: 06/20/2024] Open
Abstract
Purpose Raoultella spp. is a genus of bacteria that is known to be closely related to Klebsiella. It has been debated whether Raoultella should be reclassified as a subgroup of Klebsiella. The aim of this study is to compare clinical aspects of Raoultella and Klebsiella oxytoca, a species of Klebsiella that is known to be bacteriologically similar to Raoultella spp. Methods Using data collected at a tertiary care hospital in the United States, we identified 43 patients with Raoultella infection and 1173 patients with Klebsiella oxytoca infection. We compared patient demographics (age and sex), hospitalization status, isolation sites and antibiotic resistance profiles between the two species. Results There was no significant difference in patient demographics between the two bacteria species. The proportions of intensive care unit (ICU) admission were higher among patients with Raoultella infection (p=0.008). The most common site of isolation was urine for both species (39.5% of all patients with Raoultella spp. vs. 59.3% for K. oxytoca). The second most common site of isolation was blood stream for Raoultella spp. (23.3%) and respiratory tract for K. oxytoca (10.8%). Except for the high proportion of resistant isolates of Raoultella spp. for Trimethoprim/sulfamethoxazole, the antibiotic susceptibility profiles were similar between the two bacteria species. Both were susceptible to ciprofloxacin and meropenem. Conclusion While there are no significant differences in the patient demographics and antibiotic susceptibility profiles between Raoultella spp. and K. oxytoca, Raoultella may cause more serious infection requiring ICU admissions. Also, Raoultella may cause blood stream infection more frequently than K. oxytoca.
Collapse
Affiliation(s)
- Sofia K. Mettler
- Faculty of Medicine, University of Zurich, Zurich, Switzerland
- Department of Medicine, Mount Auburn Hospital, Cambridge, MA, United States
- Harvard Medical School, Boston, MA, United States
| | - Nipith Charoenngam
- Department of Medicine, Mount Auburn Hospital, Cambridge, MA, United States
- Harvard Medical School, Boston, MA, United States
- Mahidol University, Faculty of Medicine Siriraj Hospital, Bangkok, Thailand
| | - Robert C. Colgrove
- Department of Medicine, Mount Auburn Hospital, Cambridge, MA, United States
- Harvard Medical School, Boston, MA, United States
| |
Collapse
|
6
|
Brady C, Crampton B, Kaur S, Maddock D, Kile H, Arnold D, Denman S. Two novel Raoultella species associated with bleeding cankers of broadleaf hosts, Raoultella scottia sp. nov. and Raoultella lignicola sp. nov. Front Microbiol 2024; 15:1386923. [PMID: 38756725 PMCID: PMC11096500 DOI: 10.3389/fmicb.2024.1386923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 04/15/2024] [Indexed: 05/18/2024] Open
Abstract
Seventeen Gram-negative, facultatively anaerobic bacterial strains were isolated from bleeding cankers of various broadleaf hosts and oak rhizosphere soil in Great Britain. The strains were tentatively identified as belonging to the genus Raoultella based on 16S rRNA gene sequencing. Multilocus sequence analysis (MLSA), based on four protein-encoding genes (fusA, leuS, pyrG, and rpoB), separated the strains into three clusters within the Raoultella genus clade. The majority of strains clustered with the type strain of Raoultella terrigena, with the remaining strains divided into two clusters with no known type strain. Whole genome sequencing comparisons confirmed these two clusters of strains as belonging to two novel Raoultella species which can be differentiated phenotypically from their current closest phylogenetic relatives. Therefore, two novel species are proposed: Raoultella scottia sp. nov. (type strain = BAC 10a-01-01T = LMG 33072T = CCUG 77096T) and Raoultella lignicola sp. nov. (type strain = TW_WC1a.1T = LMG 33073T = CCUG 77094T).
Collapse
Affiliation(s)
- Carrie Brady
- Centre for Research in Bioscience, College of Health, Science and Society, University of the West of England, Bristol, United Kingdom
| | - Bridget Crampton
- Centre for Forest Protection, Forest Research, Farnham, United Kingdom
| | - Sundeep Kaur
- Centre for Forest Protection, Forest Research, Farnham, United Kingdom
| | - Daniel Maddock
- Centre for Research in Bioscience, College of Health, Science and Society, University of the West of England, Bristol, United Kingdom
| | - Helene Kile
- Centre for Research in Bioscience, College of Health, Science and Society, University of the West of England, Bristol, United Kingdom
| | - Dawn Arnold
- Harper Adams University, Newport, United Kingdom
| | - Sandra Denman
- Centre for Forest Protection, Forest Research, Farnham, United Kingdom
| |
Collapse
|
7
|
Sheinman M, Arndt PF, Massip F. Modeling the mosaic structure of bacterial genomes to infer their evolutionary history. Proc Natl Acad Sci U S A 2024; 121:e2313367121. [PMID: 38517978 PMCID: PMC10990148 DOI: 10.1073/pnas.2313367121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 01/30/2024] [Indexed: 03/24/2024] Open
Abstract
The chronology and phylogeny of bacterial evolution are difficult to reconstruct due to a scarce fossil record. The analysis of bacterial genomes remains challenging because of large sequence divergence, the plasticity of bacterial genomes due to frequent gene loss, horizontal gene transfer, and differences in selective pressure from one locus to another. Therefore, taking advantage of the rich and rapidly accumulating genomic data requires accurate modeling of genome evolution. An important technical consideration is that loci with high effective mutation rates may diverge beyond the detection limit of the alignment algorithms used, biasing the genome-wide divergence estimates toward smaller divergences. In this article, we propose a novel method to gain insight into bacterial evolution based on statistical properties of genome comparisons. We find that the length distribution of sequence matches is shaped by the effective mutation rates of different loci, by the horizontal transfers, and by the aligner sensitivity. Based on these inputs, we build a model and show that it accounts for the empirically observed distributions, taking the Enterobacteriaceae family as an example. Our method allows to distinguish segments of vertical and horizontal origins and to estimate the time divergence and exchange rate between any pair of taxa from genome-wide alignments. Based on the estimated time divergences, we construct a time-calibrated phylogenetic tree to demonstrate the accuracy of the method.
Collapse
Affiliation(s)
- Michael Sheinman
- Institute for Advanced Studies, Sevastopol State University, Sevastopol299053, Crimea
| | - Peter F. Arndt
- Department of Computational Molecular Biology, Max Planck Institute for Molecular Genetics, Berlin12163, Germany
| | - Florian Massip
- Department U900, Centre for Computational Biology, Mines Paris, PSL University, Paris75006, France
- Department U900, Institut Curie, Université Paris Sciences et Lettres, Paris75005, France
- INSERM, U900, Paris75005, France
| |
Collapse
|
8
|
Zhang T, Li H, Ma S, Cao J, Liao H, Huang Q, Chen W. The newest Oxford Nanopore R10.4.1 full-length 16S rRNA sequencing enables the accurate resolution of species-level microbial community profiling. Appl Environ Microbiol 2023; 89:e0060523. [PMID: 37800969 PMCID: PMC10617388 DOI: 10.1128/aem.00605-23] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 08/04/2023] [Indexed: 10/07/2023] Open
Abstract
The long-read amplicon provides a species-level solution for the community. With the improvement of nanopore flowcells, the accuracy of Oxford Nanopore Technologies (ONT) R10.4.1 has been substantially enhanced, with an average of approximately 99%. To evaluate its effectiveness on amplicons, three types of microbiomes were analyzed by 16S ribosomal RNA (hereinafter referred to as "16S") amplicon sequencing using Novaseq, Pacbio sequel II, and Nanopore PromethION platforms (R9.4.1 and R10.4.1) in the current study. We showed the error rate, recall, precision, and bias index in the mock sample. The error rate of ONT R10.4.1 was greatly reduced, with a better recall in the case of the synthetic community. Meanwhile, in different types of environmental samples, ONT R10.4.1 analysis resulted in a composition similar to Pacbio data. We found that classification tools and databases influence ONT data. Based on these results, we conclude that the ONT R10.4.1 16S amplicon can also be used for application in environmental samples. IMPORTANCE The long-read amplicon supplies the community with a species-level solution. Due to the high error rate of nanopore sequencing early on, it has not been frequently used in 16S studies. Oxford Nanopore Technologies (ONT) introduced the R10.4.1 flowcell with Q20+ reagent to achieve more than 99% accuracy as sequencing technology advanced. However, there has been no published study on the performance of commercial PromethION sequencers with R10.4.1 flowcells on 16S sequencing or on the impact of accuracy improvement on taxonomy (R9.4.1 to R10.4.1) using 16S ONT data. In this study, three types of microbiomes were investigated by 16S ribosomal RNA (rRNA) amplicon sequencing using Novaseq, Pacbio sequel II, and Nanopore PromethION platforms (R9.4.1 and R10.4.1). In the mock sample, we displayed the error rate, recall, precision, and bias index. We observed that the error rate in ONT R10.4.1 is significantly lower, especially when deletions are involved. First and foremost, R10.4.1 and Pacific Bioscience platforms reveal a similar microbiome in environmental samples. This study shows that the R10.4.1 full-length 16S rRNA sequences allow for species identification of environmental microbiota.
Collapse
Affiliation(s)
- Tianyuan Zhang
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
- Wuhan Benagen Technology Co., Ltd., Wuhan, China
| | - Hanzhou Li
- Wuhan Benagen Technology Co., Ltd., Wuhan, China
| | - Silin Ma
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
| | - Jian Cao
- Wuhan Benagen Technology Co., Ltd., Wuhan, China
| | - Hao Liao
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
| | - Qiaoyun Huang
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Hubei Key Laboratory of Soil Environment and Pollution Remediation, Huazhong Agricultural University, Wuhan, China
| | - Wenli Chen
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
9
|
Crippa C, Pasquali F, Rodrigues C, De Cesare A, Lucchi A, Gambi L, Manfreda G, Brisse S, Palma F. Genomic features of Klebsiella isolates from artisanal ready-to-eat food production facilities. Sci Rep 2023; 13:10957. [PMID: 37414963 PMCID: PMC10326032 DOI: 10.1038/s41598-023-37821-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 06/27/2023] [Indexed: 07/08/2023] Open
Abstract
Increasing reports on K. pneumoniae strains with antimicrobial resistance and virulence traits from food and farm animals are raising concerns about the potential role of Klebsiella spp. as a foodborne pathogen. This study aimed to report and characterize Klebsiella spp. isolates from two artisanal ready-to-eat food (soft cheese and salami) producing facilities, and to track similar genotypes in different ecological niches. Over 1170 samples were collected during the whole production chain of different food batches. The overall Klebsiella prevalence was 6%. Strains were classified into the three Klebsiella species complexes: K. pneumoniae (KpSC, n = 17), K. oxytoca (KoSC, n = 38) and K. planticola (KplaSC, n = 18). Despite high genetic diversity we found in terms of known and new sequence types (STs), core genome phylogeny revealed clonal strains persisting in the same processing setting for over 14 months, isolated from the environment, raw materials and end-products. Strains showed a natural antimicrobial resistance phenotype-genotype. K. pneumoniae strains showed the highest virulence potential, with sequence types ST4242 and ST107 strains carrying yersiniabactin ybt16 and aerobactin iuc3. The latter was detected in all K. pneumoniae from salami and was located on a large conjugative plasmid highly similar (97% identity) to iuc3+ plasmids from human and pig strains circulating in nearby regions of Italy. While identical genotypes may persist along the whole food production process, different genotypes from distinct sources in the same facility shared an iuc3-plasmid. Surveillance in the food chain will be crucial to obtain a more comprehensive picture of the circulation of Klebsiella strains with pathogenic potential.
Collapse
Affiliation(s)
- Cecilia Crippa
- Department of Agricultural and Food Sciences, Alma Mater Studiorum-University of Bologna, Ozzano dell'Emilia, 40064, Bologna, Italy.
| | - Frédérique Pasquali
- Department of Agricultural and Food Sciences, Alma Mater Studiorum-University of Bologna, Ozzano dell'Emilia, 40064, Bologna, Italy
| | - Carla Rodrigues
- Biodiversity and Epidemiology of Bacterial Pathogens, Institut Pasteur, Université Paris Cité, 75015, Paris, France
| | - Alessandra De Cesare
- Department of Veterinary Medical Sciences, Alma Mater Studiorum-University of Bologna, Ozzano Dell'Emilia, 40064, Bologna, Italy
| | - Alex Lucchi
- Department of Agricultural and Food Sciences, Alma Mater Studiorum-University of Bologna, Ozzano dell'Emilia, 40064, Bologna, Italy
| | - Lucia Gambi
- Department of Agricultural and Food Sciences, Alma Mater Studiorum-University of Bologna, Ozzano dell'Emilia, 40064, Bologna, Italy
| | - Gerardo Manfreda
- Department of Agricultural and Food Sciences, Alma Mater Studiorum-University of Bologna, Ozzano dell'Emilia, 40064, Bologna, Italy
| | - Sylvain Brisse
- Biodiversity and Epidemiology of Bacterial Pathogens, Institut Pasteur, Université Paris Cité, 75015, Paris, France
- Biological Resource Center of Institut Pasteur, Institut Pasteur, Université Paris Cité, 75015, Paris, France
| | - Federica Palma
- Biological Resource Center of Institut Pasteur, Institut Pasteur, Université Paris Cité, 75015, Paris, France
| |
Collapse
|
10
|
Gupta RS, Kanter-Eivin DA. AppIndels.com server: a web-based tool for the identification of known taxon-specific conserved signature indels in genome sequences. Validation of its usefulness by predicting the taxonomic affiliation of >700 unclassified strains of Bacillus species. Int J Syst Evol Microbiol 2023; 73. [PMID: 37159410 DOI: 10.1099/ijsem.0.005844] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2023] Open
Abstract
Taxon-specific conserved signature indels (CSIs) in genes/proteins provide reliable molecular markers (synapomorphies) for unambiguous demarcation of taxa of different ranks in molecular terms and for genetic, biochemical and diagnostic studies. Because of their predictive abilities, the shared presence of known taxon-specific CSIs in genome sequences has proven useful for taxonomic purposes. However, the lack of a convenient method for identifying the presence of known CSIs in genome sequences has limited their utility for taxonomic and other studies. We describe here a web-based tool/server (AppIndels.com) that identifies the presence of known and validated CSIs in genome sequences and uses this information for predicting taxonomic affiliation. The utility of this server was tested by using a database of 585 validated CSIs, which included 350 CSIs specific for ≈45 Bacillales genera, with the remaining CSIs being specific for members of the orders Neisseriales, Legionellales and Chlorobiales, family Borreliaceae, and some Pseudomonadaceae species/genera. Using this server, genome sequences were analysed for 721 Bacillus strains of unknown taxonomic affiliation. Results obtained showed that 651 of these genomes contained significant numbers of CSIs specific for the following Bacillales genera/families: Alkalicoccus, 'Alkalihalobacillaceae', Alteribacter, Bacillus Cereus clade, Bacillus Subtilis clade, Caldalkalibacillus, Caldibacillus, Cytobacillus, Ferdinandcohnia, Gottfriedia, Heyndrickxia, Lederbergia, Litchfieldia, Margalitia, Mesobacillus, Metabacillus, Neobacillus, Niallia, Peribacillus, Priestia, Pseudalkalibacillus, Robertmurraya, Rossellomorea, Schinkia, Siminovitchia, Sporosarcina, Sutcliffiella, Weizmannia and Caryophanaceae. Validity of the taxon assignment made by the server was examined by reconstructing phylogenomic trees. In these trees, all Bacillus strains for which taxonomic predictions were made correctly branched with the indicated taxa. The unassigned strains likely correspond to taxa for which CSIs are lacking in our database. Results presented here show that the AppIndels server provides a useful new tool for predicting taxonomic affiliation based on shared presence of the taxon-specific CSIs. Some caveats in using this server are discussed.
Collapse
Affiliation(s)
- Radhey S Gupta
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario CA L8N 3Z5, Canada
| | - David A Kanter-Eivin
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario CA L8N 3Z5, Canada
| |
Collapse
|
11
|
Huynh TN, Stewart V. Purine catabolism by enterobacteria. Adv Microb Physiol 2023; 82:205-266. [PMID: 36948655 DOI: 10.1016/bs.ampbs.2023.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
Abstract
Purines are abundant among organic nitrogen sources and have high nitrogen content. Accordingly, microorganisms have evolved different pathways to catabolize purines and their metabolic products such as allantoin. Enterobacteria from the genera Escherichia, Klebsiella and Salmonella have three such pathways. First, the HPX pathway, found in the genus Klebsiella and very close relatives, catabolizes purines during aerobic growth, extracting all four nitrogen atoms in the process. This pathway includes several known or predicted enzymes not previously observed in other purine catabolic pathways. Second, the ALL pathway, found in strains from all three species, catabolizes allantoin during anaerobic growth in a branched pathway that also includes glyoxylate assimilation. This allantoin fermentation pathway originally was characterized in a gram-positive bacterium, and therefore is widespread. Third, the XDH pathway, found in strains from Escherichia and Klebsiella spp., at present is ill-defined but likely includes enzymes to catabolize purines during anaerobic growth. Critically, this pathway may include an enzyme system for anaerobic urate catabolism, a phenomenon not previously described. Documenting such a pathway would overturn the long-held assumption that urate catabolism requires oxygen. Overall, this broad capability for purine catabolism during either aerobic or anaerobic growth suggests that purines and their metabolites contribute to enterobacterial fitness in a variety of environments.
Collapse
Affiliation(s)
- TuAnh Ngoc Huynh
- Department of Food Science, University of Wisconsin, Madison, WI, United States
| | - Valley Stewart
- Department of Microbiology & Molecular Genetics, University of California, Davis, CA, United States.
| |
Collapse
|
12
|
Cuénod A, Aerni M, Bagutti C, Bayraktar B, Boz ES, Carneiro CB, Casanova C, Coste AT, Damborg P, van Dam DW, Demirci M, Drevinek P, Dubuis O, Fernandez J, Greub G, Hrabak J, Hürkal Yiğitler G, Hurych J, Jensen TG, Jost G, Kampinga GA, Kittl S, Lammens C, Lang C, Lienhard R, Logan J, Maffioli C, Mareković I, Marschal M, Moran-Gilad J, Nolte O, Oberle M, Pedersen M, Pflüger V, Pranghofer S, Reichl J, Rentenaar RJ, Riat A, Rodríguez-Sánchez B, Schilt C, Schlotterbeck AK, Schrenzel J, Troib S, Willems E, Wootton M, Ziegler D, Egli A. Quality of MALDI-TOF mass spectra in routine diagnostics: results from an international external quality assessment including 36 laboratories from 12 countries using 47 challenging bacterial strains. Clin Microbiol Infect 2023; 29:190-199. [PMID: 35623578 DOI: 10.1016/j.cmi.2022.05.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 04/16/2022] [Accepted: 05/11/2022] [Indexed: 02/07/2023]
Abstract
OBJECTIVES Matrix assisted laser desorption ionization-time of flight (MALDI-TOF) mass spectrometry (MS) is a widely used method for bacterial species identification. Incomplete databases and mass spectral quality (MSQ) still represent major challenges. Important proxies for MSQ are the number of detected marker masses, reproducibility, and measurement precision. We aimed to assess MSQs across diagnostic laboratories and the potential of simple workflow adaptations to improve it. METHODS For baseline MSQ assessment, 47 diverse bacterial strains, which are challenging to identify by MALDI-TOF MS, were routinely measured in 36 laboratories from 12 countries, and well-defined MSQ features were used. After an intervention consisting of detailed reported feedback and instructions on how to acquire MALDI-TOF mass spectra, measurements were repeated and MSQs were compared. RESULTS At baseline, we observed heterogeneous MSQ between the devices, considering the median number of marker masses detected (range = [2-25]), reproducibility between technical replicates (range = [55%-86%]), and measurement error (range = [147 parts per million (ppm)-588 ppm]). As a general trend, the spectral quality was improved after the intervention for devices, which yielded low MSQs in the baseline assessment as follows: for four out of five devices with a high measurement error, the measurement precision was improved (p-values <0.001, paired Wilcoxon test); for six out of ten devices, which detected a low number of marker masses, the number of detected marker masses increased (p-values <0.001, paired Wilcoxon test). DISCUSSION We have identified simple workflow adaptations, which, to some extent, improve MSQ of poorly performing devices and should be considered by laboratories yielding a low MSQ. Improving MALDI-TOF MSQ in routine diagnostics is essential for increasing the resolution of bacterial identification by MALDI-TOF MS, which is dependent on the reproducible detection of marker masses. The heterogeneity identified in this external quality assessment (EQA) requires further study.
Collapse
Affiliation(s)
- Aline Cuénod
- Applied Microbiology Research, Department of Biomedicine, University of Basel, Basel, Switzerland; Division of Clinical Bacteriology and Mycology, University Hospital Basel, Basel, Switzerland.
| | | | | | - Banu Bayraktar
- University of Health Sciences, Sisli Hamidiye Etfal Teaching and Research Hospital, Istanbul, Turkey
| | - Efe Serkan Boz
- Department of Medical Microbiology, University of Health Sciences, Haydarpasa Numune Teaching and Research Hospital, Istanbul, Turkey
| | | | - Carlo Casanova
- Institute for Infectious Diseases, University of Bern, Bern, Switzerland
| | - Alix T Coste
- Institute of Microbiology, University Hospital Lausanne, Lausanne, Switzerland
| | - Peter Damborg
- Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, Denmark
| | | | - Mehmet Demirci
- Department of Medical Microbiology, Kirklareli University, Kirklareli, Turkey
| | - Pavel Drevinek
- Department of Medical Microbiology, 2nd Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czech Republic
| | | | - José Fernandez
- Division of Laboratory Medicine, Laboratory of Bacteriology, University Hospital of Geneva, Geneva, Switzerland
| | - Gilbert Greub
- Institute of Microbiology, University Hospital Lausanne, Lausanne, Switzerland
| | - Jaroslav Hrabak
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Plzen, Czech Republic
| | - Gülen Hürkal Yiğitler
- University of Health Sciences, Sisli Hamidiye Etfal Teaching and Research Hospital, Istanbul, Turkey
| | - Jakub Hurych
- Department of Medical Microbiology, 2nd Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czech Republic
| | - Thøger Gorm Jensen
- Department of Clinical Microbiology, Odense University Hospital, Odense, Denmark
| | | | - Greetje A Kampinga
- Department of Medical Microbiology and Infection Prevention, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Sonja Kittl
- Institute of Veterinary Bacteriology, University of Bern, Bern, Switzerland
| | | | | | | | - Julie Logan
- Reference Services Division, UK Health Security Agency, London, United Kingdom
| | | | - Ivana Mareković
- Department of Clinical and Molecular Microbiology, University Hospital Centre Zagreb, Zagreb, Croatia
| | - Matthias Marschal
- Institute of Medical Microbiology and Hygiene, University of Tübingen, Tübingen, Germany
| | - Jacob Moran-Gilad
- School of Public Health, Ben Gurion University of the Negev and Soroka University Medical Center, Beer Sheva, Israel
| | - Oliver Nolte
- Center for Laboratory Medicine, St. Gallen, Switzerland
| | | | - Michael Pedersen
- Department of Clinical Microbiology, Hvidovre Hospital, Hvidovre, Denmark
| | | | | | - Julia Reichl
- Austrian Agency for Health and Food Safety, Vienna, Austria
| | | | - Arnaud Riat
- Division of Laboratory Medicine, Laboratory of Bacteriology, University Hospital of Geneva, Geneva, Switzerland
| | | | | | | | - Jacques Schrenzel
- Division of Laboratory Medicine, Laboratory of Bacteriology, University Hospital of Geneva, Geneva, Switzerland
| | - Shani Troib
- School of Public Health, Ben Gurion University of the Negev and Soroka University Medical Center, Beer Sheva, Israel
| | - Elise Willems
- Clinical Laboratory AZNikolaas, Sint-Niklaas, Belgium
| | - Mandy Wootton
- University Hospital of Wales, Cardiff, United Kingdom
| | | | - Adrian Egli
- Applied Microbiology Research, Department of Biomedicine, University of Basel, Basel, Switzerland; Division of Clinical Bacteriology and Mycology, University Hospital Basel, Basel, Switzerland
| | | |
Collapse
|
13
|
Smith-Zaitlik T, Shibu P, McCartney AL, Foster G, Hoyles L, Negus D. Extended genomic analyses of the broad-host-range phages vB_KmiM-2Di and vB_KmiM-4Dii reveal slopekviruses have highly conserved genomes. MICROBIOLOGY (READING, ENGLAND) 2022; 168. [PMID: 36156193 DOI: 10.1099/mic.0.001247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
High levels of antimicrobial resistance among members of the Klebsiella oxytoca complex (KoC) have led to renewed interest in the use of bacteriophage (phage) therapy to tackle infections caused by these bacteria. In this study we characterized two lytic phages, vB_KmiM-2Di and vB_KmiM-4Dii, that were isolated from sewage water against two GES-5-positive Klebsiella michiganensis strains (PS_Koxy2 and PS_Koxy4, respectively). ViPTree analysis showed both phages belonged to the genus Slopekvirus. rpoB gene-based sequence analysis of 108 presumptive K. oxytoca isolates (n=59 clinical, n=49 veterinary) found K. michiganensis to be more prevalent (46 % clinical and 43 % veterinary, respectively) than K. oxytoca (40 % clinical and 6 % veterinary, respectively). Host range analysis against these 108 isolates found both vB_KmiM-2Di and vB_KmiM-4Dii showed broad lytic activity against KoC species. Several hypothetical homing endonuclease genes were encoded within the genomes of both phages, which may contribute to their broad host range. Differences in the tail fibre protein may explain the non-identical host range of the two phages. Pangenome analysis of 24 slopekviruses found that genomes within this genus are highly conserved, with more than 50 % of all predicted coding sequences representing core genes at ≥95 % identity and ≥70 % coverage. Given their broad host ranges, our results suggest vB_KmiM-2Di and vB_KmiM-4Dii represent attractive potential therapeutics. In addition, current recommendations for phage-based pangenome analyses may require revision.
Collapse
Affiliation(s)
| | - Preetha Shibu
- Life Sciences, University of Westminster, London, UK.,Present address: Berkshire and Surrey Pathology Services, Frimley Health NHS Trust, Wexham Park Hospital, Slough, UK
| | - Anne L McCartney
- Department of Food and Nutritional Sciences, University of Reading, Reading, UK
| | | | - Lesley Hoyles
- Department of Biosciences, Nottingham Trent University, Nottingham NG1 4FQ, UK
| | - David Negus
- Department of Biosciences, Nottingham Trent University, Nottingham NG1 4FQ, UK
| |
Collapse
|
14
|
Oren A, Garrity G. Notification of changes in taxonomic opinion previously published outside the IJSEM. List of changes in taxonomic opinion no. 36. Int J Syst Evol Microbiol 2022; 72. [DOI: 10.1099/ijsem.0.005413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Aharon Oren
- The Institute of Life Sciences, The Hebrew University of Jerusalem, The Edmond J. Safra Campus, 9190401 Jerusalem, Israel
| | - George Garrity
- Department of Microbiology & Molecular Genetics, Biomedical Physical Sciences, Michigan State University, East Lansing, MI 48824-4320, USA
| |
Collapse
|
15
|
Dal’Rio I, Mateus JR, Seldin L. Unraveling the Tropaeolum majus L. (Nasturtium) Root-Associated Bacterial Community in Search of Potential Biofertilizers. Microorganisms 2022; 10:638. [PMID: 35336212 PMCID: PMC8950702 DOI: 10.3390/microorganisms10030638] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/14/2022] [Accepted: 03/15/2022] [Indexed: 01/27/2023] Open
Abstract
Although Tropaeolum majus (nasturtium) is an agriculturally and economically important plant, especially due to the presence of edible flowers and its medicinal properties, its microbiome is quite unexplored. Here, the structure of the total bacterial community associated with the rhizosphere, endosphere and bulk soil of T. majus was determined by 16S rRNA amplicon metagenomic sequencing. A decrease in diversity and richness from bulk soil to the rhizosphere and from the rhizosphere to the endosphere was observed in the alpha diversity analyses. The phylum Proteobacteria was the most dominant in the bacteriome of the three sites evaluated, whereas the genera Pseudomonas and Ralstonia showed a significantly higher relative abundance in the rhizosphere and endosphere communities, respectively. Plant growth-promoting bacteria (236 PGPB) were also isolated from the T. majus endosphere, and 76 strains belonging to 11 different genera, mostly Serratia, Raoultella and Klebsiella, showed positive results for at least four out of six plant growth-promoting tests performed. The selection of PGPB associated with T. majus can result in the development of a biofertilizer with activity against phytopathogens and capable of favoring the development of this important plant.
Collapse
Affiliation(s)
| | | | - Lucy Seldin
- Laboratório de Genética Microbiana, Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Bloco I, Ilha do Fundão, Rio de Janeiro CEP 21941-902, Brazil; (I.D.); (J.R.M.)
| |
Collapse
|
16
|
Qin Y, Havulinna AS, Liu Y, Jousilahti P, Ritchie SC, Tokolyi A, Sanders JG, Valsta L, Brożyńska M, Zhu Q, Tripathi A, Vázquez-Baeza Y, Loomba R, Cheng S, Jain M, Niiranen T, Lahti L, Knight R, Salomaa V, Inouye M, Méric G. Combined effects of host genetics and diet on human gut microbiota and incident disease in a single population cohort. Nat Genet 2022; 54:134-142. [PMID: 35115689 PMCID: PMC9883041 DOI: 10.1038/s41588-021-00991-z] [Citation(s) in RCA: 257] [Impact Index Per Article: 85.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 11/19/2021] [Indexed: 01/31/2023]
Abstract
Human genetic variation affects the gut microbiota through a complex combination of environmental and host factors. Here we characterize genetic variations associated with microbial abundances in a single large-scale population-based cohort of 5,959 genotyped individuals with matched gut microbial metagenomes, and dietary and health records (prevalent and follow-up). We identified 567 independent SNP-taxon associations. Variants at the LCT locus associated with Bifidobacterium and other taxa, but they differed according to dairy intake. Furthermore, levels of Faecalicatena lactaris associated with ABO, and suggested preferential utilization of secreted blood antigens as energy source in the gut. Enterococcus faecalis levels associated with variants in the MED13L locus, which has been linked to colorectal cancer. Mendelian randomization analysis indicated a potential causal effect of Morganella on major depressive disorder, consistent with observational incident disease analysis. Overall, we identify and characterize the intricate nature of host-microbiota interactions and their association with disease.
Collapse
Affiliation(s)
- Youwen Qin
- Cambridge Baker Systems Genomics Initiative, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
- School of BioSciences, The University of Melbourne, Melbourne, Victoria, Australia
| | - Aki S Havulinna
- Department of Public Health and Welfare, Finnish Institute for Health and Welfare, Helsinki, Finland
- Institute for Molecular Medicine Finland, FIMM-HiLIFE, Helsinki, Finland
| | - Yang Liu
- Cambridge Baker Systems Genomics Initiative, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
- Department of Clinical Pathology, Melbourne Medical School, The University of Melbourne, Melbourne, Victoria, Australia
| | - Pekka Jousilahti
- Department of Public Health and Welfare, Finnish Institute for Health and Welfare, Helsinki, Finland
| | - Scott C Ritchie
- Cambridge Baker Systems Genomics Initiative, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
- Cambridge Baker Systems Genomics Initiative, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- British Heart Foundation Centre of Research Excellence, University of Cambridge, Cambridge, UK
| | - Alex Tokolyi
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Jon G Sanders
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, USA
- Cornell Institute for Host-Microbe Interaction and Disease, Cornell University, Ithaca, NY, USA
| | - Liisa Valsta
- Department of Public Health and Welfare, Finnish Institute for Health and Welfare, Helsinki, Finland
| | - Marta Brożyńska
- Cambridge Baker Systems Genomics Initiative, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - Qiyun Zhu
- Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Anupriya Tripathi
- Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, CA, USA
- Division of Biological Sciences, University of California San Diego, La Jolla, CA, USA
| | - Yoshiki Vázquez-Baeza
- Center for Microbiome Innovation, University of California San Diego, La Jolla, CA, USA
- Department of Computer Science & Engineering, Jacobs School of Engineering, University of California San Diego, La Jolla, CA, USA
| | - Rohit Loomba
- NAFLD Research Center, Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Susan Cheng
- Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Mohit Jain
- Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, CA, USA
- Center for Microbiome Innovation, University of California San Diego, La Jolla, CA, USA
| | - Teemu Niiranen
- Department of Public Health and Welfare, Finnish Institute for Health and Welfare, Helsinki, Finland
- Department of Medicine, Turku University Hospital and University of Turku, Turku, Finland
| | - Leo Lahti
- Department of Computing, University of Turku, Turku, Finland
| | - Rob Knight
- Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, CA, USA
- Center for Microbiome Innovation, University of California San Diego, La Jolla, CA, USA
- Department of Computer Science & Engineering, Jacobs School of Engineering, University of California San Diego, La Jolla, CA, USA
| | - Veikko Salomaa
- Department of Public Health and Welfare, Finnish Institute for Health and Welfare, Helsinki, Finland
| | - Michael Inouye
- Cambridge Baker Systems Genomics Initiative, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia.
- School of BioSciences, The University of Melbourne, Melbourne, Victoria, Australia.
- Cambridge Baker Systems Genomics Initiative, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK.
- British Heart Foundation Centre of Research Excellence, University of Cambridge, Cambridge, UK.
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK.
- Health Data Research UK Cambridge, Wellcome Genome Campus & University of Cambridge, Cambridge, UK.
- The Alan Turing Institute, London, UK.
| | - Guillaume Méric
- Cambridge Baker Systems Genomics Initiative, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia.
- Department of Infectious Diseases, Central Clinical School, Monash University, Melbourne, Victoria, Australia.
| |
Collapse
|
17
|
Thorpe HA, Booton R, Kallonen T, Gibbon MJ, Couto N, Passet V, López-Fernández S, Rodrigues C, Matthews L, Mitchell S, Reeve R, David S, Merla C, Corbella M, Ferrari C, Comandatore F, Marone P, Brisse S, Sassera D, Corander J, Feil EJ. A large-scale genomic snapshot of Klebsiella spp. isolates in Northern Italy reveals limited transmission between clinical and non-clinical settings. Nat Microbiol 2022; 7:2054-2067. [PMID: 36411354 PMCID: PMC9712112 DOI: 10.1038/s41564-022-01263-0] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 10/10/2022] [Indexed: 11/22/2022]
Abstract
The Klebsiella group, found in humans, livestock, plants, soil, water and wild animals, is genetically and ecologically diverse. Many species are opportunistic pathogens and can harbour diverse classes of antimicrobial resistance genes. Healthcare-associated Klebsiella pneumoniae clones that are non-susceptible to carbapenems can spread rapidly, representing a high public health burden. Here we report an analysis of 3,482 genome sequences representing 15 Klebsiella species sampled over a 17-month period from a wide range of clinical, community, animal and environmental settings in and around the Italian city of Pavia. Northern Italy is a hotspot for hospital-acquired carbapenem non-susceptible Klebsiella and thus a pertinent setting to examine the overlap between isolates in clinical and non-clinical settings. We found no genotypic or phenotypic evidence for non-susceptibility to carbapenems outside the clinical environment. Although we noted occasional transmission between clinical and non-clinical settings, our data point to a limited role of animal and environmental reservoirs in the human acquisition of Klebsiella spp. We also provide a detailed genus-wide view of genomic diversity and population structure, including the identification of new groups.
Collapse
Affiliation(s)
- Harry A. Thorpe
- grid.5510.10000 0004 1936 8921Department of Biostatistics, University of Oslo, Oslo, Norway
| | - Ross Booton
- grid.5337.20000 0004 1936 7603Bristol Veterinary School, University of Bristol, Bristol, UK
| | - Teemu Kallonen
- grid.410552.70000 0004 0628 215XDepartment of Clinical Microbiology, Turku University Hospital, Turku, Finland
| | - Marjorie J. Gibbon
- grid.7340.00000 0001 2162 1699The Milner Centre for Evolution, Department of Life Sciences, University of Bath, Bath, UK
| | - Natacha Couto
- grid.7340.00000 0001 2162 1699The Milner Centre for Evolution, Department of Life Sciences, University of Bath, Bath, UK
| | - Virginie Passet
- grid.508487.60000 0004 7885 7602Institut Pasteur, Université Paris Cité, Biodiversity and Epidemiology of Bacterial Pathogens, Paris, France
| | - Sebastián López-Fernández
- grid.508487.60000 0004 7885 7602Institut Pasteur, Université Paris Cité, Biodiversity and Epidemiology of Bacterial Pathogens, Paris, France
| | - Carla Rodrigues
- grid.508487.60000 0004 7885 7602Institut Pasteur, Université Paris Cité, Biodiversity and Epidemiology of Bacterial Pathogens, Paris, France
| | - Louise Matthews
- grid.8756.c0000 0001 2193 314XBoyd Orr Centre for Population and Ecosystem Health, School of Biodiversity, One Health and Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Sonia Mitchell
- grid.8756.c0000 0001 2193 314XBoyd Orr Centre for Population and Ecosystem Health, School of Biodiversity, One Health and Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Richard Reeve
- grid.8756.c0000 0001 2193 314XBoyd Orr Centre for Population and Ecosystem Health, School of Biodiversity, One Health and Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Sophia David
- grid.10306.340000 0004 0606 5382Parasites and Microbes, Wellcome Sanger Institute, Cambridge, UK
| | - Cristina Merla
- grid.419425.f0000 0004 1760 3027Microbiology and Virology Unit, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico Policlinico San Matteo, Pavia, Italy
| | - Marta Corbella
- grid.419425.f0000 0004 1760 3027Microbiology and Virology Unit, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico Policlinico San Matteo, Pavia, Italy
| | - Carolina Ferrari
- grid.419425.f0000 0004 1760 3027Microbiology and Virology Unit, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico Policlinico San Matteo, Pavia, Italy
| | - Francesco Comandatore
- grid.4708.b0000 0004 1757 2822Romeo ed Enrica Invernizzi Pediatric Research Center, Department of Biomedical and Clinical Sciences Luigi Sacco, Università di Milano, Milan, Italy
| | - Piero Marone
- grid.419425.f0000 0004 1760 3027Microbiology and Virology Unit, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico Policlinico San Matteo, Pavia, Italy
| | - Sylvain Brisse
- grid.508487.60000 0004 7885 7602Institut Pasteur, Université Paris Cité, Biodiversity and Epidemiology of Bacterial Pathogens, Paris, France
| | - Davide Sassera
- grid.8982.b0000 0004 1762 5736Department of Biology and Biotechnology, Università di Pavia, Pavia, Italy
| | - Jukka Corander
- grid.5510.10000 0004 1936 8921Department of Biostatistics, University of Oslo, Oslo, Norway ,grid.10306.340000 0004 0606 5382Parasites and Microbes, Wellcome Sanger Institute, Cambridge, UK ,grid.7737.40000 0004 0410 2071Department of Mathematics and Statistics, Helsinki Institute of Information Technology, University of Helsinki, Helsinki, Finland
| | - Edward J. Feil
- grid.7340.00000 0001 2162 1699The Milner Centre for Evolution, Department of Life Sciences, University of Bath, Bath, UK
| |
Collapse
|
18
|
Saati-Santamaría Z, Peral-Aranega E, Velázquez E, Rivas R, García-Fraile P. Phylogenomic Analyses of the Genus Pseudomonas Lead to the Rearrangement of Several Species and the Definition of New Genera. BIOLOGY 2021; 10:782. [PMID: 34440014 PMCID: PMC8389581 DOI: 10.3390/biology10080782] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 08/03/2021] [Accepted: 08/11/2021] [Indexed: 11/17/2022]
Abstract
Pseudomonas is a large and diverse genus broadly distributed in nature. Its species play relevant roles in the biology of earth and living beings. Because of its ubiquity, the number of new species is continuously increasing although its taxonomic organization remains quite difficult to unravel. Nowadays the use of genomics is routinely employed for the analysis of bacterial systematics. In this work, we aimed to investigate the classification of species of the genus Pseudomonas on the basis of the analyses of the type strains whose genomes are currently available. Based on these analyses, we propose the creation of three new genera (Denitrificimonas gen nov. comb. nov., Neopseudomonas gen nov. comb. nov. and Parapseudomonas gen nov. comb. nov) to encompass several species currently included within the genus Pseudomonas and the reclassification of several species of this genus in already described taxa.
Collapse
Affiliation(s)
- Zaki Saati-Santamaría
- Microbiology and Genetics Department, University of Salamanca, 37007 Salamanca, Spain; (E.P.-A.); (E.V.); (R.R.); (P.G.-F.)
- Institute for Agribiotechnology Research (CIALE), 37185 Salamanca, Spain
| | - Ezequiel Peral-Aranega
- Microbiology and Genetics Department, University of Salamanca, 37007 Salamanca, Spain; (E.P.-A.); (E.V.); (R.R.); (P.G.-F.)
- Institute for Agribiotechnology Research (CIALE), 37185 Salamanca, Spain
| | - Encarna Velázquez
- Microbiology and Genetics Department, University of Salamanca, 37007 Salamanca, Spain; (E.P.-A.); (E.V.); (R.R.); (P.G.-F.)
- Institute for Agribiotechnology Research (CIALE), 37185 Salamanca, Spain
- Associated Research Unit of Plant-Microorganism Interaction, University of Salamanca-IRNASA-CSIC, 37008 Salamanca, Spain
| | - Raúl Rivas
- Microbiology and Genetics Department, University of Salamanca, 37007 Salamanca, Spain; (E.P.-A.); (E.V.); (R.R.); (P.G.-F.)
- Institute for Agribiotechnology Research (CIALE), 37185 Salamanca, Spain
- Associated Research Unit of Plant-Microorganism Interaction, University of Salamanca-IRNASA-CSIC, 37008 Salamanca, Spain
| | - Paula García-Fraile
- Microbiology and Genetics Department, University of Salamanca, 37007 Salamanca, Spain; (E.P.-A.); (E.V.); (R.R.); (P.G.-F.)
- Institute for Agribiotechnology Research (CIALE), 37185 Salamanca, Spain
- Associated Research Unit of Plant-Microorganism Interaction, University of Salamanca-IRNASA-CSIC, 37008 Salamanca, Spain
| |
Collapse
|