1
|
Luyken MC, Appenzeller P, Scheiwiller PM, Lichtblau M, Mademilov M, Muratbekova A, Sheraliev U, Abdraeva A, Marazhapov N, Sooronbaev TM, Ulrich S, Bloch KE, Furian M. Time course of cerebral oxygenation and cerebrovascular reactivity in Kyrgyz highlanders. A five-year prospective cohort study. Front Physiol 2023; 14:1160050. [PMID: 37881692 PMCID: PMC10597716 DOI: 10.3389/fphys.2023.1160050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 09/26/2023] [Indexed: 10/27/2023] Open
Abstract
Introduction: This prospective cohort study assessed the effects of chronic hypoxaemia due to high-altitude residency on the cerebral tissue oxygenation (CTO) and cerebrovascular reactivity. Methods: Highlanders, born, raised, and currently living above 2,500 m, without cardiopulmonary disease, participated in a prospective cohort study from 2012 until 2017. The measurements were performed at 3,250 m. After 20 min of rest in supine position while breathing ambient air (FiO2 0.21) or oxygen (FiO2 1.0) in random order, guided hyperventilation followed under the corresponding gas mixture. Finger pulse oximetry (SpO2) and cerebral near-infrared spectroscopy assessing CTO and change in cerebral haemoglobin concentration (cHb), a surrogate of cerebral blood volume changes and cerebrovascular reactivity, were applied. Arterial blood gases were obtained during ambient air breathing. Results: Fifty three highlanders, aged 50 ± 2 years, participated in 2017 and 2012. While breathing air in 2017 vs. 2012, PaO2 was reduced, mean ± SE, 7.40 ± 0.13 vs. 7.84 ± 0.13 kPa; heart rate was increased 77 ± 1 vs. 70 ± 1 bpm (p < 0.05) but CTO remained unchanged, 67.2% ± 0.7% vs. 67.4% ± 0.7%. With oxygen, SpO2 and CTO increased similarly in 2017 and 2012, by a mean (95% CI) of 8.3% (7.5-9.1) vs. 8.5% (7.7-9.3) in SpO2, and 5.5% (4.1-7.0) vs. 4.5% (3.0-6.0) in CTO, respectively. Hyperventilation resulted in less reduction of cHb in 2017 vs. 2012, mean difference (95% CI) in change with air 2.0 U/L (0.3-3.6); with oxygen, 2.1 U/L (0.5-3.7). Conclusion: Within 5 years, CTO in highlanders was preserved despite a decreased PaO2. As this was associated with a reduced response of cerebral blood volume to hypocapnia, adaptation of cerebrovascular reactivity might have occurred.
Collapse
Affiliation(s)
- Matthias C. Luyken
- Department of Respiratory Medicine, University Hospital Zurich, University of Zurich, Zurich, Switzerland
- Swiss-Kyrgyz High-Altitude Medicine and Research Initiative, Bishkek, Kyrgyzstan
| | - Paula Appenzeller
- Department of Respiratory Medicine, University Hospital Zurich, University of Zurich, Zurich, Switzerland
- Swiss-Kyrgyz High-Altitude Medicine and Research Initiative, Bishkek, Kyrgyzstan
| | - Philipp M. Scheiwiller
- Department of Respiratory Medicine, University Hospital Zurich, University of Zurich, Zurich, Switzerland
- Swiss-Kyrgyz High-Altitude Medicine and Research Initiative, Bishkek, Kyrgyzstan
| | - Mona Lichtblau
- Department of Respiratory Medicine, University Hospital Zurich, University of Zurich, Zurich, Switzerland
- Swiss-Kyrgyz High-Altitude Medicine and Research Initiative, Bishkek, Kyrgyzstan
| | - Maamed Mademilov
- Swiss-Kyrgyz High-Altitude Medicine and Research Initiative, Bishkek, Kyrgyzstan
- National Centre for Cardiology and Internal Medicine, Bishkek, Kyrgyzstan
| | - Aybermet Muratbekova
- Swiss-Kyrgyz High-Altitude Medicine and Research Initiative, Bishkek, Kyrgyzstan
- National Centre for Cardiology and Internal Medicine, Bishkek, Kyrgyzstan
| | - Ulan Sheraliev
- Swiss-Kyrgyz High-Altitude Medicine and Research Initiative, Bishkek, Kyrgyzstan
- National Centre for Cardiology and Internal Medicine, Bishkek, Kyrgyzstan
| | - Ainura Abdraeva
- Swiss-Kyrgyz High-Altitude Medicine and Research Initiative, Bishkek, Kyrgyzstan
- National Centre for Cardiology and Internal Medicine, Bishkek, Kyrgyzstan
| | - Nuriddin Marazhapov
- Swiss-Kyrgyz High-Altitude Medicine and Research Initiative, Bishkek, Kyrgyzstan
- National Centre for Cardiology and Internal Medicine, Bishkek, Kyrgyzstan
| | - Talant M. Sooronbaev
- Swiss-Kyrgyz High-Altitude Medicine and Research Initiative, Bishkek, Kyrgyzstan
- National Centre for Cardiology and Internal Medicine, Bishkek, Kyrgyzstan
| | - Silvia Ulrich
- Department of Respiratory Medicine, University Hospital Zurich, University of Zurich, Zurich, Switzerland
- Swiss-Kyrgyz High-Altitude Medicine and Research Initiative, Bishkek, Kyrgyzstan
| | - Konrad E. Bloch
- Department of Respiratory Medicine, University Hospital Zurich, University of Zurich, Zurich, Switzerland
- Swiss-Kyrgyz High-Altitude Medicine and Research Initiative, Bishkek, Kyrgyzstan
| | - Michael Furian
- Department of Respiratory Medicine, University Hospital Zurich, University of Zurich, Zurich, Switzerland
- Swiss-Kyrgyz High-Altitude Medicine and Research Initiative, Bishkek, Kyrgyzstan
| |
Collapse
|
2
|
Turner MP, Zhao Y, Abdelkarim D, Liu P, Spence JS, Hutchison JL, Sivakolundu DK, Thomas BP, Hubbard NA, Xu C, Taneja K, Lu H, Rypma B. Altered linear coupling between stimulus-evoked blood flow and oxygen metabolism in the aging human brain. Cereb Cortex 2022; 33:135-151. [PMID: 35388407 PMCID: PMC9758587 DOI: 10.1093/cercor/bhac057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 01/13/2022] [Accepted: 01/14/2022] [Indexed: 11/14/2022] Open
Abstract
Neural-vascular coupling (NVC) is the process by which oxygen and nutrients are delivered to metabolically active neurons by blood vessels. Murine models of NVC disruption have revealed its critical role in healthy neural function. We hypothesized that, in humans, aging exerts detrimental effects upon the integrity of the neural-glial-vascular system that underlies NVC. To test this hypothesis, calibrated functional magnetic resonance imaging (cfMRI) was used to characterize age-related changes in cerebral blood flow (CBF) and oxygen metabolism during visual cortex stimulation. Thirty-three younger and 27 older participants underwent cfMRI scanning during both an attention-controlled visual stimulation task and a hypercapnia paradigm used to calibrate the blood-oxygen-level-dependent signal. Measurement of stimulus-evoked blood flow and oxygen metabolism permitted calculation of the NVC ratio to assess the integrity of neural-vascular communication. Consistent with our hypothesis, we observed monotonic NVC ratio increases with increasing visual stimulation frequency in younger adults but not in older adults. Age-related changes in stimulus-evoked cerebrovascular and neurometabolic signal could not fully explain this disruption; increases in stimulus-evoked neurometabolic activity elicited corresponding increases in stimulus-evoked CBF in younger but not in older adults. These results implicate age-related, demand-dependent failures of the neural-glial-vascular structures that comprise the NVC system.
Collapse
Affiliation(s)
- Monroe P Turner
- School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, TX 75080, USA,Center for BrainHealth, University of Texas at Dallas, Dallas, TX, 75235, USA
| | - Yuguang Zhao
- School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, TX 75080, USA,Center for BrainHealth, University of Texas at Dallas, Dallas, TX, 75235, USA
| | - Dema Abdelkarim
- School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, TX 75080, USA,Center for BrainHealth, University of Texas at Dallas, Dallas, TX, 75235, USA
| | - Peiying Liu
- Department of Radiology and Radiological Science, Johns Hopkins University, Baltimore, MD 21287, USA
| | - Jeffrey S Spence
- School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, TX 75080, USA,Center for BrainHealth, University of Texas at Dallas, Dallas, TX, 75235, USA
| | - Joanna L Hutchison
- School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, TX 75080, USA,Center for BrainHealth, University of Texas at Dallas, Dallas, TX, 75235, USA
| | - Dinesh K Sivakolundu
- School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, TX 75080, USA,Department of Biological Sciences, University of Texas at Dallas, Richardson, TX, 75080, USA
| | - Binu P Thomas
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, TX 75235, USA
| | - Nicholas A Hubbard
- Department of Psychology, Center for Brain, Biology, and Behavior, University of Nebraska, Lincoln, NE 68588, USA
| | - Cuimei Xu
- Department of Radiology and Radiological Science, Johns Hopkins University, Baltimore, MD 21287, USA
| | - Kamil Taneja
- Department of Radiology and Radiological Science, Johns Hopkins University, Baltimore, MD 21287, USA
| | - Hanzhang Lu
- Department of Radiology and Radiological Science, Johns Hopkins University, Baltimore, MD 21287, USA
| | - Bart Rypma
- Corresponding author: School of Behavioral and Brain Sciences, Center for Brain Health, University of Texas at Dallas, 800 West Campbell Road, Richardson, TX 75080, USA.
| |
Collapse
|
3
|
Chen Y, Zhang G, Chen Z, Yang X, Chen B, Ma Y, Xie H, Luo Q, Yang J, Ye T, Yu D, Wang J, Tang H, Chen Z, Shi P. A warming climate may reduce health risks of hypoxia on the Qinghai-Tibet Plateau. Sci Bull (Beijing) 2022; 67:341-344. [PMID: 36546082 DOI: 10.1016/j.scib.2021.10.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Yanqiang Chen
- State Key Laboratory of Surface Processes and Resource Ecology, Beijing Normal University, Beijing 100875, China; Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China
| | - Gangfeng Zhang
- State Key Laboratory of Surface Processes and Resource Ecology, Beijing Normal University, Beijing 100875, China; Academy of Disaster Reduction and Emergency Management, Ministry of Emergency Management and Ministry of Education, Beijing Normal University, Beijing 100875, China
| | - Zongyan Chen
- College of Geographical Science, Qinghai Normal University, Xining 810016, China
| | - Xianming Yang
- College of Geographical Science, Qinghai Normal University, Xining 810016, China
| | - Bo Chen
- State Key Laboratory of Surface Processes and Resource Ecology, Beijing Normal University, Beijing 100875, China; Academy of Disaster Reduction and Emergency Management, Ministry of Emergency Management and Ministry of Education, Beijing Normal University, Beijing 100875, China
| | - Yonggui Ma
- College of Life Science, Qinghai Normal University, Xining 810016, China
| | - Huichun Xie
- College of Life Science, Qinghai Normal University, Xining 810016, China
| | - Qiaoyu Luo
- College of Life Science, Qinghai Normal University, Xining 810016, China
| | - Jing Yang
- State Key Laboratory of Surface Processes and Resource Ecology, Beijing Normal University, Beijing 100875, China; Academy of Disaster Reduction and Emergency Management, Ministry of Emergency Management and Ministry of Education, Beijing Normal University, Beijing 100875, China; Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China
| | - Tao Ye
- Academy of Disaster Reduction and Emergency Management, Ministry of Emergency Management and Ministry of Education, Beijing Normal University, Beijing 100875, China; State Key Laboratory of Surface Processes and Resource Ecology, Beijing Normal University, Beijing 100875, China
| | - Deyong Yu
- State Key Laboratory of Surface Processes and Resource Ecology, Beijing Normal University, Beijing 100875, China; Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China
| | - Jing'ai Wang
- Academy of Plateau Science and Sustainability, People's Government of Qinghai Province and Beijing Normal University, Xining 810016, China; Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China
| | - Haiping Tang
- State Key Laboratory of Surface Processes and Resource Ecology, Beijing Normal University, Beijing 100875, China; Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China
| | - Zhi Chen
- Academy of Plateau Science and Sustainability, People's Government of Qinghai Province and Beijing Normal University, Xining 810016, China; College of Life Science, Qinghai Normal University, Xining 810016, China
| | - Peijun Shi
- State Key Laboratory of Surface Processes and Resource Ecology, Beijing Normal University, Beijing 100875, China; Academy of Plateau Science and Sustainability, People's Government of Qinghai Province and Beijing Normal University, Xining 810016, China; Academy of Disaster Reduction and Emergency Management, Ministry of Emergency Management and Ministry of Education, Beijing Normal University, Beijing 100875, China; Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China.
| |
Collapse
|
4
|
Sobczyk O, Fierstra J, Venkatraghavan L, Poublanc J, Duffin J, Fisher JA, Mikulis DJ. Measuring Cerebrovascular Reactivity: Sixteen Avoidable Pitfalls. Front Physiol 2021; 12:665049. [PMID: 34305634 PMCID: PMC8294324 DOI: 10.3389/fphys.2021.665049] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Accepted: 06/07/2021] [Indexed: 12/04/2022] Open
Abstract
An increase in arterial PCO2 is the most common stressor used to increase cerebral blood flow for assessing cerebral vascular reactivity (CVR). That CO2 is readily obtained, inexpensive, easy to administer, and safe to inhale belies the difficulties in extracting scientifically and clinically relevant information from the resulting flow responses. Over the past two decades, we have studied more than 2,000 individuals, most with cervical and cerebral vascular pathology using CO2 as the vasoactive agent and blood oxygen-level-dependent magnetic resonance imaging signal as the flow surrogate. The ability to deliver different forms of precise hypercapnic stimuli enabled systematic exploration of the blood flow-related signal changes. We learned the effect on CVR of particular aspects of the stimulus such as the arterial partial pressure of oxygen, the baseline PCO2, and the magnitude, rate, and pattern of its change. Similarly, we learned to interpret aspects of the flow response such as its magnitude, and the speed and direction of change. Finally, we were able to test whether the response falls into a normal range. Here, we present a review of our accumulated insight as 16 “lessons learned.” We hope many of these insights are sufficiently general to apply to a range of types of CO2-based vasoactive stimuli and perfusion metrics used for CVR.
Collapse
Affiliation(s)
- Olivia Sobczyk
- Department of Anaesthesia and Pain Management, University Health Network, University of Toronto, Toronto, ON, Canada.,Joint Department of Medical Imaging and the Functional Neuroimaging Laboratory, University Health Network, Toronto, ON, Canada
| | - Jorn Fierstra
- Department of Neurosurgery, University Hospital Zurich, Zürich, Switzerland
| | - Lakshmikumar Venkatraghavan
- Department of Anaesthesia and Pain Management, University Health Network, University of Toronto, Toronto, ON, Canada
| | - Julien Poublanc
- Joint Department of Medical Imaging and the Functional Neuroimaging Laboratory, University Health Network, Toronto, ON, Canada
| | - James Duffin
- Department of Anaesthesia and Pain Management, University Health Network, University of Toronto, Toronto, ON, Canada.,Department of Physiology, University of Toronto, Toronto, ON, Canada
| | - Joseph A Fisher
- Department of Anaesthesia and Pain Management, University Health Network, University of Toronto, Toronto, ON, Canada.,Department of Physiology, University of Toronto, Toronto, ON, Canada.,Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - David J Mikulis
- Joint Department of Medical Imaging and the Functional Neuroimaging Laboratory, University Health Network, Toronto, ON, Canada.,Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
5
|
Caldwell HG, Smith KJ, Lewis NCS, Hoiland RL, Willie CK, Lucas SJE, Stembridge M, Burgess KR, MacLeod DB, Ainslie PN. Regulation of cerebral blood flow by arterial PCO 2 independent of metabolic acidosis at 5050 m. J Physiol 2021; 599:3513-3530. [PMID: 34047356 DOI: 10.1113/jp281446] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 05/21/2021] [Indexed: 12/23/2022] Open
Abstract
KEY POINTS We investigated the influence of arterial PCO2 (PaCO2 ) with and without experimentally altered pH on cerebral blood flow (CBF) regulation at sea level and with acclimatization to 5050 m. At sea level and high altitude, we assessed stepwise alterations in PaCO2 following metabolic acidosis (via 2 days of oral acetazolamide; ACZ) with and without acute restoration of pH (via intravenous sodium bicarbonate; ACZ+HCO3 - ). Total resting CBF was unchanged between trials at each altitude even though arterial pH and [HCO3 - ] (i.e. buffering capacity) were effectively altered. The cerebrovascular responses to changes in arterial [H+ ]/pH were consistent with the altered relationship between PaCO2 and [H+ ]/pH following ACZ at high altitude (i.e. leftward x-intercept shifts). Absolute cerebral blood velocity (CBV) and the sensitivity of CBV to PaCO2 was unchanged between trials at high altitude, indicating that CBF is acutely regulated by PaCO2 rather than arterial pH. ABSTRACT Alterations in acid-base balance with progressive acclimatization to high altitude have been well-established. However, how respiratory alkalosis and the resultant metabolic compensation interact to regulate cerebral blood flow (CBF) is uncertain. We addressed this via three separate experimental trials at sea level and following partial acclimatization (14 to 20 days) at 5050 m; involving: (1) resting acid-base balance (control); (2) following metabolic acidosis via 2 days of oral acetazolamide at 250 mg every 8 h (ACZ; pH: Δ -0.07 ± 0.04 and base excess: Δ -5.7 ± 1.9 mEq⋅l-1 , trial effects: P < 0.001 and P < 0.001, respectively); and (3) after acute normalization of arterial acidosis via intravenous sodium bicarbonate (ACZ + HCO3 - ; pH: Δ -0.01 ± 0.04 and base excess: Δ -1.5 ± 2.1 mEq⋅l-1 , trial effects: P = 1.000 and P = 0.052, respectively). Within each trial, we utilized transcranial Doppler ultrasound to assess the cerebral blood velocity (CBV) response to stepwise alterations in arterial PCO2 (PaCO2 ), i.e. cerebrovascular CO2 reactivity. Resting CBF (via Duplex ultrasound) was unaltered between trials within each altitude, indicating that respiratory compensation (i.e. Δ -3.4 ± 2.3 mmHg PaCO2 , trial effect: P < 0.001) was sufficient to offset any elevations in CBF induced via the ACZ-mediated metabolic acidosis. Between trials at high altitude, we observed consistent leftward shifts in both the PaCO2 -pH and CBV-pH responses across the CO2 reactivity tests with experimentally reduced arterial pH via ACZ. When indexed against PaCO2 - rather than pH - the absolute CBV and sensitivity of CBV-PaCO2 was unchanged between trials at high altitude. Taken together, following acclimatization, CO2 -mediated changes in cerebrovascular tone rather than arterial [H+ ]/pH is integral to CBF regulation at high altitude.
Collapse
Affiliation(s)
- Hannah G Caldwell
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia Okanagan, Kelowna, British Columbia, Canada
| | - Kurt J Smith
- Integrative Physiology Laboratory, Department of Kinesiology and Nutrition, University of Illinois Chicago, Chicago, Illinois, USA
| | - Nia C S Lewis
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia Okanagan, Kelowna, British Columbia, Canada
| | - Ryan L Hoiland
- Department of Anesthesiology, Pharmacology and Therapeutics, Vancouver General Hospital, West 12th Avenue, University of British Columbia, Vancouver, British Columbia, Canada.,Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Christopher K Willie
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia Okanagan, Kelowna, British Columbia, Canada
| | - Samuel J E Lucas
- Department of Physiology, University of Otago, Dunedin, New Zealand.,School of Sport, Exercise and Rehabilitation Sciences & Centre for Human Brain Health, University of Birmingham, Birmingham, UK
| | - Michael Stembridge
- Cardiff School of Sport and Health Sciences, Cardiff Metropolitan University, Cardiff, UK
| | - Keith R Burgess
- Peninsula Sleep Clinic, Sydney, New South Wales, Australia.,Department of Medicine, University of Sydney, Sydney, New South Wales, Australia
| | - David B MacLeod
- Human Pharmacology and Physiology Lab, Department of Anesthesiology, Duke University Medical Center, Durham, North Carolina, USA
| | - Philip N Ainslie
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia Okanagan, Kelowna, British Columbia, Canada
| |
Collapse
|
6
|
Aebi MR, Bourdillon N, Kunz A, Bron D, Millet GP. Specific effect of hypobaria on cerebrovascular hypercapnic responses in hypoxia. Physiol Rep 2021; 8:e14372. [PMID: 32097541 PMCID: PMC7058173 DOI: 10.14814/phy2.14372] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 01/21/2020] [Indexed: 12/14/2022] Open
Abstract
It remains unknown whether hypobaria plays a role on cerebrovascular reactivity to CO2 (CVR). The present study evaluated the putative effect of hypobaria on CVR and its influence on cerebral oxygen delivery (cDO2) in five randomized conditions (i.e., normobaric normoxia, NN, altitude level of 440 m; hypobaric hypoxia, HH at altitude levels of 3,000 m and 5,500 m; normobaric hypoxia, NH, altitude simulation of 5,500 m; and hypobaric normoxia, HN). CVR was assessed in nine healthy participants (either students in aviation or pilots) during a hypercapnic test (i.e., 5% CO2). We obtained CVR by plotting middle cerebral artery velocity versus end‐tidal CO2 pressure (PETCO2) using a sigmoid model. Hypobaria induced an increased slope in HH (0.66 ± 0.33) compared to NH (0.35 ± 0.19) with a trend in HN (0.46 ± 0.12) compared to NN (0.23 ± 0.12, p = .069). PETCO2 was decreased (22.3 ± 2.4 vs. 34.5 ± 2.8 mmHg and 19.9 ± 1.3 vs. 30.8 ± 2.2 mmHg, for HN vs. NN and HH vs. NH, respectively, p < .05) in hypobaric conditions when compared to normobaric conditions with comparable inspired oxygen pressure (141 ± 1 vs. 133 ± 3 mmHg and 74 ± 1 vs. 70 ± 2 mmHg, for NN vs. HN and NH vs. HH, respectively) During hypercapnia, cDO2 was decreased in 5,500 m HH (p = .046), but maintained in NH when compared to NN. To conclude, CVR seems more sensitive (i.e., slope increase) in hypobaric than in normobaric conditions. Moreover, hypobaria potentially affected vasodilation reserve (i.e., MCAv autoregulation) and brain oxygen delivery during hypercapnia. These results are relevant for populations (i.e., aviation pilots; high‐altitude residents as miners; mountaineers) occasionally exposed to hypobaric normoxia.
Collapse
Affiliation(s)
- Mathias R Aebi
- Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland.,Aeromedical Center (AeMC), Swiss Air Force, Dübendorf, Switzerland
| | - Nicolas Bourdillon
- Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland.,Becare SA, Renens, Switzerland
| | - Andres Kunz
- Aeromedical Center (AeMC), Swiss Air Force, Dübendorf, Switzerland
| | - Denis Bron
- Aeromedical Center (AeMC), Swiss Air Force, Dübendorf, Switzerland
| | - Grégoire P Millet
- Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
7
|
Matenchuk BA, James M, Skow RJ, Wakefield P, MacKay C, Steinback CD, Davenport MH. Longitudinal study of cerebral blood flow regulation during exercise in pregnancy. J Cereb Blood Flow Metab 2020; 40:2278-2288. [PMID: 31752587 PMCID: PMC7585927 DOI: 10.1177/0271678x19889089] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Cerebrovascular adaptation to pregnancy is poorly understood. We sought to assess cerebrovascular regulation in response to visual stimulation, hypercapnia and exercise across the three trimesters of pregnancy. Using transcranial Doppler (TCD) ultrasound, middle and posterior cerebral artery mean blood velocities (MCAvmean and PCAvmean) were measured continuously at rest and in response to (1) visual stimulation to assess neurovascular coupling (NVC); (2) a modified Duffin hyperoxic CO2 rebreathe test, and (3) an incremental cycling exercise test to volitional fatigue in non-pregnant (n = 26; NP) and pregnant women (first trimester [n = 13; TM1], second trimester [n = 21; TM2], and third trimester [n = 20; TM3]) in total 47 women. At rest, MCAvmean and PETCO2 were lower in TM2 compared to NP. PCAvmean was lower in TM2 but not TM1 or TM3 compared to NP. Cerebrovascular reactivity in MCAvmean and PCAvmean during the hypercapnic rebreathing test was not different between pregnant and non-pregnant women. MCAvmean continued to increase over the second half of the exercise test in TM2 and TM3, while it decreased in NP due to differences in ΔPETCO2 between groups. Pregnant women experienced a delayed decrease in MCAvmean in response to maximal exercise compared to non-pregnant controls which was explained by CO2 reactivity and PETCO2 level.
Collapse
Affiliation(s)
- Brittany A Matenchuk
- Program for Pregnancy & Postpartum Health, Physical Activity and Diabetes Laboratory, Faculty of Kinesiology, Sport, and Recreation, Alberta Diabetes Institute, Women and Children's Health Research Institute, University of Alberta, Edmonton, AB, Canada
| | - Marina James
- Program for Pregnancy & Postpartum Health, Physical Activity and Diabetes Laboratory, Faculty of Kinesiology, Sport, and Recreation, Alberta Diabetes Institute, Women and Children's Health Research Institute, University of Alberta, Edmonton, AB, Canada
| | - Rachel J Skow
- Program for Pregnancy & Postpartum Health, Physical Activity and Diabetes Laboratory, Faculty of Kinesiology, Sport, and Recreation, Alberta Diabetes Institute, Women and Children's Health Research Institute, University of Alberta, Edmonton, AB, Canada
| | - Paige Wakefield
- Program for Pregnancy & Postpartum Health, Physical Activity and Diabetes Laboratory, Faculty of Kinesiology, Sport, and Recreation, Alberta Diabetes Institute, Women and Children's Health Research Institute, University of Alberta, Edmonton, AB, Canada
| | - Christina MacKay
- Program for Pregnancy & Postpartum Health, Physical Activity and Diabetes Laboratory, Faculty of Kinesiology, Sport, and Recreation, Alberta Diabetes Institute, Women and Children's Health Research Institute, University of Alberta, Edmonton, AB, Canada
| | - Craig D Steinback
- Program for Pregnancy & Postpartum Health, Physical Activity and Diabetes Laboratory, Faculty of Kinesiology, Sport, and Recreation, Alberta Diabetes Institute, Women and Children's Health Research Institute, University of Alberta, Edmonton, AB, Canada
| | - Margie H Davenport
- Program for Pregnancy & Postpartum Health, Physical Activity and Diabetes Laboratory, Faculty of Kinesiology, Sport, and Recreation, Alberta Diabetes Institute, Women and Children's Health Research Institute, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
8
|
Hoiland RL, Fisher JA, Ainslie PN. Regulation of the Cerebral Circulation by Arterial Carbon Dioxide. Compr Physiol 2019; 9:1101-1154. [DOI: 10.1002/cphy.c180021] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
9
|
Ozturk ED, Tan CO. Human cerebrovascular function in health and disease: insights from integrative approaches. J Physiol Anthropol 2018; 37:4. [PMID: 29454381 PMCID: PMC5816507 DOI: 10.1186/s40101-018-0164-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 02/02/2018] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND The marked increase in the size of the brain, and consequently, in neural processing capability, throughout human evolution is the basis of the higher cognitive function in humans. However, greater neural, and thus information processing capability, comes at a significant metabolic cost; despite its relatively small size, the modern human brain consumes almost a quarter of the glucose and oxygen supply in the human body. Fortunately, several vascular mechanisms ensure sufficient delivery of glucose and oxygen to the active neural tissue (neurovascular coupling), prompt removal of neural metabolic by-products (cerebral vasoreactivity), and constant global blood supply despite daily variations in perfusion pressure (cerebral autoregulation). The aim of this review is to provide an integrated overview of the available data on these vascular mechanisms and their underlying physiology. We also briefly review modern experimental approaches to assess these mechanisms in humans, and further highlight the importance of these mechanisms for humans' evolutionary success by providing examples of their healthy adaptations as well as pathophysiological alterations. CONCLUSIONS Data reviewed in this paper demonstrate the importance of the cerebrovascular function to support humans' unique ability to form new and different interactions with each other and their surroundings. This highlights that there is much insight into the neural and cognitive functions that could be gleaned from interrogating the cerebrovascular function.
Collapse
Affiliation(s)
- Erin D. Ozturk
- Cerebrovascular Research Laboratory, Spaulding Rehabilitation Hospital, Boston, MA USA
- Department of Psychology, Harvard University, Cambridge, MA USA
| | - Can Ozan Tan
- Cerebrovascular Research Laboratory, Spaulding Rehabilitation Hospital, Boston, MA USA
- Department of Physical Medicine and Rehabilitation, Harvard Medical School, Boston, MA USA
| |
Collapse
|
10
|
Liu W, Liu J, Lou X, Zheng D, Wu B, Wang DJJ, Ma L. A longitudinal study of cerebral blood flow under hypoxia at high altitude using 3D pseudo-continuous arterial spin labeling. Sci Rep 2017; 7:43246. [PMID: 28240265 PMCID: PMC5327438 DOI: 10.1038/srep43246] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 01/20/2017] [Indexed: 12/14/2022] Open
Abstract
Changes in cerebral blood flow (CBF) may occur with acute exposure to high altitude; however, the CBF of the brain parenchyma has not been studied to date. In this study, identical magnetic resonance scans using arterial spin labeling (ASL) were performed to study the haemodynamic changes at both sea level and high altitude. We found that with acute exposure to high altitude, the CBF in acute mountain sickness (AMS) subjects was higher (P < 0.05), while the CBF of non-AMS subjects was lower (P > 0.05) compared with those at sea level. Moreover, magnetic resonance angiography in both AMS and non-AMS subjects showed a significant increase in the cross-sectional areas of the internal carotid, basilar, and middle cerebral arteries on the first day at high altitude. These findings support that AMS may be related to increased CBF rather than vasodilation; these results contradict most previous studies that reported no relationship between CBF changes and the occurrence of AMS. This discrepancy may be attributed to the use of ASL for CBF measurement at both sea level and high altitude in this study, which has substantial advantages over transcranial Doppler for the assessment of CBF.
Collapse
Affiliation(s)
- Wenjia Liu
- Department of Radiology, Chinese PLA General Hospital, Beijing, China
| | - Jie Liu
- Department of Radiology, Tibet Military General Hospital, Lhasa, Tibet, China
| | - Xin Lou
- Department of Radiology, Chinese PLA General Hospital, Beijing, China.,Department of Neurology, University of California, Los Angeles, CA, USA
| | - Dandan Zheng
- GE Healthcare, MR Research China, Beijing, China
| | - Bing Wu
- GE Healthcare, MR Research China, Beijing, China
| | - Danny J J Wang
- Department of Neurology, University of California, Los Angeles, CA, USA
| | - Lin Ma
- Department of Radiology, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
11
|
Fan JL, Subudhi AW, Duffin J, Lovering AT, Roach RC, Kayser B. AltitudeOmics: Resetting of Cerebrovascular CO2 Reactivity Following Acclimatization to High Altitude. Front Physiol 2016; 6:394. [PMID: 26779030 PMCID: PMC4705915 DOI: 10.3389/fphys.2015.00394] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 12/03/2015] [Indexed: 12/25/2022] Open
Abstract
Previous studies reported enhanced cerebrovascular CO2 reactivity upon ascent to high altitude using linear models. However, there is evidence that this response may be sigmoidal in nature. Moreover, it was speculated that these changes at high altitude are mediated by alterations in acid-base buffering. Accordingly, we reanalyzed previously published data to assess middle cerebral blood flow velocity (MCAv) responses to modified rebreathing at sea level (SL), upon ascent (ALT1) and following 16 days of acclimatization (ALT16) to 5260 m in 21 lowlanders. Using sigmoid curve fitting of the MCAv responses to CO2, we found the amplitude (95 vs. 129%, SL vs. ALT1, 95% confidence intervals (CI) [77, 112], [111, 145], respectively, P = 0.024) and the slope of the sigmoid response (4.5 vs. 7.5%/mmHg, SL vs. ALT1, 95% CIs [3.1, 5.9], [6.0, 9.0], respectively, P = 0.026) to be enhanced at ALT1, which persisted with acclimatization at ALT16 (amplitude: 177, 95% CI [139, 215], P < 0.001; slope: 10.3%/mmHg, 95% CI [8.2, 12.5], P = 0.003) compared to SL. Meanwhile, the sigmoidal response midpoint was unchanged at ALT1 (SL: 36.5 mmHg; ALT1: 35.4 mmHg, 95% CIs [34.0, 39.0], [33.1, 37.7], respectively, P = 0.982), while it was reduced by ~7 mmHg at ALT16 (28.6 mmHg, 95% CI [26.4, 30.8], P = 0.001 vs. SL), indicating leftward shift of the cerebrovascular CO2 response to a lower arterial partial pressure of CO2 (PaCO2) following acclimatization to altitude. Sigmoid fitting revealed a leftward shift in the midpoint of the cerebrovascular response curve which could not be observed with linear fitting. These findings demonstrate that there is resetting of the cerebrovascular CO2 reactivity operating point to a lower PaCO2 following acclimatization to high altitude. This cerebrovascular resetting is likely the result of an altered acid-base buffer status resulting from prolonged exposure to the severe hypocapnia associated with ventilatory acclimatization to high altitude.
Collapse
Affiliation(s)
- Jui-Lin Fan
- Centre for Translational Physiology, University of OtagoWellington, New Zealand; Department of Surgery and Anaesthesia, University of OtagoWellington, New Zealand
| | - Andrew W Subudhi
- Department of Emergency Medicine, Altitude Research Center, University of Colorado DenverAurora, CO, USA; Department of Biology, University of Colorado Colorado SpringsColorado Springs, CO, USA
| | - James Duffin
- Department of Physiology, University of TorontoToronto, ON, Canada; Department of Anaesthesiology, University of TorontoToronto, ON, Canada; University Health NetworkToronto, ON, Canada
| | - Andrew T Lovering
- Department of Human Physiology, University of Oregon Eugene, Oregon, OR, USA
| | - Robert C Roach
- Department of Emergency Medicine, Altitude Research Center, University of Colorado DenverAurora, CO, USA; Department of Biology, University of Colorado Colorado SpringsColorado Springs, CO, USA
| | - Bengt Kayser
- Institute of Sports Sciences, Faculty of Biology and Medicine, University of LausanneLausanne, Switzerland; Department of Physiology, Faculty of Biology and Medicine, University of LausanneLausanne, Switzerland
| |
Collapse
|
12
|
|
13
|
Liu G, Liu X, Qin Z, Gu Z, Wang G, Shi W, Wen D, Yu L, Luo Y, Xiao H. Cardiovascular System Response to Carbon Dioxide and Exercise in Oxygen-Enriched Environment at 3800 m. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2015; 12:11781-96. [PMID: 26393634 PMCID: PMC4586707 DOI: 10.3390/ijerph120911781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Revised: 08/05/2015] [Accepted: 08/06/2015] [Indexed: 11/22/2022]
Abstract
Background: This study explores the responses of the cardiovascular system as humans exercise in an oxygen-enriched room at high altitude under various concentrations of CO2. Methods: The study utilized a hypobaric chamber set to the following specifications: 3800 m altitude with 25% O2 and different CO2 concentrations of 0.5% (C1), 3.0% (C2) and 5.0% (C3). Subjects exercised for 3 min three times, separated by 30 min resting periods in the above-mentioned conditions, at sea level (SL) and at 3800 m altitude (HA). The changes of heart rate variability, heart rate and blood pressure were analyzed. Results: Total power (TP) and high frequency power (HF) decreased notably during post-exercise at HA. HF increased prominently earlier the post-exercise period at 3800 m altitude with 25% O2 and 5.0% CO2 (C3), while low frequency power (LF) changed barely in all tests. The ratios of LF/HF were significantly higher during post-exercise in HA, and lower after high intensity exercise in C3. Heart rate and systolic blood pressure increased significantly in HA and C3. Conclusions: Parasympathetic activity dominated in cardiac autonomic modulation, and heart rate and blood pressure increased significantly after high intensity exercise in C3.
Collapse
Affiliation(s)
- Guohui Liu
- School of Aeronautic Science and Engineering, Beihang University, Beijing 100191, China.
| | - Xiaopeng Liu
- High Altitude Physiology Laboratory, Institute of Aviation Medicine, Air Force, Beijing 100142, China.
| | - Zhifeng Qin
- High Altitude Physiology Laboratory, Institute of Aviation Medicine, Air Force, Beijing 100142, China.
| | - Zhao Gu
- High Altitude Physiology Laboratory, Institute of Aviation Medicine, Air Force, Beijing 100142, China.
| | - Guiyou Wang
- High Altitude Physiology Laboratory, Institute of Aviation Medicine, Air Force, Beijing 100142, China.
| | - Weiru Shi
- High Altitude Physiology Laboratory, Institute of Aviation Medicine, Air Force, Beijing 100142, China.
| | - Dongqing Wen
- High Altitude Physiology Laboratory, Institute of Aviation Medicine, Air Force, Beijing 100142, China.
| | - Lihua Yu
- High Altitude Physiology Laboratory, Institute of Aviation Medicine, Air Force, Beijing 100142, China.
| | - Yongchang Luo
- High Altitude Physiology Laboratory, Institute of Aviation Medicine, Air Force, Beijing 100142, China.
| | - Huajun Xiao
- High Altitude Physiology Laboratory, Institute of Aviation Medicine, Air Force, Beijing 100142, China.
| |
Collapse
|
14
|
Flück D, Siebenmann C, Keiser S, Cathomen A, Lundby C. Cerebrovascular reactivity is increased with acclimatization to 3,454 m altitude. J Cereb Blood Flow Metab 2015; 35:1323-30. [PMID: 25806704 PMCID: PMC4528007 DOI: 10.1038/jcbfm.2015.51] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Revised: 02/11/2015] [Accepted: 03/02/2015] [Indexed: 12/27/2022]
Abstract
Controversy exists regarding the effect of high-altitude exposure on cerebrovascular CO2 reactivity (CVR). Confounding factors in previous studies include the use of different experimental approaches, ascent profiles, duration and severity of exposure and plausibly environmental factors associated with altitude exposure. One aim of the present study was to determine CVR throughout acclimatization to high altitude when controlling for these. Middle cerebral artery mean velocity (MCAv mean) CVR was assessed during hyperventilation (hypocapnia) and CO2 administration (hypercapnia) with background normoxia (sea level (SL)) and hypoxia (3,454 m) in nine healthy volunteers (26 ± 4 years (mean ± s.d.)) at SL, and after 30 minutes (HA0), 3 (HA3) and 22 (HA22) days of high-altitude (3,454 m) exposure. At altitude, ventilation was increased whereas MCAv mean was not altered. Hypercapnic CVR was decreased at HA0 (1.16% ± 0.16%/mm Hg, mean ± s.e.m.), whereas both hyper- and hypocapnic CVR were increased at HA3 (3.13% ± 0.18% and 2.96% ± 0.10%/mm Hg) and HA22 (3.32% ± 0.12% and 3.24% ± 0.14%/mm Hg) compared with SL (1.98% ± 0.22% and 2.38% ± 0.10%/mm Hg; P < 0.01) regardless of background oxygenation. Cerebrovascular conductance (MCAv mean/mean arterial pressure) CVR was determined to account for blood pressure changes and revealed an attenuated response. Collectively our results show that hypocapnic and hypercapnic CVR are both elevated with acclimatization to high altitude.
Collapse
Affiliation(s)
- Daniela Flück
- 1] Zurich Center for Integrative Human Physiology (ZIHP), Zurich, Switzerland [2] Institute of Physiology, ZIHP, University of Zurich, Zurich, Switzerland
| | | | - Stefanie Keiser
- 1] Zurich Center for Integrative Human Physiology (ZIHP), Zurich, Switzerland [2] Institute of Physiology, ZIHP, University of Zurich, Zurich, Switzerland
| | - Adrian Cathomen
- Institute of Human Movement Sciences, ETH Zurich, Zurich, Switzerland
| | - Carsten Lundby
- 1] Zurich Center for Integrative Human Physiology (ZIHP), Zurich, Switzerland [2] Institute of Physiology, ZIHP, University of Zurich, Zurich, Switzerland [3] Department of Food and Nutrition and Sport Science, Gothenburg University, Gothenburg, Sweden
| |
Collapse
|
15
|
Furian M, Latshang TD, Aeschbacher SS, Ulrich S, Sooronbaev T, Mirrakhimov EM, Aldashev A, Bloch KE. Cerebral oxygenation in highlanders with and without high-altitude pulmonary hypertension. Exp Physiol 2015; 100:905-14. [DOI: 10.1113/ep085200] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Accepted: 05/20/2015] [Indexed: 01/05/2023]
Affiliation(s)
- M. Furian
- Pulmonary Division and Sleep Disorders Center; University Hospital of Zurich; Zurich Switzerland
- Institute of Human Movement Sciences and Sport; Swiss Federal Institute of Technology; Zurich Switzerland
| | - T. D. Latshang
- Pulmonary Division and Sleep Disorders Center; University Hospital of Zurich; Zurich Switzerland
| | - S. S. Aeschbacher
- Pulmonary Division and Sleep Disorders Center; University Hospital of Zurich; Zurich Switzerland
| | - S. Ulrich
- Pulmonary Division and Sleep Disorders Center; University Hospital of Zurich; Zurich Switzerland
| | - T. Sooronbaev
- National Center for Cardiology and Internal Medicine; Bishkek Kyrgyzstan
| | - E. M. Mirrakhimov
- National Center for Cardiology and Internal Medicine; Bishkek Kyrgyzstan
| | - A. Aldashev
- Research Institute for Molecular Biology and Medicine; Bishkek Kyrgyzstan
| | - K. E. Bloch
- Pulmonary Division and Sleep Disorders Center; University Hospital of Zurich; Zurich Switzerland
| |
Collapse
|
16
|
Examining the regional and cerebral depth-dependent BOLD cerebrovascular reactivity response at 7 T. Neuroimage 2015; 114:239-48. [DOI: 10.1016/j.neuroimage.2015.04.014] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Revised: 03/06/2015] [Accepted: 04/07/2015] [Indexed: 01/04/2023] Open
|
17
|
The dynamics of cerebrovascular reactivity shown with transfer function analysis. Neuroimage 2015; 114:207-16. [PMID: 25891374 DOI: 10.1016/j.neuroimage.2015.04.029] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Revised: 04/06/2015] [Accepted: 04/11/2015] [Indexed: 01/24/2023] Open
Abstract
Cerebrovascular reactivity (CVR) is often defined as the increase in cerebral blood flow (CBF) produced by an increase in carbon dioxide (CO2) and may be used clinically to assess the health of the cerebrovasculature. When CBF is estimated using blood oxygen level dependent (BOLD) magnetic resonance imaging, CVR values for each voxel can be displayed using a color scale mapped onto the corresponding anatomical scan. While these CVR maps therefore show the distribution of cerebrovascular reactivity, they only provide an estimate of the magnitude of the cerebrovascular response, and do not indicate the time course of the response; whether rapid or slow. Here we describe transfer function analysis (TFA) of the BOLD response to CO2 that provides not only the magnitude of the response (gain) but also the phase and coherence. The phase can be interpreted as indicating the speed of response and so can distinguish areas where the response is slowed. The coherence measures the fidelity with which the response follows the stimulus. The examples of gain, phase and coherence maps obtained from TFA of previously recorded test data from patients and healthy individuals demonstrate that these maps may enhance assessment of cerebrovascular pathophysiology by providing insight into the dynamics of cerebral blood flow control and distribution.
Collapse
|
18
|
Regan RE, Fisher JA, Duffin J. Factors affecting the determination of cerebrovascular reactivity. Brain Behav 2014; 4:775-88. [PMID: 25328852 PMCID: PMC4188369 DOI: 10.1002/brb3.275] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Revised: 07/14/2014] [Accepted: 07/27/2014] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND AND PURPOSE Cerebrovascular reactivity (CVR), measures the ability of the cerebrovasculature to respond to vasoactive stimuli such as CO2. CVR is often expressed as the ratio of cerebral blood flow change to CO2 change. We examine several factors affecting this measurement: blood pressure, stimulus pattern, response analysis and subject position. METHODS Step and ramp increases in CO2 were implemented in nine subjects, seated and supine. Middle cerebral artery blood flow velocity (MCAv), and mean arterial pressure (MAP) were determined breath-by-breath. Cerebrovascular conductance (MCAc) was estimated as MCAv/MAP. CVR was calculated from both the relative and absolute measures of MCAc and MCAv responses. RESULTS MAP increased with CO2 in some subjects so that relative CVR calculated from conductance responses were less than those calculated from CVR calculated from velocity responses. CVR measured from step responses were affected by the response dynamics, and were less than those calculated from CVR measured from ramp responses. Subject position did not affect CVR. CONCLUSIONS (1) MAP increases with CO2 and acts as a confounding factor for CVR measurement; (2) CVR depends on the stimulus pattern used; (3) CVR did not differ from the sitting versus supine in these experiments; (4) CVR calculated from absolute changes of MCAv was less than that calculated from relative changes.
Collapse
Affiliation(s)
- Rosemary E Regan
- Department of Physiology, University of Toronto Toronto, ON, M5S 1A8, Canada
| | - Joseph A Fisher
- Department of Physiology, University of Toronto Toronto, ON, M5S 1A8, Canada ; Department of Anaesthesiology, University of Toronto Toronto, ON, Canada ; University Health Network Toronto, ON, Canada
| | - James Duffin
- Department of Physiology, University of Toronto Toronto, ON, M5S 1A8, Canada ; Department of Anaesthesiology, University of Toronto Toronto, ON, Canada ; University Health Network Toronto, ON, Canada
| |
Collapse
|
19
|
Ogoh S, Nakahara H, Ueda S, Okazaki K, Shibasaki M, Subudhi AW, Miyamoto T. Effects of acute hypoxia on cerebrovascular responses to carbon dioxide. Exp Physiol 2014; 99:849-58. [PMID: 24632495 DOI: 10.1113/expphysiol.2013.076802] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
In normoxic conditions, a reduction in arterial carbon dioxide tension causes cerebral vasoconstriction, thereby reducing cerebral blood flow and modifying dynamic cerebral autoregulation (dCA). It is unclear to what extent these effects are altered by acute hypoxia and the associated hypoxic ventilatory response (respiratory chemoreflex). This study tested the hypothesis that acute hypoxia attenuates arterial CO2 tension-mediated regulation of cerebral blood flow to help maintain cerebral O2 homeostasis. Eight subjects performed three randomly assigned respiratory interventions following a resting baseline period, as follows: (1) normoxia (21% O2); (2) hypoxia (12% O2); and (3) hypoxia with wilful restraint of the respiratory chemoreflex. During each intervention, 0, 2.0, 3.5 or 5.0% CO2 was sequentially added (8 min stages) to inspired gas mixtures to assess changes in steady-state cerebrovascular CO2 reactivity and dCA. During normoxia, the addition of CO2 increased internal carotid artery blood flow and middle cerebral artery mean blood velocity (MCA Vmean), while reducing dCA (change in phase = -0.73 ± 0.22 rad, P = 0.005). During acute hypoxia, internal carotid artery blood flow and MCA Vmean remained unchanged, but cerebrovascular CO2 reactivity (internal carotid artery, P = 0.003; MCA Vmean, P = 0.031) and CO2-mediated effects on dCA (P = 0.008) were attenuated. The effects of hypoxia were not further altered when the respiratory chemoreflex was restrained. These findings support the hypothesis that arterial CO2 tension-mediated effects on the cerebral vasculature are reduced during acute hypoxia. These effects could limit the degree of hypocapnic vasoconstriction and may help to regulate cerebral blood flow and cerebral O2 homeostasis during acute periods of hypoxia.
Collapse
Affiliation(s)
- Shigehiko Ogoh
- Department of Biomedical Engineering, Toyo University, Kawagoe-Shi, Saitama, Japan
| | | | - Shinya Ueda
- Morinomiya University of Medical Sciences, Osaka, Japan
| | - Kazunobu Okazaki
- Department of Environmental Physiology for Exercise, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Manabu Shibasaki
- Department of Environmental Health, Nara Women's University, Nara, Japan
| | - Andrew W Subudhi
- Department of Biology, University of Colorado, Colorado Springs, CO, USA
| | - Tadayoshi Miyamoto
- Morinomiya University of Medical Sciences, Osaka, Japan Department of Cardiovascular Dynamics, National Cardiovascular Center Research Institute, Osaka, Japan
| |
Collapse
|
20
|
Rupp T, Esteve F, Bouzat P, Lundby C, Perrey S, Levy P, Robach P, Verges S. Cerebral hemodynamic and ventilatory responses to hypoxia, hypercapnia, and hypocapnia during 5 days at 4,350 m. J Cereb Blood Flow Metab 2014; 34:52-60. [PMID: 24064493 PMCID: PMC3887348 DOI: 10.1038/jcbfm.2013.167] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Revised: 07/31/2013] [Accepted: 08/26/2013] [Indexed: 01/18/2023]
Abstract
This study investigated the changes in cerebral near-infrared spectroscopy (NIRS) signals, cerebrovascular and ventilatory responses to hypoxia and CO2 during altitude exposure. At sea level (SL), after 24 hours and 5 days at 4,350 m, 11 healthy subjects were exposed to normoxia, isocapnic hypoxia, hypercapnia, and hypocapnia. The following parameters were measured: prefrontal tissue oxygenation index (TOI), oxy- (HbO2), deoxy- and total hemoglobin (HbTot) concentrations with NIRS, blood velocity in the middle cerebral artery (MCAv) with transcranial Doppler and ventilation. Smaller prefrontal deoxygenation and larger ΔHbTot in response to hypoxia were observed at altitude compared with SL (day 5: ΔHbO2-0.6±1.1 versus -1.8±1.3 μmol/cmper mm Hg and ΔHbTot 1.4±1.3 versus 0.7±1.1 μmol/cm per mm Hg). The hypoxic MCAv and ventilatory responses were enhanced at altitude. Prefrontal oxygenation increased less in response to hypercapnia at altitude compared with SL (day 5: ΔTOI 0.3±0.2 versus 0.5±0.3% mm Hg). The hypercapnic MCAv and ventilatory responses were decreased and increased, respectively, at altitude. Hemodynamic responses to hypocapnia did not change at altitude. Short-term altitude exposure improves cerebral oxygenation in response to hypoxia but decreases it during hypercapnia. Although these changes may be relevant for conditions such as exercise or sleep at altitude, they were not associated with symptoms of acute mountain sickness.
Collapse
Affiliation(s)
- Thomas Rupp
- 1] INSERM U1042, Grenoble, France [2] HP2 laboratory, Joseph Fourier University, Grenoble, France
| | - François Esteve
- 1] U836/team 6, INSERM, Grenoble, France [2] Grenoble Institute of Neurosciences, Joseph Fourier University, Grenoble, France
| | - Pierre Bouzat
- 1] U836/team 6, INSERM, Grenoble, France [2] Grenoble Institute of Neurosciences, Joseph Fourier University, Grenoble, France
| | - Carsten Lundby
- Institute of Physiology, University of Zurich, Zurich, Switzerland
| | - Stéphane Perrey
- Movement To Health (M2H), Montpellier-1 University, Euromov, France
| | - Patrick Levy
- 1] INSERM U1042, Grenoble, France [2] HP2 laboratory, Joseph Fourier University, Grenoble, France
| | - Paul Robach
- 1] INSERM U1042, Grenoble, France [2] HP2 laboratory, Joseph Fourier University, Grenoble, France [3] Ecole Nationale de Ski et d'Alpinisme, Chamonix, France
| | - Samuel Verges
- 1] INSERM U1042, Grenoble, France [2] HP2 laboratory, Joseph Fourier University, Grenoble, France
| |
Collapse
|
21
|
Fan JL, Subudhi AW, Evero O, Bourdillon N, Kayser B, Lovering AT, Roach RC. AltitudeOmics: enhanced cerebrovascular reactivity and ventilatory response to CO2 with high-altitude acclimatization and reexposure. J Appl Physiol (1985) 2013; 116:911-8. [PMID: 24356520 DOI: 10.1152/japplphysiol.00704.2013] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The present study is the first to examine the effect of high-altitude acclimatization and reexposure on the responses of cerebral blood flow and ventilation to CO2. We also compared the steady-state estimates of these parameters during acclimatization with the modified rebreathing method. We assessed changes in steady-state responses of middle cerebral artery velocity (MCAv), cerebrovascular conductance index (CVCi), and ventilation (V(E)) to varied levels of CO2 in 21 lowlanders (9 women; 21 ± 1 years of age) at sea level (SL), during initial exposure to 5,260 m (ALT1), after 16 days of acclimatization (ALT16), and upon reexposure to altitude following either 7 (POST7) or 21 days (POST21) at low altitude (1,525 m). In the nonacclimatized state (ALT1), MCAv and V(E) responses to CO2 were elevated compared with those at SL (by 79 ± 75% and 14.8 ± 12.3 l/min, respectively; P = 0.004 and P = 0.011). Acclimatization at ALT16 further elevated both MCAv and Ve responses to CO2 compared with ALT1 (by 89 ± 70% and 48.3 ± 32.0 l/min, respectively; P < 0.001). The acclimatization gained for V(E) responses to CO2 at ALT16 was retained by 38% upon reexposure to altitude at POST7 (P = 0.004 vs. ALT1), whereas no retention was observed for the MCAv responses (P > 0.05). We found good agreement between steady-state and modified rebreathing estimates of MCAv and V(E) responses to CO2 across all three time points (P < 0.001, pooled data). Regardless of the method of assessment, altitude acclimatization elevates both the cerebrovascular and ventilatory responsiveness to CO2. Our data further demonstrate that this enhanced ventilatory CO2 response is partly retained after 7 days at low altitude.
Collapse
Affiliation(s)
- Jui-Lin Fan
- Institute of Sports Sciences, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | | | | | | | | | | | | |
Collapse
|
22
|
Richard NA, Sahota IS, Widmer N, Ferguson S, Sheel AW, Koehle MS. Acute mountain sickness, chemosensitivity, and cardiorespiratory responses in humans exposed to hypobaric and normobaric hypoxia. J Appl Physiol (1985) 2013; 116:945-52. [PMID: 23823153 DOI: 10.1152/japplphysiol.00319.2013] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We examined the control of breathing, cardiorespiratory effects, and the incidence of acute mountain sickness (AMS) in humans exposed to hypobaric hypoxia (HH) and normobaric hypoxia (NH), and under two control conditions [hypobaric normoxia (HN) and normobaric normoxia (NN)]. Exposures were 6 h in duration, and separated by 2 wk between hypoxic exposures and 1 wk between normoxic exposures. Before and after exposures, subjects (n = 11) underwent hyperoxic and hypoxic Duffin CO2 rebreathing tests and a hypoxic ventilatory response test (HVR). Inside the environmental chamber, minute ventilation (V(E)), tidal volume (V(T)), frequency of breathing (fB), blood oxygenation, heart rate, and blood pressure were measured at 5 and 30 min and hourly until exit. Symptoms of AMS were evaluated using the Lake Louise score (LLS). Both the hyperoxic and hypoxic CO2 thresholds were lower after HH and NH, whereas CO2 sensitivity was increased after HH and NH in the hypoxic test and after NH in the hyperoxic test. Values for HVR were similar across the four exposures. No major differences were observed for Ve or any other cardiorespiratory variables between NH and HH. The LLS was greater in AMS-susceptible than in AMS-resistant subjects; however, LLS was alike between HH and NH. In AMS-susceptible subjects, fB correlated positively and Vt negatively with the LLS. We conclude that 6 h of hypoxic exposure is sufficient to lower the peripheral and central CO2 threshold but does not induce differences in cardiorespiratory variables or AMS incidence between HH and NH.
Collapse
Affiliation(s)
- Normand A Richard
- School of Kinesiology, University of British Columbia, Vancouver, British Columbia, Canada
| | | | | | | | | | | |
Collapse
|
23
|
Villien M, Bouzat P, Rupp T, Robach P, Lamalle L, Troprès I, Estève F, Krainik A, Lévy P, Warnking JM, Verges S. Changes in cerebral blood flow and vasoreactivity to CO2 measured by arterial spin labeling after 6days at 4350m. Neuroimage 2013; 72:272-9. [DOI: 10.1016/j.neuroimage.2013.01.066] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Revised: 12/26/2012] [Accepted: 01/23/2013] [Indexed: 12/22/2022] Open
|
24
|
Burgess KR, Lucas SJE, Shepherd K, Dawson A, Swart M, Thomas KN, Lucas RAI, Donnelly J, Peebles KC, Basnyat R, Ainslie PN. Worsening of central sleep apnea at high altitude--a role for cerebrovascular function. J Appl Physiol (1985) 2013; 114:1021-8. [PMID: 23429871 DOI: 10.1152/japplphysiol.01462.2012] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Although periodic breathing during sleep at high altitude occurs almost universally, the likely mechanisms and independent effects of altitude and acclimatization have not been clearly reported. Data from 2005 demonstrated a significant relationship between decline in cerebral blood flow (CBF) at sleep onset and subsequent severity of central sleep apnea that night. We suspected that CBF would decline during partial acclimatization. We hypothesized therefore that reductions in CBF and its reactivity would worsen periodic breathing during sleep following partial acclimatization. Repeated measures of awake ventilatory and CBF responsiveness, arterial blood gases during wakefulness. and overnight polysomnography at sea level, upon arrival (days 2-4), and following partial acclimatization (days 12-15) to 5,050 m were made on 12 subjects. The apnea-hypopnea index (AHI) increased from to 77 ± 49 on days 2-4 to 116 ± 21 on days 12-15 (P = 0.01). The AHI upon initial arrival was associated with marked elevations in CBF (+28%, 68 ± 11 to 87 ± 17 cm/s; P < 0.05) and its reactivity to changes in PaCO2 [>90%, 2.0 ± 0.6 to 3.8 ± 1.5 cm·s(-1)·mmHg(-1) hypercapnia and 1.9 ± 0.4 to 4.1 ± 0.9 cm·s(-1)·mmHg(-1) for hypocapnia (P < 0.05)]. Over 10 days, the increases resolved and AHI worsened. During sleep at high altitude large oscillations in mean CBF velocity (CBFv) occurred, which were 35% higher initially (peak CBFv = 96 cm/s vs. peak CBFv = 71 cm/s) than at days 12-15. Our novel findings suggest that elevations in CBF and its reactivity to CO(2) upon initial ascent to high altitude may provide a protective effect on the development of periodic breathing during sleep (likely via moderating changes in central Pco2).
Collapse
Affiliation(s)
- Keith R Burgess
- Peninsula Sleep Laboratory, Sydney, New South Wales, Australia.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Mardimae A, Balaban DY, Machina MA, Battisti-Charbonney A, Han JS, Katznelson R, Minkovich LL, Fedorko L, Murphy PM, Wasowicz M, Naughton F, Meineri M, Fisher JA, Duffin J. The interaction of carbon dioxide and hypoxia in the control of cerebral blood flow. Pflugers Arch 2012; 464:345-51. [PMID: 22961068 DOI: 10.1007/s00424-012-1148-1] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2012] [Accepted: 08/21/2012] [Indexed: 11/24/2022]
Abstract
Both hypoxia and carbon dioxide increase cerebral blood flow (CBF), and their effective interaction is currently thought to be additive. Our objective was to test this hypothesis. Eight healthy subjects breathed a series of progressively hypoxic gases at three levels of carbon dioxide. Middle cerebral artery velocity, as an index of CBF; partial pressures of carbon dioxide and oxygen and concentration of oxygen in arterial blood; and mean arterial blood pressure were monitored. The product of middle cerebral artery velocity and arterial concentration of oxygen was used as an index of cerebral oxygen delivery. Two-way repeated measures analyses of variance (rmANOVA) found a significant interaction of carbon dioxide and hypoxia factors for both CBF and cerebral oxygen delivery. Regression models using sigmoidal dependence on carbon dioxide and a rectangular hyperbolic dependence on hypoxia were fitted to the data to illustrate this interaction. We concluded that carbon dioxide and hypoxia act synergistically in their control of CBF so that the delivery of oxygen to the brain is enhanced during hypoxic hypercapnia and, although reduced during normoxic hypocapnia, can be restored to normal levels with progressive hypoxia.
Collapse
Affiliation(s)
- Alexandra Mardimae
- Department of Physiology, University of Toronto, Toronto, ON, Canada, M5S 1A8
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Vogiatzis I, Louvaris Z, Habazettl H, Athanasopoulos D, Andrianopoulos V, Cherouveim E, Wagner H, Roussos C, Wagner PD, Zakynthinos S. Frontal cerebral cortex blood flow, oxygen delivery and oxygenation during normoxic and hypoxic exercise in athletes. J Physiol 2011; 589:4027-39. [PMID: 21727220 DOI: 10.1113/jphysiol.2011.210880] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
During maximal hypoxic exercise, a reduction in cerebral oxygen delivery may constitute a signal to the central nervous system to terminate exercise. We investigated whether the rate of increase in frontal cerebral cortex oxygen delivery is limited in hypoxic compared to normoxic exercise. We assessed frontal cerebral cortex blood flow using near-infrared spectroscopy and the light-absorbing tracer indocyanine green dye, as well as frontal cortex oxygen saturation (S(tO2)%) in 11 trained cyclists during graded incremental exercise to the limit of tolerance (maximal work rate, WRmax) in normoxia and acute hypoxia (inspired O2 fraction (F(IO2)), 0.12). In normoxia, frontal cortex blood flow and oxygen delivery increased (P < 0.05) from baseline to sub-maximal exercise, reaching peak values at near-maximal exercise (80% WRmax: 287 ± 9 W; 81 ± 23% and 75 ± 22% increase relative to baseline, respectively), both leveling off thereafter up to WRmax (382 ± 10 W). Frontal cortex S(tO2)% did not change from baseline (66 ± 3%) throughout graded exercise. During hypoxic exercise, frontal cortex blood flow increased (P = 0.016) from baseline to sub-maximal exercise, peaking at 80% WRmax (213 ± 6 W; 60 ± 15% relative increase) before declining towards baseline at WRmax (289 ± 5 W). Despite this, frontal cortex oxygen delivery remained unchanged from baseline throughout graded exercise, being at WRmax lower than at comparable loads (287 ± 9 W) in normoxia (by 58 ± 12%; P = 0.01). Frontal cortex S(tO2)% fell from baseline (58 ± 2%) on light and moderate exercise in parallel with arterial oxygen saturation, but then remained unchanged to exhaustion (47 ± 1%). Thus, during maximal, but not light to moderate, exercise frontal cortex oxygen delivery is limited in hypoxia compared to normoxia. This limitation could potentially constitute the signal to limit maximal exercise capacity in hypoxia.
Collapse
Affiliation(s)
- Ioannis Vogiatzis
- Department of Critical Care Medicine and Pulmonary Services, Evangelismos Hospital, M. Simou, and G.P. Livanos Laboratories, National and Kapodistrian University of Athens, Greece.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Lucas SJE, Burgess KR, Thomas KN, Donnelly J, Peebles KC, Lucas RAI, Fan JL, Cotter JD, Basnyat R, Ainslie PN. Alterations in cerebral blood flow and cerebrovascular reactivity during 14 days at 5050 m. J Physiol 2010; 589:741-53. [PMID: 21041534 PMCID: PMC3052440 DOI: 10.1113/jphysiol.2010.192534] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Upon ascent to high altitude, cerebral blood flow (CBF) rises substantially before returning to sea-level values. The underlying mechanisms for these changes are unclear. We examined three hypotheses: (1) the balance of arterial blood gases upon arrival at and across 2 weeks of living at 5050 m will closely relate to changes in CBF; (2) CBF reactivity to steady-state changes in CO2 will be reduced following this 2 week acclimatisation period, and (3) reductions in CBF reactivity to CO2 will be reflected in an augmented ventilatory sensitivity to CO2. We measured arterial blood gases, middle cerebral artery blood flow velocity (MCAv, index of CBF) and ventilation () at rest and during steady-state hyperoxic hypercapnia (7% CO2) and voluntary hyperventilation (hypocapnia) at sea level and then again following 2–4, 7–9 and 12–15 days of living at 5050 m. Upon arrival at high altitude, resting MCAv was elevated (up 31 ± 31%; P < 0.01; vs. sea level), but returned to sea-level values within 7–9 days. Elevations in MCAv were strongly correlated (R2= 0.40) with the change in ratio (i.e. the collective tendency of arterial blood gases to cause CBF vasodilatation or constriction). Upon initial arrival and after 2 weeks at high altitude, cerebrovascular reactivity to hypercapnia was reduced (P < 0.05), whereas hypocapnic reactivity was enhanced (P < 0.05 vs. sea level). Ventilatory response to hypercapnia was elevated at days 2–4 (P < 0.05 vs. sea level, 4.01 ± 2.98 vs. 2.09 ± 1.32 l min−1 mmHg−1). These findings indicate that: (1) the balance of arterial blood gases accounts for a large part of the observed variability (∼40%) leading to changes in CBF at high altitude; (2) cerebrovascular reactivity to hypercapnia and hypocapnia is differentially affected by high-altitude exposure and remains distorted during partial acclimatisation, and (3) alterations in cerebrovascular reactivity to CO2 may also affect ventilatory sensitivity.
Collapse
Affiliation(s)
- Samuel J E Lucas
- Department of Physiology, University of Otago, Dunedin, New Zealand.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Barnes JN, Silva BM. Ascent to altitude: an integrated cerebrovascular, ventilatory and acid-base response. J Physiol 2010; 588:1815-6. [PMID: 20516346 DOI: 10.1113/jphysiol.2010.189837] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Affiliation(s)
- Jill N Barnes
- Department of Anesthesiology, Mayo Clinic, Rochester, MN 55905, USA.
| | | |
Collapse
|
29
|
Teppema LJ, Dahan A. The Ventilatory Response to Hypoxia in Mammals: Mechanisms, Measurement, and Analysis. Physiol Rev 2010; 90:675-754. [DOI: 10.1152/physrev.00012.2009] [Citation(s) in RCA: 257] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The respiratory response to hypoxia in mammals develops from an inhibition of breathing movements in utero into a sustained increase in ventilation in the adult. This ventilatory response to hypoxia (HVR) in mammals is the subject of this review. The period immediately after birth contains a critical time window in which environmental factors can cause long-term changes in the structural and functional properties of the respiratory system, resulting in an altered HVR phenotype. Both neonatal chronic and chronic intermittent hypoxia, but also chronic hyperoxia, can induce such plastic changes, the nature of which depends on the time pattern and duration of the exposure (acute or chronic, episodic or not, etc.). At adult age, exposure to chronic hypoxic paradigms induces adjustments in the HVR that seem reversible when the respiratory system is fully matured. These changes are orchestrated by transcription factors of which hypoxia-inducible factor 1 has been identified as the master regulator. We discuss the mechanisms underlying the HVR and its adaptations to chronic changes in ambient oxygen concentration, with emphasis on the carotid bodies that contain oxygen sensors and initiate the response, and on the contribution of central neurotransmitters and brain stem regions. We also briefly summarize the techniques used in small animals and in humans to measure the HVR and discuss the specific difficulties encountered in its measurement and analysis.
Collapse
Affiliation(s)
- Luc J. Teppema
- Department of Anesthesiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Albert Dahan
- Department of Anesthesiology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
30
|
Slessarev M, Mardimae A, Preiss D, Vesely A, Balaban DY, Greene R, Duffin J, Fisher JA. Differences in the control of breathing between Andean highlanders and lowlanders after 10 days acclimatization at 3850 m. J Physiol 2010; 588:1607-21. [PMID: 20231143 DOI: 10.1113/jphysiol.2009.186064] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
We used Duffin's isoxic hyperoxic ( mmHg) and hypoxic ( mmHg) rebreathing tests to compare the control of breathing in eight (7 male) Andean highlanders and six (4 male) acclimatizing Caucasian lowlanders after 10 days at 3850 m. Compared to lowlanders, highlanders had an increased non-chemoreflex drive to breathe, characterized by higher basal ventilation at both hyperoxia (10.5 +/- 0.7 vs. 4.9 +/- 0.5 l min(1), P = 0.002) and hypoxia (13.8 +/- 1.4 vs. 5.7 +/- 0.9 l min(1), P < 0.001). Highlanders had a single ventilatory sensitivity to CO(2) that was lower than that of the lowlanders (P < 0.001), whose response was characterized by two ventilatory sensitivities (VeS1 and VeS2) separated by a patterning threshold. There was no difference in ventilatory recruitment thresholds (VRTs) between populations (P = 0.209). Hypoxia decreased VRT within both populations (highlanders: 36.4 +/- 1.3 to 31.7 +/- 0.7 mmHg, P < 0.001; lowlanders: 35.3 +/- 1.3 to 28.8 +/- 0.9 mmHg, P < 0.001), but it had no effect on basal ventilation (P = 0.12) or on ventilatory sensitivities in either population (P = 0.684). Within lowlanders, VeS2 was substantially greater than VeS1 at both isoxic tensions (hyperoxic: 9.9 +/- 1.7 vs. 2.8 +/- 0.2, P = 0.005; hypoxic: 13.2 +/- 1.9 vs. 2.8 +/- 0.5, P < 0.001), although hypoxia had no effect on either of the sensitivities (P = 0.192). We conclude that the control of breathing in Andean highlanders is different from that in acclimatizing lowlanders, although there are some similarities. Specifically, acclimatizing lowlanders have relatively lower non-chemoreflex drives to breathe, increased ventilatory sensitivities to CO(2), and an altered pattern of ventilatory response to CO(2) with two ventilatory sensitivities separated by a patterning threshold. Similar to highlanders and unlike lowlanders at sea-level, acclimatizing lowlanders respond to hypobaric hypoxia by decreasing their VRT instead of changing their ventilatory sensitivity to CO(2).
Collapse
Affiliation(s)
- Marat Slessarev
- Department of Anesthesia, University Health Network, University of Toronto, Toronto, Canada, M5G 2C4
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Fan JL, Burgess KR, Basnyat R, Thomas KN, Peebles KC, Lucas SJE, Lucas RAI, Donnelly J, Cotter JD, Ainslie PN. Influence of high altitude on cerebrovascular and ventilatory responsiveness to CO2. J Physiol 2009; 588:539-49. [PMID: 20026618 DOI: 10.1113/jphysiol.2009.184051] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
An altered acid-base balance following ascent to high altitude has been well established. Such changes in pH buffering could potentially account for the observed increase in ventilatory CO(2) sensitivity at high altitude. Likewise, if [H(+)] is the main determinant of cerebrovascular tone, then an alteration in pH buffering may also enhance the cerebral blood flow (CBF) responsiveness to CO(2) (termed cerebrovascular CO(2) reactivity). However, the effect altered acid-base balance associated with high altitude ascent on cerebrovascular and ventilatory responsiveness to CO(2) remains unclear. We measured ventilation , middle cerebral artery velocity (MCAv; index of CBF) and arterial blood gases at sea level and following ascent to 5050 m in 17 healthy participants during modified hyperoxic rebreathing. At 5050 m, resting , MCAv and pH were higher (P < 0.01), while bicarbonate concentration and partial pressures of arterial O(2) and CO(2) were lower (P < 0.01) compared to sea level. Ascent to 5050 m also increased the hypercapnic MCAv CO(2) reactivity (2.9 +/- 1.1 vs. 4.8 +/- 1.4% mmHg(1); P < 0.01) and CO(2) sensitivity (3.6 +/- 2.3 vs. 5.1 +/- 1.7 l min(1) mmHg(1); P < 0.01). Likewise, the hypocapnic MCAv CO(2) reactivity was increased at 5050 m (4.2 +/- 1.0 vs. 2.0 +/- 0.6% mmHg(1); P < 0.01). The hypercapnic MCAv CO(2) reactivity correlated with resting pH at high altitude (R(2) = 0.4; P < 0.01) while the central chemoreflex threshold correlated with bicarbonate concentration (R(2) = 0.7; P < 0.01). These findings indicate that (1) ascent to high altitude increases the ventilatory CO(2) sensitivity and elevates the cerebrovascular responsiveness to hypercapnia and hypocapnia, and (2) alterations in cerebrovascular CO(2) reactivity and central chemoreflex may be partly attributed to an acid-base balance associated with high altitude ascent. Collectively, our findings provide new insights into the influence of high altitude on cerebrovascular function and highlight the potential role of alterations in acid-base balance in the regulation in CBF and ventilatory control.
Collapse
Affiliation(s)
- Jui-Lin Fan
- Department of Physiology, Otago School of Medical Science, University of Otago, Dunedin, New Zealand
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Leissner KB, Mahmood FU. Physiology and pathophysiology at high altitude: considerations for the anesthesiologist. J Anesth 2009; 23:543-53. [DOI: 10.1007/s00540-009-0787-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2009] [Accepted: 04/30/2009] [Indexed: 10/20/2022]
|
33
|
Ogoh S, Ainslie PN. Cerebral blood flow during exercise: mechanisms of regulation. J Appl Physiol (1985) 2009; 107:1370-80. [PMID: 19729591 DOI: 10.1152/japplphysiol.00573.2009] [Citation(s) in RCA: 368] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The response of cerebral vasculature to exercise is different from other peripheral vasculature; it has a small vascular bed and is strongly regulated by cerebral autoregulation and the partial pressure of arterial carbon dioxide (Pa(CO(2))). In contrast to other organs, the traditional thinking is that total cerebral blood flow (CBF) remains relatively constant and is largely unaffected by a variety of conditions, including those imposed during exercise. Recent research, however, indicates that cerebral neuronal activity and metabolism drive an increase in CBF during exercise. Increases in exercise intensity up to approximately 60% of maximal oxygen uptake produce elevations in CBF, after which CBF decreases toward baseline values because of lower Pa(CO(2)) via hyperventilation-induced cerebral vasoconstriction. This finding indicates that, during heavy exercise, CBF decreases despite the cerebral metabolic demand. In contrast, this reduced CBF during heavy exercise lowers cerebral oxygenation and therefore may act as an independent influence on central fatigue. In this review, we highlight methodological considerations relevant for the assessment of CBF and then summarize the integrative mechanisms underlying the regulation of CBF at rest and during exercise. In addition, we examine how CBF regulation during exercise is altered by exercise training, hypoxia, and aging and suggest avenues for future research.
Collapse
Affiliation(s)
- Shigehiko Ogoh
- Dept. of Biomedical Engineering, Toyo Univ., 2100 Kujirai, Kawagoe-shi, Saitama 350-8585, Japan.
| | | |
Collapse
|
34
|
Ainslie PN, Ogoh S. Regulation of cerebral blood flow in mammals during chronic hypoxia: a matter of balance. Exp Physiol 2009; 95:251-62. [PMID: 19617269 DOI: 10.1113/expphysiol.2008.045575] [Citation(s) in RCA: 113] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Respiratory-induced changes in the partial pressures of arterial carbon dioxide (PaCO2) and oxygen (PaO2) play a major role in cerebral blood flow (CBF) regulation. Elevations in PaCO2 (hypercapnia) lead to vasodilatation and increases in CBF, whereas reductions in PaCO2 (hypocapnia) lead to vasoconstriction and decreases in CBF. A fall in PaO2 (hypoxia) below a certain threshold (<40-45 mmHg) also produces cerebral vasodilatation. Upon initial exposure to hypoxia, CBF is elevated via a greater relative degree of hypoxia compared with hypocapnia. At this point, hypoxia-induced elevations in blood pressure and loss of cerebral autoregulation, stimulation of neuronal pathways, angiogenesis, release of adenosine, endothelium-derived NO and a variety of autocoids and cytokines are additional factors acting to increase CBF. Following 2-3 days, however, the process of ventilatory acclimatization results in a progressive rise in ventilation, which increases PaO2 and reduces PaCO2, collectively acting to attenuate the initial rise in CBF. Other factors acting to lower CBF include elevations in haematocrit, sympathetic nerve activity and local and endothelium-derived vasoconstrictors. Hypoxia-induced alterations of cerebrovascular reactivity, autoregulation and pulmonary vascular tone may also affect CBF. Thus, the extent of change in CBF during exposure to hypoxia is dependent on the balance between the myriad of vasodilators and constrictors derived from the endothelium, neuronal innervations and perfusion pressure. This review examines the extent and mechanisms by which hypoxia regulates CBF. Particular focus will be given to the marked influence of hypoxia associated with exposure to high altitude and chronic lung disease. The associated implications of these hypoxia-induced integrative alterations for the regulation of CBF are discussed, and future avenues for research are proposed.
Collapse
Affiliation(s)
- Philip N Ainslie
- Department of Human Kinetics, Faculty of Health and Social Development, University of British Columbia Okanagan, Kelowna V1V 1V7, Canada.
| | | |
Collapse
|
35
|
Ainslie PN, Duffin J. Integration of cerebrovascular CO2 reactivity and chemoreflex control of breathing: mechanisms of regulation, measurement, and interpretation. Am J Physiol Regul Integr Comp Physiol 2009; 296:R1473-95. [PMID: 19211719 DOI: 10.1152/ajpregu.91008.2008] [Citation(s) in RCA: 416] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Cerebral blood flow (CBF) and its distribution are highly sensitive to changes in the partial pressure of arterial CO(2) (Pa(CO(2))). This physiological response, termed cerebrovascular CO(2) reactivity, is a vital homeostatic function that helps regulate and maintain central pH and, therefore, affects the respiratory central chemoreceptor stimulus. CBF increases with hypercapnia to wash out CO(2) from brain tissue, thereby attenuating the rise in central Pco(2), whereas hypocapnia causes cerebral vasoconstriction, which reduces CBF and attenuates the fall of brain tissue Pco(2). Cerebrovascular reactivity and ventilatory response to Pa(CO(2)) are therefore tightly linked, so that the regulation of CBF has an important role in stabilizing breathing during fluctuating levels of chemical stimuli. Indeed, recent reports indicate that cerebrovascular responsiveness to CO(2), primarily via its effects at the level of the central chemoreceptors, is an important determinant of eupneic and hypercapnic ventilatory responsiveness in otherwise healthy humans during wakefulness, sleep, and exercise and at high altitude. In particular, reductions in cerebrovascular responsiveness to CO(2) that provoke an increase in the gain of the chemoreflex control of breathing may underpin breathing instability during central sleep apnea in patients with congestive heart failure and on ascent to high altitude. In this review, we summarize the major factors that regulate CBF to emphasize the integrated mechanisms, in addition to Pa(CO(2)), that control CBF. We discuss in detail the assessment and interpretation of cerebrovascular reactivity to CO(2). Next, we provide a detailed update on the integration of the role of cerebrovascular CO(2) reactivity and CBF in regulation of chemoreflex control of breathing in health and disease. Finally, we describe the use of a newly developed steady-state modeling approach to examine the effects of changes in CBF on the chemoreflex control of breathing and suggest avenues for future research.
Collapse
Affiliation(s)
- Philip N Ainslie
- Department of Physiology, University of Otago, Dunedin, New Zealand.
| | | |
Collapse
|