1
|
Frost S, Pham K, Puvvula N, Oeung B, Heinrich EC. Changes in hypoxic and hypercapnic ventilatory responses at high altitude measured using rebreathing methods. J Appl Physiol (1985) 2024; 137:364-373. [PMID: 38779762 DOI: 10.1152/japplphysiol.00128.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/08/2024] [Accepted: 05/09/2024] [Indexed: 05/25/2024] Open
Abstract
Ventilatory responses to hypoxia and hypercapnia play a vital role in maintaining gas exchange homeostasis and in adaptation to high-altitude environments. This study investigates the mechanisms underlying sensitization of hypoxic and hypercapnic ventilatory response (HVR and HCVR, respectively) in individuals acclimatized to moderate high altitude (3,800 m). Thirty-one participants underwent chemoreflex testing using the Duffin-modified rebreathing technique. Measures were taken at sea level and after 2 days of acclimatization to high altitude. Ventilatory recruitment threshold (VRT), HCVR-Hyperoxia, HCVR-Hypoxia, and HVR were quantified. Acclimatization to high altitude resulted in increased HVR (P < 0.001) and HCVR-Hyperoxia (P < 0.001), as expected. We also observed that the decrease in VRT under hypoxic test conditions significantly contributed to the elevated HVR at high altitude since the change in VRT across hyperoxic and hypoxic test conditions was greater at high altitudes compared to baseline sea-level tests (P = 0.043). Pre-VRT, or basal, ventilation also increased at high altitudes (P < 0.001), but the change did not differ between oxygen conditions. Taken together, these data suggest that the increase in HVR at high altitude is at least partially driven by a larger decrease in the VRT in hypoxia versus hyperoxia at high altitude compared to sea level. This study highlights the intricacies of respiratory adaptations during acclimatization to moderate high altitude, shedding light on the roles of the VRT, baseline respiratory drive, and two-slope HCVR in this process. These findings contribute to our understanding of how human respiratory control responds to hypoxic and hypercapnic challenges at high altitude.NEW & NOTEWORTHY We report the first measurements of the hypoxic ventilatory response (HVR) after 2 days at high altitude using a CO2 rebreathing technique. We evaluated mechanisms by which the HVR becomes elevated with acclimatization (increased hypercapnic ventilatory response sensitivity in hypoxia, increased baseline respiratory drive in hypoxia, or lower ventilatory recruitment thresholds in hypoxia). For the first time, we report that decreases in the ventilatory recruitment threshold in hypoxia contribute to elevated HVR at high altitude.
Collapse
Affiliation(s)
- Shyleen Frost
- Division of Biomedical Sciences, School of MedicineUniversity of California, Riverside, California, United States
| | - Kathy Pham
- Division of Biomedical Sciences, School of MedicineUniversity of California, Riverside, California, United States
| | - Nikhil Puvvula
- Division of Biomedical Sciences, School of MedicineUniversity of California, Riverside, California, United States
| | - Britney Oeung
- Division of Biomedical Sciences, School of MedicineUniversity of California, Riverside, California, United States
| | - Erica C Heinrich
- Division of Biomedical Sciences, School of MedicineUniversity of California, Riverside, California, United States
| |
Collapse
|
2
|
Guluzade NA, Huggard JD, Keltz RR, Duffin J, Keir DA. Strategies to improve respiratory chemoreflex characterization by Duffin's rebreathing. Exp Physiol 2022; 107:1507-1520. [PMID: 36177675 DOI: 10.1113/ep090668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 09/21/2022] [Indexed: 12/14/2022]
Abstract
NEW FINDINGS What is the central question of this study? We assessed the test-retest variability of respiratory chemoreflex characterization by Duffin's modified rebreathing method and explored whether signal averaging of repeated trials improves confidence in parameter estimation. What is the main finding and its importance? Modified rebreathing is a reproducible method to characterize responses of central and peripheral respiratory chemoreflexes. Signal averaging of multiple repeated tests minimizes within- and between-test variability, improves the confidence of chemoreflex characterization and reduces the minimal change in parameters required to establish an effect. Future experiments that apply this method might benefit from signal averaging to improve its discriminatory effect. ABSTRACT We assessed the test-retest variability of central and peripheral respiratory chemoreflex characterization by Duffin's modified rebreathing method and explored whether signal averaging of repeated trials improves confidence in parameter estimation. Over four laboratory visits, 13 participants (mean ± SD age, 25 ± 5 years) performed six repetitions of modified rebreathing in isoxic-hypoxic conditions [end-tidal P O 2 ${P_{{{\rm{O}}_{\rm{2}}}}}$ ( P ET , O 2 ${P_{{\rm{ET,}}{{\rm{O}}_{\rm{2}}}}}$ ) = 50 mmHg] and isoxic-hyperoxic conditions ( P ET , O 2 ${P_{{\rm{ET,}}{{\rm{O}}_{\rm{2}}}}}$ = 150 mmHg). End-tidal P C O 2 ${P_{{\rm{C}}{{\rm{O}}_{\rm{2}}}}}$ ( P ET , C O 2 ${P_{{\rm{ET,C}}{{\rm{O}}_{\rm{2}}}}}$ ), P ET , O 2 ${P_{{\rm{ET,}}{{\rm{O}}_{\rm{2}}}}}$ and minute ventilation ( V ̇ $\dot {\rm V}$ E ) were measured breath-by-breath, by gas analyser and pneumotachograph. The V ̇ $\dot {\rm V}$ E versus P ET , C O 2 ${P_{{\rm{ET,C}}{{\rm{O}}_{\rm{2}}}}}$ relationships were fitted with a piecewise model to estimate the ventilatory recruitment threshold (VRT) and the slope above the VRT ( V ̇ $\dot {\rm V}$ E S). Breath-by-breath data from the three within- and between-day trials were averaged using two approaches [simple average (fit then average) and ensemble average (average then fit)] and compared with a single-trial fit. Variability was assessed by intraclass correlation (ICC) and coefficient of variance (CV), and the minimal detectable change was computed for each approach using two independent sets of three trials. Within days, the VRT and V ̇ $\dot {\rm V}$ E S exhibited excellent test-retest variability in both hyperoxic conditions (VRT: ICC = 0.965, CV = 2.3%; V ̇ $\dot {\rm V}$ E S: ICC = 0.932, CV = 15.5%) and hypoxic conditions (VRT: ICC = 0.970, CV = 2.9%; V ̇ $\dot {\rm V}$ E S: ICC = 0.891, CV = 17.2%). Between-day reproducibility was also excellent (hyperoxia, VRT: ICC = 0.930, CV = 2.2%; V ̇ $\dot {\rm V}$ E S: ICC = 0.918, CV = 14.2%; and hypoxia, VRT: ICC = 0.940, CV = 3.0%; V ̇ $\dot {\rm V}$ E S: ICC = 0.880, CV = 18.1%). Compared with a single-trial fit, there were no differences in VRT or V ̇ $\dot {\rm V}$ E S using the simple average or ensemble average approaches; however, ensemble averaging reduced the minimal detectable change for V ̇ $\dot {\rm V}$ E S from 2.95 to 1.39 L min-1 mmHg-1 (hyperoxia) and from 3.64 to 1.82 L min-1 mmHg-1 (hypoxia). Single trials of modified rebreathing are reproducible; however, signal averaging of repeated trials improves confidence in parameter estimation.
Collapse
Affiliation(s)
- Nasimi A Guluzade
- School of Kinesiology, The University of Western Ontario, London, Ontario, Canada
| | - Joshua D Huggard
- School of Kinesiology, The University of Western Ontario, London, Ontario, Canada
| | - Randi R Keltz
- School of Kinesiology, The University of Western Ontario, London, Ontario, Canada
| | - James Duffin
- Department of Anesthesiology and Pain Medicine, University of Toronto, Toronto, Ontario, Canada.,Department of Physiology, University of Toronto, Toronto, Ontario, Canada.,Thornhill Research Inc., Toronto, Ontario, Canada
| | - Daniel A Keir
- School of Kinesiology, The University of Western Ontario, London, Ontario, Canada.,Toronto General Research Institute, Toronto General Hospital, Toronto, Ontario, Canada.,Lawson Health Research Institute, London, Ontario, Canada
| |
Collapse
|
3
|
Steele AR, Ainslie PN, Stone R, Tymko K, Tymko C, Howe CA, MacLeod D, Anholm JD, Gasho C, Tymko MM. Global REACH 2018: Characterizing Acid-Base Balance Over 21 Days at 4,300 m in Lowlanders. High Alt Med Biol 2022; 23:185-191. [PMID: 35231184 DOI: 10.1089/ham.2021.0115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Steele, Andrew R., Philip N. Ainslie, Rachel Stone, Kaitlyn Tymko, Courtney Tymko, Connor A. Howe, David MacLeod, James D. Anholm, Christopher Gasho, and Michael M. Tymko. Global REACH 2018: characterizing acid-base balance over 21 days at 4,300 m in lowlanders. High Alt Med Biol. 23:185-191, 2022. Introduction: High altitude exposure results in hyperventilatory-induced respiratory alkalosis, followed by metabolic compensation to return arterial blood pH (pHa) toward sea level values. However, previous work has limited sample sizes, short-term exposure, and pharmacological confounders (e.g., acetazolamide). The purpose of this investigation was to characterize acid-base balance after rapid ascent to high altitude (i.e., 4,300 m) in lowlanders. We hypothesized that despite rapid bicarbonate ([HCO3-]) excretion during early acclimatization, partial respiratory alkalosis would still be apparent as reflected in elevations in pHa compared with sea level after 21 days of acclimatization to 4,300 m. Methods: In 16 (3 female) healthy volunteers not taking any medications, radial artery blood samples were collected and analyzed at sea level (150 m; Lima, Peru), and on days 1, 3, 7, 14, and 21 after rapid automobile (∼8 hours) ascent to high altitude (4,300 m; Cerro de Pasco, Peru). Results and Discussion: Although reductions in [HCO3-] occurred by day 3 (p < 0.01), they remained stable thereafter and were insufficient to fully normalize pHa back to sea level values over the subsequent 21 days (p < 0.01). These data indicate that only partial compensation for respiratory alkalosis persists throughout 21 days at 4,300 m.
Collapse
Affiliation(s)
- Andrew R Steele
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia-Okanagan, Kelowna, British Columbia, Canada
| | - Philip N Ainslie
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia-Okanagan, Kelowna, British Columbia, Canada
| | - Rachel Stone
- Department of Kinesiology, University of Windsor, Windsor, Ontario, Canada
| | - Kaitlyn Tymko
- Department of Kinesiology and Recreation Management, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Courtney Tymko
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia-Okanagan, Kelowna, British Columbia, Canada
| | - Connor A Howe
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia-Okanagan, Kelowna, British Columbia, Canada
| | - David MacLeod
- Human Pharmacology and Physiology Lab, Duke University Medical Center, Durham, North Carolina, USA
| | - James D Anholm
- Division of Pulmonary and Critical Care, Department of Medicine, School of Medicine, Loma Linda University, Loma Linda, California, USA
| | - Christopher Gasho
- Division of Pulmonary and Critical Care, Department of Medicine, School of Medicine, Loma Linda University, Loma Linda, California, USA
| | - Michael M Tymko
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia-Okanagan, Kelowna, British Columbia, Canada.,Faculty of Kinesiology, Sport, and Recreation, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
4
|
Ivy CM, Scott GR. Evolved changes in breathing and CO 2 sensitivity in deer mice native to high altitudes. Am J Physiol Regul Integr Comp Physiol 2018; 315:R1027-R1037. [PMID: 30183337 DOI: 10.1152/ajpregu.00220.2018] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
We examined the control of breathing by O2 and CO2 in deer mice native to high altitude to help uncover the physiological specializations used to cope with hypoxia in high-altitude environments. Highland deer mice ( Peromyscus maniculatus) and lowland white-footed mice ( P. leucopus) were bred in captivity at sea level. The first and second generation progeny of each population was raised to adulthood and then acclimated to normoxia or hypobaric hypoxia (12 kPa O2, simulating hypoxia at ~4,300 m) for 6-8 wk. Ventilatory responses to poikilocapnic hypoxia (stepwise reductions in inspired O2) and hypercapnia (stepwise increases in inspired CO2) were then compared between groups. Both generations of lowlanders appeared to exhibit ventilatory acclimatization to hypoxia (VAH), in which hypoxia acclimation enhanced the hypoxic ventilatory response and/or made the breathing pattern more effective (higher tidal volumes and lower breathing frequencies at a given total ventilation). In contrast, hypoxia acclimation had no effect on breathing in either generation of highlanders, and breathing was generally similar to hypoxia-acclimated lowlanders. Therefore, attenuation of VAH may be an evolved feature of highlanders that persists for multiple generations in captivity. Hypoxia acclimation increased CO2 sensitivity of breathing, but in this case, the effect of hypoxia acclimation was similar in highlanders and lowlanders. Our results suggest that highland deer mice have evolved high rates of alveolar ventilation that are unaltered by exposure to chronic hypoxia, but they have preserved ventilatory sensitivity to CO2.
Collapse
Affiliation(s)
- Catherine M Ivy
- Department of Biology, McMaster University , Hamilton, ON , Canada
| | - Graham R Scott
- Department of Biology, McMaster University , Hamilton, ON , Canada
| |
Collapse
|
5
|
Ventilatory and cerebrovascular regulation and integration at high-altitude. Clin Auton Res 2018; 28:423-435. [PMID: 29574504 DOI: 10.1007/s10286-018-0522-2] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 03/09/2018] [Indexed: 01/17/2023]
Abstract
Ascent to high-altitude elicits compensatory physiological adaptations in order to improve oxygenation throughout the body. The brain is particularly vulnerable to the hypoxemia of terrestrial altitude exposure. Herein we review the ventilatory and cerebrovascular changes at altitude and how they are both implicated in the maintenance of oxygen delivery to the brain. Further, the interdependence of ventilation and cerebral blood flow at altitude is discussed. Following the acute hypoxic ventilatory response, acclimatization leads to progressive increases in ventilation, and a partial mitigation of hypoxemia. Simultaneously, cerebral blood flow increases during initial exposure to altitude when hypoxemia is the greatest. Following ventilatory acclimatization to altitude, and an increase in hemoglobin concentration-which both underscore improvements in arterial oxygen content over time at altitude-cerebral blood flow progressively decreases back to sea-level values. The complimentary nature of these responses (ventilatory, hematological and cerebral) lead to a tightly maintained cerebral oxygen delivery while at altitude. Despite this general maintenance of global cerebral oxygen delivery, the manner in which this occurs reflects integration of these physiological responses. Indeed, ventilation directly influences cerebral blood flow by determining the prevailing blood gas and acid/base stimuli at altitude, but cerebral blood flow may also influence ventilation by altering central chemoreceptor stimulation via central CO2 washout. The causes and consequences of the integration of ventilatory and cerebral blood flow regulation at high altitude are outlined.
Collapse
|
6
|
Fan JL, Subudhi AW, Duffin J, Lovering AT, Roach RC, Kayser B. AltitudeOmics: Resetting of Cerebrovascular CO2 Reactivity Following Acclimatization to High Altitude. Front Physiol 2016; 6:394. [PMID: 26779030 PMCID: PMC4705915 DOI: 10.3389/fphys.2015.00394] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 12/03/2015] [Indexed: 12/25/2022] Open
Abstract
Previous studies reported enhanced cerebrovascular CO2 reactivity upon ascent to high altitude using linear models. However, there is evidence that this response may be sigmoidal in nature. Moreover, it was speculated that these changes at high altitude are mediated by alterations in acid-base buffering. Accordingly, we reanalyzed previously published data to assess middle cerebral blood flow velocity (MCAv) responses to modified rebreathing at sea level (SL), upon ascent (ALT1) and following 16 days of acclimatization (ALT16) to 5260 m in 21 lowlanders. Using sigmoid curve fitting of the MCAv responses to CO2, we found the amplitude (95 vs. 129%, SL vs. ALT1, 95% confidence intervals (CI) [77, 112], [111, 145], respectively, P = 0.024) and the slope of the sigmoid response (4.5 vs. 7.5%/mmHg, SL vs. ALT1, 95% CIs [3.1, 5.9], [6.0, 9.0], respectively, P = 0.026) to be enhanced at ALT1, which persisted with acclimatization at ALT16 (amplitude: 177, 95% CI [139, 215], P < 0.001; slope: 10.3%/mmHg, 95% CI [8.2, 12.5], P = 0.003) compared to SL. Meanwhile, the sigmoidal response midpoint was unchanged at ALT1 (SL: 36.5 mmHg; ALT1: 35.4 mmHg, 95% CIs [34.0, 39.0], [33.1, 37.7], respectively, P = 0.982), while it was reduced by ~7 mmHg at ALT16 (28.6 mmHg, 95% CI [26.4, 30.8], P = 0.001 vs. SL), indicating leftward shift of the cerebrovascular CO2 response to a lower arterial partial pressure of CO2 (PaCO2) following acclimatization to altitude. Sigmoid fitting revealed a leftward shift in the midpoint of the cerebrovascular response curve which could not be observed with linear fitting. These findings demonstrate that there is resetting of the cerebrovascular CO2 reactivity operating point to a lower PaCO2 following acclimatization to high altitude. This cerebrovascular resetting is likely the result of an altered acid-base buffer status resulting from prolonged exposure to the severe hypocapnia associated with ventilatory acclimatization to high altitude.
Collapse
Affiliation(s)
- Jui-Lin Fan
- Centre for Translational Physiology, University of OtagoWellington, New Zealand; Department of Surgery and Anaesthesia, University of OtagoWellington, New Zealand
| | - Andrew W Subudhi
- Department of Emergency Medicine, Altitude Research Center, University of Colorado DenverAurora, CO, USA; Department of Biology, University of Colorado Colorado SpringsColorado Springs, CO, USA
| | - James Duffin
- Department of Physiology, University of TorontoToronto, ON, Canada; Department of Anaesthesiology, University of TorontoToronto, ON, Canada; University Health NetworkToronto, ON, Canada
| | - Andrew T Lovering
- Department of Human Physiology, University of Oregon Eugene, Oregon, OR, USA
| | - Robert C Roach
- Department of Emergency Medicine, Altitude Research Center, University of Colorado DenverAurora, CO, USA; Department of Biology, University of Colorado Colorado SpringsColorado Springs, CO, USA
| | - Bengt Kayser
- Institute of Sports Sciences, Faculty of Biology and Medicine, University of LausanneLausanne, Switzerland; Department of Physiology, Faculty of Biology and Medicine, University of LausanneLausanne, Switzerland
| |
Collapse
|
7
|
Zhang P, Shi X, Downey HF. Two-week normobaric intermittent-hypoxic exposures stabilize cerebral perfusion during hypocapnia and hypercapnia. Exp Biol Med (Maywood) 2014; 240:961-8. [PMID: 25504012 DOI: 10.1177/1535370214562339] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Accepted: 10/14/2014] [Indexed: 11/15/2022] Open
Abstract
The effect of moderately extended, intermittent-hypoxia (IH) on cerebral perfusion during changes in CO2 was unknown. Thus, we assessed the changes in cerebral vascular conductance (CVC) and cerebral tissue oxygenation (ScO2) during experimental hypocapnia and hypercapnia following 14-day normobaric exposures to IH (10% O2). CVC was estimated from the ratio of mean middle cerebral arterial blood flow velocity (transcranial Doppler sonography) to mean arterial pressure (tonometry), and ScO2 in the prefrontal cortex was monitored by near-infrared spectroscopy. Changes in CVC and ScO2 during changes in partial pressure of end-tidal CO2 (PETCO2, mass spectrometry) induced by 30-s paced-hyperventilation (hypocapnia) and during 6-min CO2 rebreathing (hypercapnia) were compared before and after 14-day IH exposures in eight young nonsmokers. Repetitive IH exposures reduced the ratio of %ΔCVC/ΔPETCO2 during hypocapnia (1.00 ± 0.13 vs 1.94 ± 0.35 vs %/mmHg, P = 0.026) and the slope of ΔCVC/ΔPETCO2 during hypercapnia (1.79 ± 0.37 vs 2.97 ± 0.64 %/mmHg, P = 0.021), but had no significant effect on ΔScO2/ΔPETCO2. The ventilatory response to hypercapnia during CO2 rebreathing was significantly diminished following 14-day IH exposures (0.83 ± 0.07 vs 1.14 ± 0.09 L/min/mmHg, P = 0.009). We conclude that repetitive normobaric IH exposures significantly diminish variations of cerebral perfusion in response to hypercapnia and hypocapnia without compromising cerebral tissue oxygenation. This IH-induced blunting of cerebral vasoreactivity during CO2 variations helps buffer excessive oscillations of cerebral underperfusion and overperfusion while sustaining cerebral O2 homeostasis.
Collapse
Affiliation(s)
- Peizhen Zhang
- Department of Integrative Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, TX 76107, USA Beijing Sport University, Beijing 100084, China
| | - Xiangrong Shi
- Department of Integrative Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, TX 76107, USA Cardiovascular Research Institute, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - H Fred Downey
- Department of Integrative Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, TX 76107, USA Cardiovascular Research Institute, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| |
Collapse
|
8
|
Zhang P, Downey HF, Chen S, Shi X. Two-week normobaric intermittent hypoxia exposures enhance oxyhemoglobin equilibrium and cardiac responses during hypoxemia. Am J Physiol Regul Integr Comp Physiol 2014; 307:R721-30. [PMID: 25056104 DOI: 10.1152/ajpregu.00191.2014] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Intermittent hypoxia (IH) is extensively applied to challenge cardiovascular and respiratory function, and to induce physiological acclimatization. The purpose of this study was to test the hypothesis that oxyhemoglobin equilibrium and tachycardiac responses during hypoxemia were enhanced after 14-day IH exposures. Normobaric-poikilocapnic hypoxia was induced with inhalation of 10% O2 for 5-6 min interspersed with 4 min recovery on eight nonsmokers. Heart rate (HR), arterial O2 saturation (SaO 2), and end-tidal O2 (PetO 2) were continuously monitored during cyclic normoxia and hypoxia. These variables were compared during the first and fifth hypoxic bouts between day 1 and day 14. There was a rightward shift in the oxyhemoglobin equilibrium response following 14-day IH exposures, as indicated by the greater PetO 2 (an index of arterial Po2) at 50% of SaO 2 on day 14 compared with day 1 [33.9 ± 1.5 vs. 28.2 ± 1.3 mmHg (P = 0.005) during the first hypoxic bout and 39.4 ± 2.4 vs. 31.4 ± 1.5 mmHg (P = 0.006) during the fifth hypoxic bout] and by the augmented gains of ΔSaO 2/ΔPetO 2 (i.e., deoxygenation) during PetO 2 from 65 to 40 mmHg in the first (1.12 ± 0.08 vs. 0.80 ± 0.02%/mmHg, P = 0.001) and the fifth (1.76 ± 0.31 vs. 1.05 ± 0.06%/mmHg, P = 0.024) hypoxic bouts. Repetitive IH exposures attenuated (P = 0.049) the tachycardiac response to hypoxia while significantly enhancing normoxic R-R interval variability in low-frequency and high-frequency spectra without changes in arterial blood pressure at rest or during hypoxia. We conclude that 14-day IH exposures enhance arterial O2 delivery and improve vagal control of HR during hypoxic hypoxemia.
Collapse
Affiliation(s)
- Peizhen Zhang
- Department of Integrative Physiology, University of North Texas Health Science Center at Fort Worth, Fort Worth, Texas; Beijing Sport University, Beijing, China
| | - H Fred Downey
- Department of Integrative Physiology, University of North Texas Health Science Center at Fort Worth, Fort Worth, Texas; Cardiovascular Research Institute, University of North Texas Health Science Center at Fort Worth, Fort Worth, Texas; and
| | - Shande Chen
- Department of Biostatistics, University of North Texas Health Science Center at Fort Worth, Fort Worth, Texas
| | - Xiangrong Shi
- Department of Integrative Physiology, University of North Texas Health Science Center at Fort Worth, Fort Worth, Texas; Cardiovascular Research Institute, University of North Texas Health Science Center at Fort Worth, Fort Worth, Texas; and
| |
Collapse
|
9
|
Ainslie PN, Lucas SJ, Burgess KR. Breathing and sleep at high altitude. Respir Physiol Neurobiol 2013; 188:233-56. [DOI: 10.1016/j.resp.2013.05.020] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2013] [Revised: 05/04/2013] [Accepted: 05/16/2013] [Indexed: 10/26/2022]
|
10
|
Richard NA, Sahota IS, Widmer N, Ferguson S, Sheel AW, Koehle MS. Acute mountain sickness, chemosensitivity, and cardiorespiratory responses in humans exposed to hypobaric and normobaric hypoxia. J Appl Physiol (1985) 2013; 116:945-52. [PMID: 23823153 DOI: 10.1152/japplphysiol.00319.2013] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We examined the control of breathing, cardiorespiratory effects, and the incidence of acute mountain sickness (AMS) in humans exposed to hypobaric hypoxia (HH) and normobaric hypoxia (NH), and under two control conditions [hypobaric normoxia (HN) and normobaric normoxia (NN)]. Exposures were 6 h in duration, and separated by 2 wk between hypoxic exposures and 1 wk between normoxic exposures. Before and after exposures, subjects (n = 11) underwent hyperoxic and hypoxic Duffin CO2 rebreathing tests and a hypoxic ventilatory response test (HVR). Inside the environmental chamber, minute ventilation (V(E)), tidal volume (V(T)), frequency of breathing (fB), blood oxygenation, heart rate, and blood pressure were measured at 5 and 30 min and hourly until exit. Symptoms of AMS were evaluated using the Lake Louise score (LLS). Both the hyperoxic and hypoxic CO2 thresholds were lower after HH and NH, whereas CO2 sensitivity was increased after HH and NH in the hypoxic test and after NH in the hyperoxic test. Values for HVR were similar across the four exposures. No major differences were observed for Ve or any other cardiorespiratory variables between NH and HH. The LLS was greater in AMS-susceptible than in AMS-resistant subjects; however, LLS was alike between HH and NH. In AMS-susceptible subjects, fB correlated positively and Vt negatively with the LLS. We conclude that 6 h of hypoxic exposure is sufficient to lower the peripheral and central CO2 threshold but does not induce differences in cardiorespiratory variables or AMS incidence between HH and NH.
Collapse
Affiliation(s)
- Normand A Richard
- School of Kinesiology, University of British Columbia, Vancouver, British Columbia, Canada
| | | | | | | | | | | |
Collapse
|
11
|
Duffin J. Response to letter from Teppema and Berendsen concerning Fan et al. (2012): 'Acetazolamide and cerebrovascular function at high altitude'. J Physiol 2012; 590:3623; author reply 3625-6. [PMID: 22855055 DOI: 10.1113/jphysiol.2012.235713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
|
12
|
Barnes JN, Silva BM. Ascent to altitude: an integrated cerebrovascular, ventilatory and acid-base response. J Physiol 2010; 588:1815-6. [PMID: 20516346 DOI: 10.1113/jphysiol.2010.189837] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Affiliation(s)
- Jill N Barnes
- Department of Anesthesiology, Mayo Clinic, Rochester, MN 55905, USA.
| | | |
Collapse
|
13
|
Teppema LJ, Dahan A. The Ventilatory Response to Hypoxia in Mammals: Mechanisms, Measurement, and Analysis. Physiol Rev 2010; 90:675-754. [DOI: 10.1152/physrev.00012.2009] [Citation(s) in RCA: 257] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The respiratory response to hypoxia in mammals develops from an inhibition of breathing movements in utero into a sustained increase in ventilation in the adult. This ventilatory response to hypoxia (HVR) in mammals is the subject of this review. The period immediately after birth contains a critical time window in which environmental factors can cause long-term changes in the structural and functional properties of the respiratory system, resulting in an altered HVR phenotype. Both neonatal chronic and chronic intermittent hypoxia, but also chronic hyperoxia, can induce such plastic changes, the nature of which depends on the time pattern and duration of the exposure (acute or chronic, episodic or not, etc.). At adult age, exposure to chronic hypoxic paradigms induces adjustments in the HVR that seem reversible when the respiratory system is fully matured. These changes are orchestrated by transcription factors of which hypoxia-inducible factor 1 has been identified as the master regulator. We discuss the mechanisms underlying the HVR and its adaptations to chronic changes in ambient oxygen concentration, with emphasis on the carotid bodies that contain oxygen sensors and initiate the response, and on the contribution of central neurotransmitters and brain stem regions. We also briefly summarize the techniques used in small animals and in humans to measure the HVR and discuss the specific difficulties encountered in its measurement and analysis.
Collapse
Affiliation(s)
- Luc J. Teppema
- Department of Anesthesiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Albert Dahan
- Department of Anesthesiology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
14
|
The role of the central chemoreceptors: a modeling perspective. Respir Physiol Neurobiol 2010; 173:230-43. [PMID: 20227528 DOI: 10.1016/j.resp.2010.03.010] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2010] [Revised: 03/06/2010] [Accepted: 03/08/2010] [Indexed: 11/22/2022]
Abstract
After introducing the respiratory control system, a previously developed model of the respiratory chemoreflexes, based on rebreathing test data, is briefly described. This model is used to gain insights into the respiratory chemoreflex characteristics of a selection of individuals, and so discover the role of their central chemoreceptors. The chemoreflex model characteristics for each individual were estimated by adjusting the model parameters so that its predictions fit their rebreathing test results. To gain a steady state description of the control of breathing at rest the chemoreflex model is combined with a model of the cerebrovascular reactivity and converted from P(CO)₂ to [H(+)] chemoreceptor inputs. This description is used to illustrate how acid-base and cerebrovascular reactivity factors affect the environment of the central chemoreceptors and determine their role in breathing control. Finally, a dynamic model incorporating the chemoreflex model, acid-base and cerebrovascular reactivity is used to show the role of the central chemoreceptors in stabilizing breathing during sleep at altitude.
Collapse
|
15
|
Slessarev M, Mardimae A, Preiss D, Vesely A, Balaban DY, Greene R, Duffin J, Fisher JA. Differences in the control of breathing between Andean highlanders and lowlanders after 10 days acclimatization at 3850 m. J Physiol 2010; 588:1607-21. [PMID: 20231143 DOI: 10.1113/jphysiol.2009.186064] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
We used Duffin's isoxic hyperoxic ( mmHg) and hypoxic ( mmHg) rebreathing tests to compare the control of breathing in eight (7 male) Andean highlanders and six (4 male) acclimatizing Caucasian lowlanders after 10 days at 3850 m. Compared to lowlanders, highlanders had an increased non-chemoreflex drive to breathe, characterized by higher basal ventilation at both hyperoxia (10.5 +/- 0.7 vs. 4.9 +/- 0.5 l min(1), P = 0.002) and hypoxia (13.8 +/- 1.4 vs. 5.7 +/- 0.9 l min(1), P < 0.001). Highlanders had a single ventilatory sensitivity to CO(2) that was lower than that of the lowlanders (P < 0.001), whose response was characterized by two ventilatory sensitivities (VeS1 and VeS2) separated by a patterning threshold. There was no difference in ventilatory recruitment thresholds (VRTs) between populations (P = 0.209). Hypoxia decreased VRT within both populations (highlanders: 36.4 +/- 1.3 to 31.7 +/- 0.7 mmHg, P < 0.001; lowlanders: 35.3 +/- 1.3 to 28.8 +/- 0.9 mmHg, P < 0.001), but it had no effect on basal ventilation (P = 0.12) or on ventilatory sensitivities in either population (P = 0.684). Within lowlanders, VeS2 was substantially greater than VeS1 at both isoxic tensions (hyperoxic: 9.9 +/- 1.7 vs. 2.8 +/- 0.2, P = 0.005; hypoxic: 13.2 +/- 1.9 vs. 2.8 +/- 0.5, P < 0.001), although hypoxia had no effect on either of the sensitivities (P = 0.192). We conclude that the control of breathing in Andean highlanders is different from that in acclimatizing lowlanders, although there are some similarities. Specifically, acclimatizing lowlanders have relatively lower non-chemoreflex drives to breathe, increased ventilatory sensitivities to CO(2), and an altered pattern of ventilatory response to CO(2) with two ventilatory sensitivities separated by a patterning threshold. Similar to highlanders and unlike lowlanders at sea-level, acclimatizing lowlanders respond to hypobaric hypoxia by decreasing their VRT instead of changing their ventilatory sensitivity to CO(2).
Collapse
Affiliation(s)
- Marat Slessarev
- Department of Anesthesia, University Health Network, University of Toronto, Toronto, Canada, M5G 2C4
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Slessarev M, Prisman E, Ito S, Watson RR, Jensen D, Preiss D, Greene R, Norboo T, Stobdan T, Diskit D, Norboo A, Kunzang M, Appenzeller O, Duffin J, Fisher JA. Differences in the control of breathing between Himalayan and sea-level residents. J Physiol 2010; 588:1591-606. [PMID: 20194122 DOI: 10.1113/jphysiol.2009.185504] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
We compared the control of breathing of 12 male Himalayan highlanders with that of 21 male sea-level Caucasian lowlanders using isoxic hyperoxic ( = 150 mmHg) and hypoxic ( = 50 mmHg) Duffin's rebreathing tests. Highlanders had lower mean +/- s.e.m. ventilatory sensitivities to CO(2) than lowlanders at both isoxic tensions (hyperoxic: 2.3 +/- 0.3 vs. 4.2 +/- 0.3 l min(1) mmHg(1), P = 0.021; hypoxic: 2.8 +/- 0.3 vs. 7.1 +/- 0.6 l min(1) mmHg(1), P < 0.001), and the usual increase in ventilatory sensitivity to CO(2) induced by hypoxia in lowlanders was absent in highlanders (P = 0.361). Furthermore, the ventilatory recruitment threshold (VRT) CO(2) tensions in highlanders were lower than in lowlanders (hyperoxic: 33.8 +/- 0.9 vs. 48.9 +/- 0.7 mmHg, P < 0.001; hypoxic: 31.2 +/- 1.1 vs. 44.7 +/- 0.7 mmHg, P < 0.001). Both groups had reduced ventilatory recruitment thresholds with hypoxia (P < 0.001) and there were no differences in the sub-threshold ventilations (non-chemoreflex drives to breathe) between lowlanders and highlanders at both isoxic tensions (P = 0.982), with a trend for higher basal ventilation during hypoxia (P = 0.052). We conclude that control of breathing in Himalayan highlanders is distinctly different from that of sea-level lowlanders. Specifically, Himalayan highlanders have decreased central and absent peripheral sensitivities to CO(2). Their response to hypoxia was heterogeneous, with the majority decreasing their VRT indicating either a CO(2)-independent increase in activity of peripheral chemoreceptor or hypoxia-induced increase in [H(+)] at the central chemoreceptor. In some highlanders, the decrease in VRT was accompanied by an increase in sensitivity to CO(2), while in others VRT remained unchanged and their sub-threshold ventilations increased, although these were not statistically significant.
Collapse
Affiliation(s)
- M Slessarev
- Department of Anesthesia, University Health Network, University of Toronto, Toronto, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Jensen D, Mask G, Tschakovsky ME. Variability of the ventilatory response to Duffin's modified hyperoxic and hypoxic rebreathing procedure in healthy awake humans. Respir Physiol Neurobiol 2010; 170:185-97. [DOI: 10.1016/j.resp.2009.12.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2009] [Revised: 12/16/2009] [Accepted: 12/17/2009] [Indexed: 11/27/2022]
|
18
|
Battisti A, Fisher J, Duffin J. Measuring the Hypoxic Ventilatory Response. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010; 669:221-4. [DOI: 10.1007/978-1-4419-5692-7_44] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
19
|
Fan JL, Burgess KR, Basnyat R, Thomas KN, Peebles KC, Lucas SJE, Lucas RAI, Donnelly J, Cotter JD, Ainslie PN. Influence of high altitude on cerebrovascular and ventilatory responsiveness to CO2. J Physiol 2009; 588:539-49. [PMID: 20026618 DOI: 10.1113/jphysiol.2009.184051] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
An altered acid-base balance following ascent to high altitude has been well established. Such changes in pH buffering could potentially account for the observed increase in ventilatory CO(2) sensitivity at high altitude. Likewise, if [H(+)] is the main determinant of cerebrovascular tone, then an alteration in pH buffering may also enhance the cerebral blood flow (CBF) responsiveness to CO(2) (termed cerebrovascular CO(2) reactivity). However, the effect altered acid-base balance associated with high altitude ascent on cerebrovascular and ventilatory responsiveness to CO(2) remains unclear. We measured ventilation , middle cerebral artery velocity (MCAv; index of CBF) and arterial blood gases at sea level and following ascent to 5050 m in 17 healthy participants during modified hyperoxic rebreathing. At 5050 m, resting , MCAv and pH were higher (P < 0.01), while bicarbonate concentration and partial pressures of arterial O(2) and CO(2) were lower (P < 0.01) compared to sea level. Ascent to 5050 m also increased the hypercapnic MCAv CO(2) reactivity (2.9 +/- 1.1 vs. 4.8 +/- 1.4% mmHg(1); P < 0.01) and CO(2) sensitivity (3.6 +/- 2.3 vs. 5.1 +/- 1.7 l min(1) mmHg(1); P < 0.01). Likewise, the hypocapnic MCAv CO(2) reactivity was increased at 5050 m (4.2 +/- 1.0 vs. 2.0 +/- 0.6% mmHg(1); P < 0.01). The hypercapnic MCAv CO(2) reactivity correlated with resting pH at high altitude (R(2) = 0.4; P < 0.01) while the central chemoreflex threshold correlated with bicarbonate concentration (R(2) = 0.7; P < 0.01). These findings indicate that (1) ascent to high altitude increases the ventilatory CO(2) sensitivity and elevates the cerebrovascular responsiveness to hypercapnia and hypocapnia, and (2) alterations in cerebrovascular CO(2) reactivity and central chemoreflex may be partly attributed to an acid-base balance associated with high altitude ascent. Collectively, our findings provide new insights into the influence of high altitude on cerebrovascular function and highlight the potential role of alterations in acid-base balance in the regulation in CBF and ventilatory control.
Collapse
Affiliation(s)
- Jui-Lin Fan
- Department of Physiology, Otago School of Medical Science, University of Otago, Dunedin, New Zealand
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Ainslie PN, Duffin J. Integration of cerebrovascular CO2 reactivity and chemoreflex control of breathing: mechanisms of regulation, measurement, and interpretation. Am J Physiol Regul Integr Comp Physiol 2009; 296:R1473-95. [PMID: 19211719 DOI: 10.1152/ajpregu.91008.2008] [Citation(s) in RCA: 416] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Cerebral blood flow (CBF) and its distribution are highly sensitive to changes in the partial pressure of arterial CO(2) (Pa(CO(2))). This physiological response, termed cerebrovascular CO(2) reactivity, is a vital homeostatic function that helps regulate and maintain central pH and, therefore, affects the respiratory central chemoreceptor stimulus. CBF increases with hypercapnia to wash out CO(2) from brain tissue, thereby attenuating the rise in central Pco(2), whereas hypocapnia causes cerebral vasoconstriction, which reduces CBF and attenuates the fall of brain tissue Pco(2). Cerebrovascular reactivity and ventilatory response to Pa(CO(2)) are therefore tightly linked, so that the regulation of CBF has an important role in stabilizing breathing during fluctuating levels of chemical stimuli. Indeed, recent reports indicate that cerebrovascular responsiveness to CO(2), primarily via its effects at the level of the central chemoreceptors, is an important determinant of eupneic and hypercapnic ventilatory responsiveness in otherwise healthy humans during wakefulness, sleep, and exercise and at high altitude. In particular, reductions in cerebrovascular responsiveness to CO(2) that provoke an increase in the gain of the chemoreflex control of breathing may underpin breathing instability during central sleep apnea in patients with congestive heart failure and on ascent to high altitude. In this review, we summarize the major factors that regulate CBF to emphasize the integrated mechanisms, in addition to Pa(CO(2)), that control CBF. We discuss in detail the assessment and interpretation of cerebrovascular reactivity to CO(2). Next, we provide a detailed update on the integration of the role of cerebrovascular CO(2) reactivity and CBF in regulation of chemoreflex control of breathing in health and disease. Finally, we describe the use of a newly developed steady-state modeling approach to examine the effects of changes in CBF on the chemoreflex control of breathing and suggest avenues for future research.
Collapse
Affiliation(s)
- Philip N Ainslie
- Department of Physiology, University of Otago, Dunedin, New Zealand.
| | | |
Collapse
|
21
|
Duffin J. Modelling the respiratory chemoreflex control of Acid-base balance. CONFERENCE PROCEEDINGS : ... ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL CONFERENCE 2008; 2005:5836-9. [PMID: 17281586 DOI: 10.1109/iembs.2005.1615816] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
A mathematical model is presented describing the respiratory chemoreflex relations between the partial pressures of carbon dioxide and oxygen at the central and peripheral chemoreceptors and the resulting pulmonary ventilation. These chemoreflex relations in terms of carbon dioxide partial pressures are transformed to relations in terms of hydrogen ion concentrations in brain tissue and arterial blood using the Stewart approach to acid-base balance. In this way, the chemoreflex relations can be expressed in terms of the actual stimulus to the respiratory chemoreceptors.
Collapse
Affiliation(s)
- J Duffin
- Departtment of Anaesthesia and Physiology University of Toronto, Ontario
| |
Collapse
|
22
|
Sheel AW, MacNutt MJ. Control of ventilation in humans following intermittent hypoxia. Appl Physiol Nutr Metab 2008; 33:573-81. [DOI: 10.1139/h08-008] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Exposure to chronic or intermittent hypoxia produces alterations in the ventilatory response to hypoxia. These adaptations can differ depending on the severity of the hypoxic stimulus, its duration, its pattern, and the presence or absence of other chemical stimuli. As such, there are significant differences between the responses to intermittent versus continuous hypoxia. Intermittent hypoxia (IH) has been shown to elicit significant changes in the peripheral chemoresponse, but the functional implications of these changes for resting and exercise ventilation are not clear. We summarize the impact of IH on resting chemosensitivity and discuss the use of IH to better understand ventilatory control during exercise. We also suggest future directions for this relatively young field, including potential clinical applications of IH research.
Collapse
Affiliation(s)
- Andrew William Sheel
- Health and Integrative Physiology Laboratory, School of Human Kinetics, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Meaghan Joelle MacNutt
- Health and Integrative Physiology Laboratory, School of Human Kinetics, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| |
Collapse
|
23
|
Ainslie PN, Burgess KR. Cardiorespiratory and cerebrovascular responses to hyperoxic and hypoxic rebreathing: Effects of acclimatization to high altitude. Respir Physiol Neurobiol 2008; 161:201-9. [DOI: 10.1016/j.resp.2008.02.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2007] [Revised: 01/23/2008] [Accepted: 02/13/2008] [Indexed: 11/29/2022]
|
24
|
Abstract
After defining the current approach to measuring the hypoxic ventilatory response this paper explains why this method is not appropriate for comparisons between individuals or conditions, and does not adequately measure the parameters of the peripheral chemoreflex. A measurement regime is therefore proposed that incorporates three procedures. The first procedure measures the peripheral chemoreflex responsiveness to both hypoxia and CO(2) in terms of hypoxia's effects on the sensitivity and ventilatory recruitment threshold of the peripheral chemoreflex response to CO(2). The second and third procedures employ current methods for measuring the isocapnic and poikilocapnic ventilatory responses to hypoxia, respectively, over a period of 20 min. The isocapnic measure is used to determine the time course characteristics of hypoxic ventilatory decline and the poikilocapnic measure shows the ventilatory response to a hypoxic environment. A measurement regime incorporating these three procedures will permit a detailed assessment of the peripheral chemoreflex response to hypoxia that allows comparisons to be made between individuals and different physiological and environmental conditions.
Collapse
Affiliation(s)
- James Duffin
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
25
|
Wolf MB, Garner RP. A Mathematical Model of Human Respiration at Altitude. Ann Biomed Eng 2007; 35:2003-22. [PMID: 17674206 DOI: 10.1007/s10439-007-9361-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2006] [Accepted: 07/18/2007] [Indexed: 10/23/2022]
Abstract
We developed a mathematical model of human respiration in the awake state that can be used to predict changes in ventilation, blood gases, and other critical variables during conditions of hypocapnia, hypercapnia and these conditions combined with hypoxia. Hence, the model is capable of describing ventilation changes due to the hypocapnic-hypoxia of high altitude. The basic model is that of Grodins et al. [Grodins, F. S., J. Buell, and A. J. Bart. J. Appl. Physiol. 22:260-276, 1967]. We updated the descriptions of (1) the effects of blood gases on cardiac output and cerebral blood flow, (2) acid-base balance in blood and tissues, (3) O2 and CO2 binding to hemoglobin and most importantly, (4) the respiratory-chemostat controller. The controller consists of central and peripheral sections. The central chemoceptor-induced ventilation response is simply a linear function of brain P(CO2) above a threshold value. The peripheral response has both a linear term similar to that for the central chemoceptors, but dependent upon carotid body P(CO2) and with a different threshold and a complex, nonlinear term that includes multiplication of separate terms involving carotid body P(O2) and P(CO2). Together, these terms produce 'dogleg'-shaped curves of ventilation plotted against P(CO2) which form a fan-like family for different values of P(CO2). With this chemical controller, our model closely describes a wide range of experimental data under conditions of solely changes in P(CO2) and for short-term hypoxia coupled with P(CO2) changes. This model can be used to accurately describe changes in ventilation and respiratory gases during ascent and during short-term residence at altitude. Hence, it has great applicability to studying O2-delivery systems in aircraft.
Collapse
Affiliation(s)
- Matthew Bernard Wolf
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, 6439 Garners Ferry Road, Columbia, SC 29209, USA.
| | | |
Collapse
|
26
|
Sightings. High Alt Med Biol 2005. [DOI: 10.1089/ham.2005.6.278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
27
|
Abstract
This paper uses a steady-state modeling approach to describe the effects of changes in acid-base balance on the chemoreflex control of breathing. First, a mathematical model is presented, which describes the control of breathing by the respiratory chemoreflexes; equations express the dependence of pulmonary ventilation on Pco(2) and Po(2) at the central and peripheral chemoreceptors. These equations, with Pco(2) values as inputs to the chemoreceptors, are transformed to equations with hydrogen ion concentrations [H(+)] in brain interstitial fluid and arterial blood as inputs, using the Stewart approach to acid-base balance. Examples illustrate the use of the model to explain the regulation of breathing during acid-base disturbances. They include diet-induced changes in sodium and chloride, altitude acclimatization, and respiratory disturbances of acid-base balance due to chronic hyperventilation and carbon dioxide retention. The examples demonstrate that the relationship between Pco(2) and [H(+)] should not be neglected when modeling the chemoreflex control of breathing. Because pulmonary ventilation controls Pco(2) rather than the actual stimulus to the chemoreceptors, [H(+)], changes in their relationship will alter the ventilatory recruitment threshold Pco(2), and thereby the steady-state resting ventilation and Pco(2).
Collapse
Affiliation(s)
- James Duffin
- Dept. of Anaesthesia, University of Toronto, Ontario.
| |
Collapse
|