1
|
Li M, Zhang Q, Wang Y, Xie J, Liang T, Liu Z, Xiang X, Zhou Q, Gong Z. From adhesion to invasion: the multifaceted roles of Mycobacterium tuberculosis lipoproteins. J Drug Target 2025:1-10. [PMID: 39993287 DOI: 10.1080/1061186x.2025.2472208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 01/13/2025] [Accepted: 02/17/2025] [Indexed: 02/26/2025]
Abstract
Tuberculosis (TB) is caused by Mycobacterium tuberculosis, which poses a significant threat to human health. Lipoproteins are predominantly found in the M. tuberculosis cell wall during infection of the invading host. The cell wall interacts closely with the host cell in direct contact. The M. tuberculosis genome encodes at least 99 lipoproteins with diverse functions, including ABC transport, cell wall metabolism, adhesion, cell invasion, and signal transduction, among others. Different lipoproteins play important roles in bacterial survival, infection of host cells, vaccine development, and gene regulation for drug targeting. Although only a subset of these lipoproteins has been functionally investigated, most of them require further study. This review summarises the progress of research related to the synthesis of M. tuberculosis lipoproteins and their involvement in the functions of material transport, immune response, virulence mechanism, vaccine development, signalling, enzyme, and drug regulation.
Collapse
Affiliation(s)
- Min Li
- Department of Clinical Laboratory, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Qiao Zhang
- Cultivation Base of Provincial-Ministry Joint State Key Laboratory of Ecological Environment and Biological Resources in Three Gorges Reservoir Area, School of Life Sciences, Institute of Modern Biomedicine, Southwest University, Chongqing, China
| | - Yun Wang
- Department of Clinical Laboratory, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Jianping Xie
- Cultivation Base of Provincial-Ministry Joint State Key Laboratory of Ecological Environment and Biological Resources in Three Gorges Reservoir Area, School of Life Sciences, Institute of Modern Biomedicine, Southwest University, Chongqing, China
| | - Tian Liang
- Cultivation Base of Provincial-Ministry Joint State Key Laboratory of Ecological Environment and Biological Resources in Three Gorges Reservoir Area, School of Life Sciences, Institute of Modern Biomedicine, Southwest University, Chongqing, China
| | - Zhou Liu
- Department of Clinical Laboratory, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Xiaohong Xiang
- School of Pharmacy, Chongqing Medical and Pharmaceutical College, Chongqing, China
| | - Qiang Zhou
- Department of Clinical Laboratory, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Zhen Gong
- Department of Clinical Laboratory, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|
2
|
Chapot-Chartier MP, Buddelmeijer N. Post-translational modifications in bacteria - The dynamics of bacterial physiology. Res Microbiol 2021; 172:103887. [PMID: 34687907 DOI: 10.1016/j.resmic.2021.103887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/07/2021] [Accepted: 10/07/2021] [Indexed: 11/26/2022]
Affiliation(s)
| | - Nienke Buddelmeijer
- Institut Pasteur, Unité Biologie et Génétique de la Paroi Bactérienne, Paris, France; CNRS, UMR 2001, Microbiologie Intégrative et Moléculaire, Paris, France; INSERM Groupe Avenir, Paris, France.
| |
Collapse
|