Luan ZG, Zhang XJ, Yin XH, Ma XC, Zhang H, Zhang C, Guo RX. Downregulation of HMGB1 protects against the development of acute lung injury after severe acute pancreatitis.
Immunobiology 2013;
218:1261-70. [PMID:
23706497 DOI:
10.1016/j.imbio.2013.04.013]
[Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2012] [Accepted: 04/21/2013] [Indexed: 01/02/2023]
Abstract
OBJECTIVE
To examine the effect of downregulation of high mobility group box 1 (HMGB1) on severe acute pancreatitis (SAP) associated with acute lung injury (ALI), and its subsequent effect on disease severity.
METHODS
Wistar rats were given an IV injection of pRNA-U6.1/Neo-HMGB1, pRNA-U6.1/Neo-vector or saline before induction of SAP. Then, SAP was induced in rats by the retrograde injection of 5% sodium taurocholate into the pancreatic duct. The control group received only a sham operation. Lung and pancreas samples were harvested after induction of SAP. The protein levels of HMGB1, matrix metalloproteinase-9 (MMP-9) and intercellular adhesion molecule-1 (ICAM-1) in lung tissue were investigated. The severity of pancreatic injury was determined by a histological score of pancreatic injury, serum amylase, and pancreatic water content. The lung injury was evaluated by measurement of pulmonary microvascular permeability, lung myeloperoxidase activity and malondialdehyde levels.
RESULTS
The results found that in pRNA-U6.1/Neo-HMGB1 treated rats, serum tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β) levels were decreased and the severity of pancreatic tissue injury was less compared with either untreated SAP or pRNA-U6.1/Neo-vector treated rats (P<0.05). The administration of pRNA-U6.1/Neo-HMGB1 in SAP-induced rats downregulated the DNA binding activity of the nuclear factor-kappa B (NF-κB) and the expressions of MMP-9 and ICAM-1 in lung. Thus, compared with the untreated SAP rats, the inflammatory response and the severity of ALI decreased (P<0.05).
CONCLUSIONS
These results demonstrate that HMGB1 could augment Inflammation by inducing nuclear translocation of NF-κB, thus aggratating the severity of SAP associated with ALI.
Collapse