1
|
Hussain N, Ikram N, Khan KUR, Hussain L, Alqahtani AM, Alqahtani T, Hussain M, Suliman M, Alshahrani MY, Sitohy B. Cichorium intybus L. significantly alleviates cigarette smoke-induced acute lung injury by lowering NF-κB pathway activation and inflammatory mediators. Heliyon 2023; 9:e22055. [PMID: 38045213 PMCID: PMC10692792 DOI: 10.1016/j.heliyon.2023.e22055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 11/02/2023] [Accepted: 11/02/2023] [Indexed: 12/05/2023] Open
Abstract
Background Cigarette smoke (CS) is one of the primary causes of acute lung injury (ALI) via provoking pulmonary inflammation and oxidative stress. Despite substantial studies, no effective treatment for ALI is presently available. Purpose New prospective treatment options for ALI are required. Thus, this project was designed to investigate the in vivo and in vitro protective effects of 70 % methanolic-aqueous crude extract of whole plant of Cichorium intybus (Ci.Mce) against CS-induced ALI. Study design /methods: Initially, male Swiss albino mice were subjected to whole-body CS exposure for 10 continuous days to prepare CS-induced ALI models. Normal saline (10 mL/kg), Ci.Mce (100, 200, 300 mg/kg), and Dexamethasone (1 mg/kg) were orally administered to respective animal groups 1 h prior to CS-exposure. 24 hrs after the last CS-exposure, BALF and lungs were harvested to study the key characteristics of ALI. Next, HPLC analysis was done to explore the phytoconstituents. Results Ci.Mce exhibited significant reductions in lung macrophage and neutrophil infiltration, lung weight coefficient, and albumin exudation. Additionally, it effectively ameliorated lung histopathological alterations and hypoxemia. Notably, Ci.Mce exerted inhibitory effects on the excessive generation of IL-6, IL-1β, and KC in both CS-induced ALI murine models and CSE-stimulated RAW 264.7 macrophages. Noteworthy benefits included the attenuation of oxidative stress induced by CS, evidenced by decreased levels of MDA, TOS, and MPO, alongside enhanced TAC production. Furthermore, Ci.Mce demonstrated a marked reduction in CS-induced NF-κB expression, both in vivo and in vitro. Conclusion Consequently, Cichorium intybus could be a therapeutic option for CS-induced ALI due to its ability to suppress inflammatory reactions, mitigate oxidative stress, and quell NF-κB p65 activation.
Collapse
Affiliation(s)
- Nadia Hussain
- Department of Pharmaceutical Sciences, College of Pharmacy, Al Ain University, Al Ain, 64141, United Arab Emirates
| | - Nadia Ikram
- Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
| | - Kashif ur Rehman Khan
- Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
| | - Liaqat Hussain
- Department of Pharmacology, Government College University, Faisalabad, 38,000, Pakistan
| | - Ali M. Alqahtani
- Department of Pharmacology, College of Pharmacy, King Khalid University, Abha, 62529, Saudi Arabia
| | - Taha Alqahtani
- Department of Pharmacology, College of Pharmacy, King Khalid University, Abha, 62529, Saudi Arabia
| | - Musaddique Hussain
- Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
| | - Muath Suliman
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, P.O. Box 61413, Abha, 9088, Saudi Arabia
| | - Mohammad Y. Alshahrani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, P.O. Box 61413, Abha, 9088, Saudi Arabia
| | - Basel Sitohy
- Department of Clinical Microbiology, Infection and Immunology, Umeå University, SE-90185, Umeå, Sweden
- Department of Radiation Sciences, Oncology, Umeå University, SE-90185, Umeå, Sweden
| |
Collapse
|
2
|
Barboza PA, Machado MN, Caldeira DDAF, Peixoto MS, Cruz LF, Takiya CM, Carvalho AR, de Abreu MB, Fortunato RS, Zin WA. Acute cylindrospermopsin exposure: Pulmonary and liver harm and mitigation by dexamethasone. Toxicon 2020; 191:18-24. [PMID: 33359390 DOI: 10.1016/j.toxicon.2020.12.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 12/09/2020] [Accepted: 12/20/2020] [Indexed: 01/15/2023]
Abstract
Cylindrospermopsin (CYN) is a cyanotoxin of increasing worldwide environmental importance as it can harm human beings. Dexamethasone is a steroidal anti-inflammatory agent. Thus, we aimed at evaluating the pulmonary outcomes of acute CYN intoxication and their putative mitigation by dexamethasone. Male BALB/c mice received intratracheally a single dose of saline or CYN (140 μg/kg). Eighteen hours after exposure, mice instilled with either saline solution (Ctrl) or CYN were intramuscularly treated with saline (Tox) or 2 mg/kg dexamethasone (Tox + dexa) every 6 h for 48 h. Pulmonary mechanics was evaluated 66 h after instillation using the forced oscillation technique (flexiVent) to determine airway resistance (RN), tissue viscance (G) and elastance (H). After euthanasia, the lungs were removed and separated for quantification of CYN, myeloperoxidase activity and IL-6 and IL-17 levels plus histological analysis. CYN was also measured in the liver. CYN increased G and H, alveolar collapse, PMN cells infiltration, elastic and collagen fibers, activated macrophages, peroxidase activity in lung and hepatic tissues, as well as IL-6 and IL-17 levels in the lung. Tox + Dexa mice presented total or partial reversion of the aforementioned alterations. Briefly, CYN impaired pulmonary and hepatic characteristics that were mitigated by dexamethasone.
Collapse
Affiliation(s)
- Priscila Apolinario Barboza
- Carlos Chagas Filho Institute of Biophysics, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.
| | - Mariana Nascimento Machado
- Carlos Chagas Filho Institute of Biophysics, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.
| | | | - Milena Simões Peixoto
- Carlos Chagas Filho Institute of Biophysics, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.
| | - Luis Felipe Cruz
- Carlos Chagas Filho Institute of Biophysics, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.
| | - Christina Maeda Takiya
- Carlos Chagas Filho Institute of Biophysics, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.
| | - Alysson Roncally Carvalho
- Carlos Chagas Filho Institute of Biophysics, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.
| | - Mariana Boechat de Abreu
- Carlos Chagas Filho Institute of Biophysics, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.
| | - Rodrigo Soares Fortunato
- Carlos Chagas Filho Institute of Biophysics, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.
| | - Walter Araujo Zin
- Carlos Chagas Filho Institute of Biophysics, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.
| |
Collapse
|
3
|
Therapeutic Effect of Gallic Acid Against Paraquat-Induced Lung Injury in Rats. Jundishapur J Nat Pharm Prod 2018. [DOI: 10.5812/jjnpp.12450] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
|
4
|
Pacheco DM, Silveira VD, Thomaz A, Nunes RB, Elsner VR, Dal Lago P. Chronic heart failure modifies respiratory mechanics in rats: a randomized controlled trial. Braz J Phys Ther 2016; 20:320-7. [PMID: 27556388 PMCID: PMC5015674 DOI: 10.1590/bjpt-rbf.2014.0163] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 01/18/2016] [Indexed: 11/22/2022] Open
Abstract
Objective To analyze respiratory mechanics and hemodynamic alterations in an experimental model of chronic heart failure (CHF) following myocardial infarction. Method Twenty-seven male adult Wistar rats were randomized to CHF group (n=12) or Sham group (n=15). Ten weeks after coronary ligation or sham surgery, the animals were anesthetized and submitted to respiratory mechanics and hemodynamic measurements. Pulmonary edema as well as cardiac remodeling were measured. Results The CHF rats showed pulmonary edema 26% higher than the Sham group. The respiratory system compliance (Crs) and the total lung capacity (TLC) were lower (40% and 27%, respectively) in the CHF rats when compared to the Sham group (P<0.01). There was also an increase in tissue resistance (Gti) and elastance (Hti) (28% and 45%, respectively) in the CHF group. Moreover, left ventricular end-diastolic pressure was higher (32 mmHg vs 4 mmHg, P<0.01), while the left ventricular systolic pressure was lower (118 mmHg vs 130 mmHg, P=0.02) in the CHF group when compared to the control. Pearson’s correlation coefficient showed a negative association between pulmonary edema and Crs (r=–0.70, P=0.0001) and between pulmonary edema and TLC (r=–0.67, P=0.0034). Pulmonary edema correlated positively with Gti (r=0.68, P=0.001) and Hti (r=0.68, P=0.001). Finally, there was a strong positive relationship between pulmonary edema and heart weight (r=0.80, P=0.001). Conclusion Rats with CHF present important changes in hemodynamic and respiratory mechanics, which may be associated with alterations in cardiopulmonary interactions.
Collapse
Affiliation(s)
- Deise M Pacheco
- Laboratório de Fisiologia Cardiovascular, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, RS, Brazil.,Programa de Pós-graduação em Ciências da Saúde, UFCSPA, Porto Alegre, RS, Brazil
| | - Viviane D Silveira
- Laboratório de Fisiologia Cardiovascular, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, RS, Brazil
| | - Alex Thomaz
- Laboratório de Fisiologia Cardiovascular, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, RS, Brazil
| | - Ramiro B Nunes
- Laboratório de Fisiologia Cardiovascular, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, RS, Brazil.,Programa de Pós-graduação em Ciências da Reabilitação, UFCSPA, Porto Alegre, RS, Brazil
| | - Viviane R Elsner
- Laboratório de Fisiologia Cardiovascular, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, RS, Brazil.,Programa de Pós-graduação em Biociências e Reabilitação, Centro Universitário Metodista do IPA, Porto Alegre, RS, Brazil
| | - Pedro Dal Lago
- Laboratório de Fisiologia Cardiovascular, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, RS, Brazil.,Programa de Pós-graduação em Ciências da Saúde, UFCSPA, Porto Alegre, RS, Brazil.,Programa de Pós-graduação em Ciências da Reabilitação, UFCSPA, Porto Alegre, RS, Brazil
| |
Collapse
|
5
|
Javad-Mousavi SA, Hemmati AA, Mehrzadi S, Hosseinzadeh A, Houshmand G, Rashidi Nooshabadi MR, Mehrabani M, Goudarzi M. Protective effect of Berberis vulgaris fruit extract against Paraquat-induced pulmonary fibrosis in rats. Biomed Pharmacother 2016; 81:329-336. [DOI: 10.1016/j.biopha.2016.04.027] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Revised: 04/09/2016] [Accepted: 04/11/2016] [Indexed: 02/08/2023] Open
|
6
|
Bilgin G, Kismet K, Kuru S, Kaya F, Senes M, Bayrakceken Y, Yumusak N, Celikkan FT, Erdemli E, Celemli OG, Sorkun K, Koca G. Ultrastructural investigation of the protective effects of propolis on bleomycin induced pulmonary fibrosis. Biotech Histochem 2016; 91:195-203. [DOI: 10.3109/10520295.2015.1123294] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
|
7
|
Oliveira VR, Avila MB, Carvalho GMC, Azevedo SMF, Lima LM, Barreiro EJ, Carvalho AR, Zin WA. Investigating the therapeutic effects of LASSBio-596 in an in vivo model of cylindrospermopsin-induced lung injury. Toxicon 2015; 94:29-35. [DOI: 10.1016/j.toxicon.2014.12.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2014] [Revised: 12/15/2014] [Accepted: 12/17/2014] [Indexed: 10/24/2022]
|
8
|
Souza MC, Silva JD, Pádua TA, Capelozzi VL, Rocco PRM, Henriques MDG. Early and late acute lung injury and their association with distal organ damage in murine malaria. Respir Physiol Neurobiol 2013; 186:65-72. [PMID: 23328346 DOI: 10.1016/j.resp.2012.12.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2012] [Revised: 11/18/2012] [Accepted: 12/12/2012] [Indexed: 02/03/2023]
Abstract
Severe malaria is characterised by cerebral oedema, acute lung injury (ALI) and multiple organ dysfunctions, however, the mechanisms of lung and distal organ damage need to be better clarified. Ninety-six C57BL/6 mice were injected intraperitoneally with 5×10(6)Plasmodium berghei ANKA-infected erythrocytes or saline. At day 1, Plasmodium berghei infected mice presented greater number of areas with alveolar collapse, neutrophil infiltration and interstitial oedema associated with lung mechanics impairment, which was more severe at day 1 than day 5. Lung tumour necrosis factor-α and chemokine (C-X-C motif) ligand 1 levels were higher at day 5 compared to day 1. Lung damage occurred in parallel with distal organ injury at day 1; nevertheless, lung inflammation and the presence of malarial pigment in distal organs were more evident at day 5. In conclusion, ALI develops prior to the onset of cerebral malaria symptoms. Later during the course of infection, the established systemic inflammatory response increases distal organ damage.
Collapse
Affiliation(s)
- Mariana C Souza
- Laboratory of Applied Pharmacology, Farmanguinhos, Oswaldo Cruz Foundation, RJ, Brazil
| | | | | | | | | | | |
Collapse
|
9
|
Parra ER, Araujo CAL, Lombardi JG, Ab'Saber AM, Carvalho CRR, Kairalla RA, Capelozzi VL. Lymphatic fluctuation in the parenchymal remodeling stage of acute interstitial pneumonia, organizing pneumonia, nonspecific interstitial pneumonia and idiopathic pulmonary fibrosis. ACTA ACUST UNITED AC 2012; 45:466-72. [PMID: 22488224 PMCID: PMC3854286 DOI: 10.1590/s0100-879x2012007500055] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2011] [Accepted: 03/21/2012] [Indexed: 11/24/2022]
Abstract
Because the superficial lymphatics in the lungs are distributed in the subpleural, interlobular and peribroncovascular interstitium, lymphatic impairment may occur in the lungs of patients with idiopathic interstitial pneumonias (IIPs) and increase their severity. We investigated the distribution of lymphatics in different remodeling stages of IIPs by immunohistochemistry using the D2-40 antibody. Pulmonary tissue was obtained from 69 patients with acute interstitial pneumonia/diffuse alveolar damage (AIP/DAD, N = 24), cryptogenic organizing pneumonia/organizing pneumonia (COP/OP, N = 6), nonspecific interstitial pneumonia (NSIP/NSIP, N = 20), and idiopathic pulmonary fibrosis/usual interstitial pneumonia (IPF/UIP, N = 19). D2-40+ lymphatic in the lesions was quantitatively determined and associated with remodeling stage score. We observed an increase in the D2-40+ percent from DAD (6.66 ± 1.11) to UIP (23.45 ± 5.24, P = 0.008) with the advanced process of remodeling stage of the lesions. Kaplan-Meier survival curves showed a better survival for patients with higher lymphatic D2-40+ expression than 9.3%. Lymphatic impairment occurs in the lungs of IIPs and its severity increases according to remodeling stage. The results suggest that disruption of the superficial lymphatics may impair alveolar clearance, delay organ repair and cause severe disease progress mainly in patients with AIP/DAD. Therefore, lymphatic distribution may serve as a surrogate marker for the identification of patients at greatest risk for death due to IIPs.
Collapse
Affiliation(s)
- E R Parra
- Departamento de Patologia, Faculdade de Medicina, Universidade de São Paulo, Brasil.
| | | | | | | | | | | | | |
Collapse
|
10
|
Novaes RD, Gonçalves RV, Cupertino MC, Marques DCS, Rosa DD, Peluzio MDCG, Neves CA, Leite JPV. Bark extract of Bathysa cuspidata attenuates extra-pulmonary acute lung injury induced by paraquat and reduces mortality in rats. Int J Exp Pathol 2012; 93:225-33. [PMID: 22429505 DOI: 10.1111/j.1365-2613.2012.00808.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
This study investigated the effect of the bark extract of Bathysa cuspidata on paraquat (PQ)-induced extra-pulmonary acute lung injury (ALI) and mortality in rats. ALI was induced with a single dose of PQ (30 mg/kg, i.p.), and animals were treated with B. cuspidata extract (200 and 400 mg/kg). Analyses were conducted of survival, cell migration, lung oedema, malondialdehyde, proteins carbonyls, catalase, superoxide dismutase, histopathology and the stereology of lung tissue. Rats exposed to PQ and treated with 200 and 400 mg of the extract presented lower mortality (20% and 30%), compared with PQ alone group (50%). Furthermore, lung oedema, septal thickening, alveolar collapse, haemorrhage, cell migration, malondialdehyde and proteins carbonyl levels decreased, and catalase and superoxide dismutase activity were maintained. These results show that the bark extract of B. cuspidata reduced PQ-induced extra-pulmonary ALI and mortality in rats and suggest that these effects may be associated with the inhibition of oxidative damage.
Collapse
Affiliation(s)
- Rômulo D Novaes
- Department of General Biology, Federal University of Viçosa, Viçosa, Minas Gerais, Brazil.
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Santos RS, Silva PL, Oliveira GP, Cruz FF, Ornellas DS, Morales MM, Fernandes J, Lanzetti M, Valença SS, Pelosi P, Gattass CR, Rocco PR. Effects of oleanolic acid on pulmonary morphofunctional and biochemical variables in experimental acute lung injury. Respir Physiol Neurobiol 2011; 179:129-36. [DOI: 10.1016/j.resp.2011.07.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2011] [Revised: 07/07/2011] [Accepted: 07/13/2011] [Indexed: 02/04/2023]
|
12
|
Degree of endothelium injury promotes fibroelastogenesis in experimental acute lung injury. Respir Physiol Neurobiol 2010; 173:179-88. [DOI: 10.1016/j.resp.2010.08.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2010] [Revised: 08/04/2010] [Accepted: 08/05/2010] [Indexed: 11/24/2022]
|
13
|
Lacerda ACR, Rodrigues-Machado MDG, Mendes PL, Novaes RD, Carvalho GMC, Zin WA, Gripp F, Coimbra CC. Paraquat (PQ)-induced pulmonary fibrosis increases exercise metabolic cost, reducing aerobic performance in rats. J Toxicol Sci 2010; 34:671-9. [PMID: 19952502 DOI: 10.2131/jts.34.671] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Rats exposed to the quaternary herbicide paraquat (PQ) exhibit oxidative stress and lung injury. In the present study, we investigated the effect of multiple exposures to PQ on aerobic performance during progressive exercise on a treadmill in rats. PQ was dissolved in saline (SAL) (10 mg/ml) and administered intraperitoneally 7 mg/kg body wt to Wistar rats (n = 5) once a week for one month. Control rats received SAL (0.7 ml/kg body wt., intraperitoneally, n = 5) over the same time period. The animals were submitted to aerobic evaluation on a treadmill using a progressive protocol until fatigue prior to the administration of the first dose of PQ or SAL and repeated at 1 week and 40 days following the last dose of the herbicide. Twenty-four hours after the last performance tests, the animals were sacrificed, lungs removed and divided in two groups: PQ and SAL for histopathological analysis. The animals exposed to PQ exhibited decrease in aerobic performance and mechanical efficiency (ME) as well as increase in oxygen consumption during exercise in comparison to the controls forty days after the last dose of PQ. Lung histologic changes included atelectasis, interstitial edema, and inflammation cells in PQ group. The collagen system fibers, fraction area of alveolar collapse and influx of polymorphonuclear (PMN) cells in lung parenchyma were higher in PQ compared to SAL. In conclusion, multiple exposures to PQ induce pulmonary fibrosis, reduce the aerobic performance and mechanical efficiency and increase the metabolic cost of exercise in rats.
Collapse
Affiliation(s)
- Ana Cristina Rodrigues Lacerda
- Faculty of Biological and Healthy Sciences, Federal University of the Jequitinhonha and Mucuri Valleys, Diamantina, MG, Brazil.
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Parra ER, Boufelli G, Bertanha F, Samorano LDP, Aguiar AC, Costa FMA, Capelozzi VL, Barbas-Filho JV. Temporal evolution of epithelial, vascular and interstitial lung injury in an experimental model of idiopathic pulmonary fibrosis induced by butyl-hydroxytoluene. Int J Exp Pathol 2008; 89:350-7. [PMID: 18808527 DOI: 10.1111/j.1365-2613.2008.00600.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
This study was undertaken to test whether the structural remodelling of pulmonary parenchyma can be sequentially altered in a model and method that demonstrate the progression of the disease and result in remodelling within the lungs that is typical of idiopathic pulmonary fibrosis. Three groups of mice were studied: (i) animals that received 3-5-di-tert-butyl-4-hydroxytoluene (BHT) and were killed after 2 weeks (early BHT = 9); (ii) animals that received BHT and were killed after 4 weeks (late BHT = 11); (iii) animals that received corn oil solution (control = 10). The mice were placed in a ventilated Plexiglas chamber with a mixture of pure humidified oxygen and compressed air. Lung histological sections underwent haematoxylin-eosin, immunohistochemistry (epithelial, endothelial and immune cells) and specific staining (collagen/elastic fibres) methods for morphometric analysis. When compared with the control group, early BHT and late BHT groups showed significant decrease of type II pneumocytes, lower vascular density in both and higher endothelial activity. CD4 was increased in late BHT compared with early and control groups, while CD8, macrophage and neutrophil cells were more prominent only in early BHT. The collagenous fibre density were significantly higher only in late BHT, whereas elastic fibre content in late BHT was lower than that in control group. We conclude that the BHT experimental model is pathologically very similar to human usual interstitial pneumonia. This feature is important in the identification of animal models of idiopathic pulmonary fibrosis that can accurately reflect the pathogenesis and progression of the human disease.
Collapse
Affiliation(s)
- Edwin Roger Parra
- Departamento de Patologia, Faculdade de Medicina da Universidade de São Paulo, São Paulo, SP, Brazil.
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Angeli P, Prado CM, Xisto DG, Silva PL, Pássaro CP, Nakazato HD, Leick-Maldonado EA, Martins MA, Rocco PRM, Tibério IFLC. Effects of chronic L-NAME treatment lung tissue mechanics, eosinophilic and extracellular matrix responses induced by chronic pulmonary inflammation. Am J Physiol Lung Cell Mol Physiol 2008; 294:L1197-205. [PMID: 18359886 DOI: 10.1152/ajplung.00199.2007] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The importance of lung tissue in asthma pathophysiology has been recently recognized. Although nitric oxide mediates smooth muscle tonus control in airways, its effects on lung tissue responsiveness have not been investigated previously. We hypothesized that chronic nitric oxide synthase (NOS) inhibition by N(omega)-nitro-L-arginine methyl ester (L-NAME) may modulate lung tissue mechanics and eosinophil and extracellular matrix remodeling in guinea pigs with chronic pulmonary inflammation. Animals were submitted to seven saline or ovalbumin exposures with increasing doses (1 approximately 5 mg/ml for 4 wk) and treated or not with L-NAME in drinking water. After the seventh inhalation (72 h), animals were anesthetized and exsanguinated, and oscillatory mechanics of lung tissue strips were performed in baseline condition and after ovalbumin challenge (0.1%). Using morphometry, we assessed the density of eosinophils, neuronal NOS (nNOS)- and inducible NOS (iNOS)-positive distal lung cells, smooth muscle cells, as well as collagen and elastic fibers in lung tissue. Ovalbumin-exposed animals had an increase in baseline and maximal tissue resistance and elastance, eosinophil density, nNOS- and iNOS-positive cells, the amount of collagen and elastic fibers, and isoprostane-8-PGF(2alpha) expression in the alveolar septa compared with controls (P<0.05). L-NAME treatment in ovalbumin-exposed animals attenuated lung tissue mechanical responses (P<0.01), nNOS- and iNOS-positive cells, elastic fiber content (P<0.001), and isoprostane-8-PGF(2alpha) in the alveolar septa (P<0.001). However, this treatment did not affect the total number of eosinophils and collagen deposition. These data suggest that NO contributes to distal lung parenchyma constriction and to elastic fiber deposition in this model. One possibility may be related to the effects of NO activating the oxidative stress pathway.
Collapse
Affiliation(s)
- Patrícia Angeli
- Department of Medicine, School of Medicine, University of Sao Paulo, São Paulo, Brazil
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Souza-Fernandes AB, Rocco PRM, Contador RS, Menezes SLS, Faffe DS, Negri EM, Capelozzi VL, Zin WA. Respiratory changes in a murine model of spontaneous systemic lupus erythematosus. Respir Physiol Neurobiol 2006; 153:107-14. [PMID: 16311080 DOI: 10.1016/j.resp.2005.09.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2005] [Revised: 09/07/2005] [Accepted: 09/13/2005] [Indexed: 11/22/2022]
Abstract
The pathophysiology of systemic lupus erythematosus (SLE) has been very well described in many organs. However, the relation between extracellular matrix changes and lung dynamic mechanical behaviour deserves elucidation. To that end, pulmonary mechanics, lung morphometry and the amount of collagen and elastic fibres in the alveolar septa were analysed in mice with SLE [NZB/W (New Zealand Black/White) F1] and non-diseased NZW mice (control). Static (E(st)) and dynamic (E(dyn)) elastances, difference between dynamic and static elastances (DeltaE), airway resistance (R(aw)) and viscoelastic/inhomogeneous pressure (DeltaP(2)) were determined by the end-inflation occlusion method. Lungs were removed and prepared for histology. E(st), E(dyn), DeltaE and DeltaP(2) were higher in SLE than in control group, while R(aw) was similar in both groups. SLE group showed alveolar collapse and increased amount of elastic and collagen fibres. In conclusion, SLE mice showed an increase in elastic and viscoelastic/inhomogeneous pressures that was accompanied by deposition of collagen and elastic fibres in the alveolar septa.
Collapse
Affiliation(s)
- Alba B Souza-Fernandes
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Ilha do Fundão, 21949-900 Rio de Janeiro, RJ, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Santos FB, Nagato LKS, Boechem NM, Negri EM, Guimarães A, Capelozzi VL, Faffe DS, Zin WA, Rocco PRM. Time course of lung parenchyma remodeling in pulmonary and extrapulmonary acute lung injury. J Appl Physiol (1985) 2005; 100:98-106. [PMID: 16109834 DOI: 10.1152/japplphysiol.00395.2005] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The aim of this study is to test the hypothesis that the early changes in lung mechanics and the amount of type III collagen fiber do not predict the evolution of lung parenchyma remodeling in pulmonary and extrapulmonary acute lung injury (ALI). For this purpose, we analyzed the time course of lung parenchyma remodeling in murine models of pulmonary and extrapulmonary ALI with similar degrees of mechanical compromise at the early phase of ALI. Lung histology (light and electron microscopy), the amount of elastic and collagen fibers in the alveolar septa, the expression of matrix metalloproteinase-9, and mechanical parameters (lung-resistive and viscoelastic pressures, and static elastance) were analyzed 24 h, 1, 3, and 8 wk after the induction of lung injury. In control (C) pulmonary (p) and extrapulmonary (exp) groups, saline was intratracheally (it; 0.05 ml) instilled and intraperitoneally (ip; 0.5 ml) injected, respectively. In ALIp and ALIexp groups, mice received Escherichia coli lipopolysaccharide (10 microg it and 125 microg ip, respectively). At 24 h, all mechanical and morphometrical parameters, as well as type III collagen fiber content, increased similarly in ALIp and ALIexp groups. In ALIexp, all mechanical and histological data returned to control values at 1 wk. However, in ALIp, static elastance returned to control values at 3 wk, whereas resistive and viscoelastic pressures, as well as type III collagen fibers and elastin, remained elevated until week 8. ALIp showed higher expression of matrix metalloproteinase-9 than ALIexp. In conclusion, insult in pulmonary epithelium yielded fibroelastogenesis, whereas mice with ALI induced by endothelial lesion developed only fibrosis that was repaired early in the course of lung injury. Furthermore, early functional and morphological changes did not predict lung parenchyma remodeling.
Collapse
Affiliation(s)
- Flavia B Santos
- Laboratories of Respiration Physiology, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Menezes SLS, Bozza PT, Neto HCCF, Laranjeira AP, Negri EM, Capelozzi VL, Zin WA, Rocco PRM. Pulmonary and extrapulmonary acute lung injury: inflammatory and ultrastructural analyses. J Appl Physiol (1985) 2005; 98:1777-83. [PMID: 15649870 DOI: 10.1152/japplphysiol.01182.2004] [Citation(s) in RCA: 129] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
To test whether pulmonary and extrapulmonary acute lung injury (ALI) of identical mechanical compromise would express diverse morphological patterns and immunological pathways. For this purpose, a model of pulmonary (p) and extrapulmonary (exp) ALI with similar functional changes was developed and pulmonary morphology (light and electron microscopy), cytokines levels, and neutrophilic infiltration in the bronchoalveolar lavage fluid (BALF), elastic and collagen fiber content in the alveolar septa, and neutrophil apoptosis in the lung parenchyma were analyzed. BALB/c mice were divided into four groups. In control groups, saline was intratracheally (it, 0.05 ml) instilled and intraperitoneally (ip, 0.5 ml) injected, respectively. In the ALIp and ALIexp groups, mice received E. coli lipopolysaccharide (10 microg it and 125 microg ip, respectively). The changes in lung resistive and viscoelastic pressures and in static elastance, alveolar collapse, and cell content in lung tissue were similar in the ALIp and ALIexp groups. The ALIp group presented a threefold increase in KC (murine function homolog to IL-8) and IL-10 levels in the BALF in relation to ALIexp, whereas IL-6 level showed a twofold increase in ALIp. Neutrophils in the BALF were more frequent in ALIp than in ALIexp. ALIp showed more extensive injury of alveolar epithelium, intact capillary endothelium, and apoptotic neutrophils, whereas the ALIexp group presented interstitial edema and intact type I and II cells and endothelial layer. In conclusion, given the same pulmonary mechanical dysfunction independently of the etiology of ALI, insult in pulmonary epithelium yielded more pronounced inflammatory responses, which induce ultrastructural morphological changes.
Collapse
Affiliation(s)
- Sara L S Menezes
- Laboratory of Respiration Physiology, Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Centro de Ciências da Saúde, Ilha do Fundã, Rio de Janeiro, Brazil
| | | | | | | | | | | | | | | |
Collapse
|